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Gastric cancer (GC) is one of the most commonmalignancies of the digestive system with few genetic markers for its early detection
and prevention. In this study, differentially expressed genes (DEGs) were analyzed using GEO2R from GSE54129 and GSE13911 of
the Gene Expression Omnibus (GEO). Then, gene enrichment analysis, protein-protein interaction (PPI) network construction,
and topological analysis were performed on the DEGs by the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway, STRING, and Cytoscape. Finally, we performed survival analysis of key genes through the Kaplan-Meier
plotter. A total of 1034 DEGs were identified in GC. GO and KEGG results showed that DEGs mainly enriched in plasma
membrane, cell adhesion, and PI3K-Akt signaling pathway. Subsequently, the PPI network with 44 nodes and 333 edges was
constructed, and 18 candidate genes in the network were focused on by centrality analysis and module analysis. Furthermore,
data showed that high expressions of fibronectin 1(FN1), the tissue inhibitor of metalloproteinases 1 (TIMP1), secreted
phosphoprotein 1 (SPP1), apolipoprotein E (APOE), and versican (VCAN) were related to poor overall survivals in GC patients.
In summary, this study suggests that FN1, TIMP1, SPP1, APOE, and VCAN may act as the key genes in GC.

1. Introduction

Gastric cancer (GC) is one of the malignant tumors threaten-
ing human health, and it is the fifth most common cancer
and the third leading cause of cancer death in the world [1,
2]. The cause of the onset of it includes diet, lifestyle, genetic,
and infection of helicobacter pylori[3–5]. At present, the
treatment of gastric cancer includes surgery [6], radiotherapy
[7], neoadjuvant chemotherapy [8], and immunotherapy [9].
The survival rate for early gastric cancer patients can reach
90%. However, it is difficult to detect and diagnose the
disease during the early period, resulting in a significant
decrease in survival after diagnosis [10]. Therefore, it is
vitally important to explore potential diagnostic and
prognostic biomarkers and therapeutic targets of early GC.

With the advance of the human genome project, cancer
has been studied at the genetic level. Gene chips can be used
to identify genes that cause early cancer. It has the character-
istics of high flux, high sensitivity, and low cost. It is widely
used in disease diagnosis and drug screening [11, 12]. At

present, DNA microarrays were used to identify potential
biomarkers that affect the development of diseases in studies
[13]. Gene microarray technology plays an important role in
elucidating cell cycle-related genes and evaluating their
expression in gastric cancer [14]. However, the pathogenesis
of GC remains unclear.

In this study, we aimed to obtain the key genes between
GC patients and normal controls. We downloaded the gene
expression profiles of GSE54129 and GSE13911 and identi-
fied 1034 differentially expressed genes (DEGs) in GC. More-
over, Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analysis were carried out
for DEGs, and GC-related protein-protein interaction (PPI)
network was constructed. Furthermore, 18 candidate genes
displayed high centrality values and located at the 1st module,
which were found by the centrality analysis and module anal-
ysis on the basis of the GC-related PPI network. Data also
showed that high expressions of fibronectin 1 (FN1), the
tissue inhibitor of metalloproteinases 1 (TIMP1), secreted
phosphoprotein 1 (SPP1), apolipoprotein E (APOE), and
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versican (VCAN) were related to a poor overall survival in
gastric cancer patients. These key genes could be used as
potential therapeutic targets and biomarkers for gastric
cancer at early period.

2. Materials and Methods

2.1. Microarray Data. The Gene Expression Omnibus data-
base (http://www.ncbi.nlm.nih.gov/geo) is a public genome
database [15]. In this study, two gene expression profiles
GSE54129 and GSE13911 were downloaded from the GEO.
The criteria for both gene expression profiles were (a) the
samples included two groups of GC tumors and normal
tissues; (b) the sample size of each gene expression profile
was greater than 60; (c) they were recently updated in the last
two years (2019-2020); and (d) they were derived from the
same platform: GPL570 [hg-u133_plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array. The GSE54129 data
profile contained 111 tumor tissues and 21 normal tissues.
The GSE13911 data profile contained 38 tumor tissues and
31 normal tissues.

2.2. Identification of DEGs. GEO2R (https://www.ncbi.nlm
.nih.gov/geo/geo2r/) online analysis software was used to
analyze the differentially expressed genes in tumor and nor-
mal samples of GC. The intersection of DEGs was obtained
by Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/)
[16]. The adj. p value was obtained by the Benjamini and
Hochberg method to control the probability of false positives.
Adj. p value < 0.01 and ∣log FC ∣ >1 were used as the cut-off
criteria [17].

2.3. GO and KEGG Enrichment Analysis of DEGs. The
DAVID (https://david.ncifcrf.gov/) is a database that pro-
vides systematic and comprehensive annotation information
of biological functions for genes and proteins [18]. GO is an
international standard classification system of gene function
[19]. It includes biological process (BP), cellular component
(CC), and molecular function (MF). KEGG is a database
for systematic analysis of gene function and genomic infor-
mation [20]. We used DAVID to carry out GO functional
annotation and KEGG pathway enrichment analysis on the
DEGs. p < 0:05 were considered statistically significant [21].

2.4. PPI Network Construction. The STRING (http://string-
db.org) is a database for searching between known proteins
and predicting the interactions between proteins [22]. We
used it to build PPI network for DEGs. The combined score
> 0:4 was considered as the cut-off value [23].

2.5. Module Analysis of PPI Network. The Cytoscape is a soft-
ware for visual networks [24]. Functional modules in the
network were identified by using the plug-in MCODE of
Cytoscape [25]. The selection criteria were as follows:
degree cut − off = 2, node score cut − off = 0:2, k − core = 2,
and max depth = 100. Submodules were sorted by score
value. The higher the score was, the stronger the protein
correlation in the module was.

2.6. Centrality Analysis of PPI Network. Centrality analysis
includes analyzing the degree, betweenness, and eigenvector
of network nodes. Cytoscape plug-in CytoNCA was used to
calculate the values of degree, betweenness, and eigenvector
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Figure 1: Screening and identification of differentially expressed genes. (a) Venn diagram showed the differentially expressed genes of adj. p
value < 0.01 and ∣log2 FC ∣ >1. (b) Red points meaned upregulated genes screened on the basis log2 FC > 1 and p value < 0.01. Blue points
meaned downregulated genes screened on the basis log2 FC < −1 and p value < 0.01.
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to predict the key genes [26]. Degree centrality is a measure
of the importance of a single node, and it describes the num-
ber of edges connecting nodes [27]. Betweenness centrality is
the shortest path through which a particular node is analyzed
[28]. Eigenvector centrality takes into account the degree of
itself and the degree of its neighbors [29]. The distribution
characteristics of degree, betweenness, and eigenvector were
determined by density analysis. The correlation between
degree and betweenness, between degree and eigenvector,
and between betweenness and eigenvector was calculated by
taking the top 5% of the three parameters. And it was
visualized by R language.

2.7. Survival Analysis of Hub Genes. The Kaplan-Meier plot-
ter (KM plotter, http://kmplot.com/analysis/) is an online

website survival analysis [30]. There are 21 types of cancer,
including breast cancer, ovarian cancer, lung cancer, and gas-
tric cancer. The online analysis database includes GEO, EGA,
and TCGA. The KM plotter was used to reflect the survival
expression of hub genes. In the KM plotter, we selected
patient grouping criteria to automatically select the optimal
cutoff, overall survival, and complete follow-up time for
systematic and complete survival analysis. p < 0:01 was set
as the cut-off criterion [31].

3. Results

3.1. Identification of DEGs. To explore the role of systems
biology in the pathogenesis of GC, we analyzed two chip data
of GSE54129 and GSE13911 by GEO2R. There were 3878
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Figure 2: GO and KEGG enrichment analysis of the PPI network. (a) Top 25 significantly enriched gene ontology terms, including three
groups (biological process, cellular component, and molecular function), p < 0:05. (b) The KEGG pathway analysis of DEGs in GC, p <
0:05.
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differentially expressed genes in GSE54129 and 3061 differ-
entially expressed genes in GSE13911. Then, venny2.1.0
was used to obtain the intersection of the DEGs of the two
chips. The results showed that 1034 differentially expressed
genes appeared on both chips (Figure 1(a)). These DEGs
included 403 upregulated genes and 631 downregulated
genes between tumor and nontumor samples (Figure 1(b)).
These data provided basic data for further analysis.

3.2. GO and KEGG Enrichment Analysis of DEGs. In order to
better understand the biological function of DEGs, we
conducted GO function and KEGG enrichment analysis by
DAVID. GO results showed that DEGs significantly enriched
in extracellular matrix organization, collagen catabolic pro-
cess and cell adhesion of BP, extracellular space, extracellular
region and extracellular exosome of CC, extracellular matrix
structural constituent, and heparin binding and integrin
binding of MF (Figure 2(a)). Moreover, KEGG analysis
showed that the DEGs were enriched in ECM-receptor
interaction, PI3K-Akt signaling pathway and focal adhesion,
and so on (Figure 2(b)).

3.3. Construction of GC-Related PPI Network. To study the
molecular mechanism of gastric cancer from a systematic
perspective, PPI network was constructed to explore the
relationship between proteins. PPI network was constructed
by STRING for DEGs with a confidence level of >0.4. The
result of network analysis showed that PPI enrichment p

value < 1.0e-16. There were 865 nodes and 4483 edges in
the visualization network using the Cyctoscape.

3.4. Module Analysis of the PPI Network. In order to explore
more closely related genes in the complex PPI network, we
conducted module analysis of the network by MCODE.
The result showed that there were 27 modules in PPI net-
work. We found that the first module was the most densely
interacted region in PPI network, with a score of 15.488.
The module was located at the center of the entire network,
including 44 nodes and 333 edges (Figure 3). The above
results suggested that the protein association in the first-
rank module may be the strongest and the most significant
part of the whole network.

3.5. Centrality Analysis of PPI Networks. To analyze the key
genes in the complex PPI network, we used the centrality
analysis to analyze them. First, we analyzed the subcases of
the three parameters by their density. The results showed that
degree, betweenness, and eigenvector were power-law distri-
butions (Figure 4). Then, we took the top 5% of the three
parameters and analyze their correlation. The results showed
that the correlation coefficient between degree and between-
ness was 0.793, the correlation coefficient between degree and
eigenvector was 0.920, and the correlation coefficient
between betweenness and eigenvector was 0.620
(Figures 5(a)–5(c)). The results indicated that the degree,
betweenness, and eigenvector are positively correlated to
each other and have significant correlations. Finally, we
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Figure 3: Module analysis of PPI networks obtained through Cytoscape’s plug-in MCODE. The most prominent module in the PPI network
included 44 nodes and 333 edges.
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studied the top 5% of the genes of each parameter and
obtained 18 genes with degree, betweenness, and eigenvector
by taking the intersection (Figure 5(d), Table 1). Combined
these with the results of module analysis, FN1, TIMP1,
SPP1, apolipoprotein B (APOB), APOE, VCAN, and com-
plement C3 (C3) were focused on because these seven genes
with high centrality values were located in the first-rank
module.

3.6. Survival Analysis of Hub Genes. Survival analysis of seven
candidate genes was further studied using the KM plotter.
The results showed that FN1, TIMP1, SPP1, APOE, and
VCAN were related to OS in gastric cancer patients
(p < 0:01) (Figure 6).

4. Discussion

Microarray technology is a product of the gradual imple-
mentation of the human genome project and the rapid
development and application of molecular biology. With
the rapid development of gene microarray technology,
people can quickly measure the expression levels of thou-
sands of genes simultaneously [32, 33]. DNA microarray
has a high-throughput speed, the characteristics of high

sensitivity, and so on. It is widely used to study gene
expression in a variety of organisms, including yeast,
plants, and humans [34]. DNA microarrays can effectively
identify disease-related genes and use them as biomarkers
for diagnosis and treatment [35], including hepatocellular
cancer [36], renal cell cancer [37], and colorectal cancer
[38]. It has been reported that the methylation status of
CpG island can be detected by microarray method, which
is helpful for cancer diagnosis and detection of recurrence
[39]. And studies have shown that through the microarray
analysis between test specimens of gastric cancer and adja-
cent nontumor specimens, circRNA expression changes
reveal the circRNA potential role in gastric cancer [40].
The above studies suggest that we can provide useful
information for elucidating the development mechanism
of gastric cancer and searching for new therapeutic targets
and biomarkers through microarray technology.

In this study, we screened a total of 1034 differentially
expressed genes from GSE54129 and GSE13911 gene
expression profiles, among which 403 genes were upregu-
lated, and 631 genes were downregulated. The KEGG
pathway enrichment analysis revealed that the DEGs were
mainly in the pathways in cancer and PI3K-Akt signaling
pathway. Previous studies had shown that gastric cancer

0

0.00

0.02

0.04
D

en
sit

y

0.06

0.08

50
Degree

100

(a)

0e+00

1e–04

2e–04

3e–04

4e–04

D
en

sit
y

0 20000 40000
Betweenness

60000 80000

(b)

0

20

40

D
en

sit
y

60

80

0.00 0.05 0.10
Eigenvector

0.15 0.20 0.25

(c)

Figure 4: Centrality analysis of PPI networks obtained through Cytoscape’s plug-in CytoNCA. (a) A density diagram of degree centrality. (b)
A density diagram of betweenness centrality. (c) A density diagram of eigenvector centrality.
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cell proliferation can be promoted by activating PI3K/Akt
signaling pathway [41].

To explore the pathogenesis of gastric cancer, we con-
structed PPI network for systematic analysis. In the

STRING database, we set the minimum interaction score
with parameters >0.400 to obtain the PPI network of pro-
tein interactions. This setup avoided noise and incomplete
data affecting the PPI network. MCODE discovers dense
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Figure 5: Correlation analysis of the top 5% of molecules of each centrality (degree, betweenness, and eigenvector). (a) The correlation
coefficient between degree and betweenness was 0.793. (b) The correlation coefficient between degree and eigenvector was 0.920. (c) The
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regions in PPI networks based on connection data. This
function is not affected by the false-positive effect of
high-throughput technology. We selected the parameters
degree cut − off = 2, node score cut − off = 0:2, k − core = 2,
and max depth = 100 to find out all the modules that
interact in the network, so as to further explore the most
powerful proteins in the network. Through the module
analysis of the network, we found that there were 27 mod-
ules in the network. The first-rank module with a score of
15.488 was the most closely related module in the whole
network. Previous studies had shown that the related
genes can be screened out more accurately by modular
analysis, including cervical cancer [42], glioblastoma multi-
forme [43], and squamous cell cancer of head and neck
[44]. These indicated that modular analysis played an
important role in screening molecular markers. The genes
in the module with higher score were the key genes that
affected the occurrence of disease.

In order to further analyze the whole PPI network, the
centrality analysis was used to explain the importance of
the nodes in the network and the influence of the nodes
on the network. We obtained 18 genes with high central
values. Moreover, seven of the 18 genes were located in
first-order module. Previous studies had shown that cen-
tral nodes connected more protein-protein interactions,
and central nodes also had more information for path
enrichment analysis, which had a notable effect in the
whole network [45, 46]. The results suggested that these
genes may play significant roles in gastric cancer.

The study of cancer survival analysis plays an impor-
tant role in the evaluation of cancer prevention measures
[47]. Our results showed that the abnormal expression of
FN1, TIMP1, SPP1, APOE, and VCAN influenced the

prognosis of patients with gastric cancer. The high expres-
sion of them was associated with the worse OS in gastric
cancer. FN1 is a member of the glycoprotein family and
is widely expressed in many cell types. It played an impor-
tant role in cell adhesion, growth, migration, and differen-
tiation [48]. Studies had shown that inhibition of the
expression of FN1 can inhibit the invasion and migration
of gastric cancer cells [49, 50]. TIMP1 belongs to the
TIMP gene family. This gene family encodes proteins that
are natural inhibitors of matrix metalloproteinases
(MMPS) [51]. TIMP1 can promote the aggregation of
tumor-associated fibroblasts in the body and promote the
proliferation and migration of cancer cells, and has antia-
poptotic function [52, 53]. Studies had shown that TIMP1
was overexpressed and promoted cell proliferation in
patients with gastric cancer through the NF-κB-dependent
mechanism [54]. SPP1, also known as osteopontin (OPN),
is an acidic glycoprotein that secretes several functions.
OPN participated in the epithelial mesenchymal metastasis
(EMT) pathway and played an important role in tumor
metastasis [55]. Previous studies had shown that the high
expression of OPN was closely related to the occurrence
of gastric cancer [56]. APOE acts as the member of the
family of low density lipoprotein (LDL) receptor ligands
and interacts with the cell membrane receptor, which
involves in cholesterol and other lipid transport [57].
APOE activated the PI3K/AKT/mTOR signaling pathway
and played an important regulatory role in angiogenesis,
tumor cell growth, and metastasis [58, 59]. A study had
shown that tumor-associated macrophages (TAMs) inter-
acted with gastric cancer cells through APOE to promote
the migration of gastric cancer cells [60]. However, there
are few reports of VCAN in gastric cancer. VCAN is a
chondroitin sulfate proteoglycan. The interaction between
extracellular matrix and cell surface proteins promoted cell
growth, proliferation, and differentiation [61]. A study had
shown that upregulation of VCAN promoted the migra-
tion and invasion of ovarian cancer cells by activating
the NF-κB signaling pathway [62]. The growth of renal
cell cancer cells can be inhibited by the activation of
TNF signaling pathway through the silencing gene VCAN
[63]. In addition, VCAN stimulated mesothelioma growth
by weakening the antitumor activity of macrophages [64].
The above conclusions indicated that in GC, VCAN may
affect the disease progression of patients through these
paths, which were worth further study. The above results
indicated that these five genes were closely related to the
prognosis of patients with gastric cancer and can be used
as a biomarker for GC.

5. Conclusion

In this study, 1034 differentially expressed genes were identi-
fied. On based of these genes, GO and KEGG results showed
they were mainly in plasma membrane, cell adhesion, and
PI3K-Akt signaling pathway. Moreover, 18 topological key
genes of the 1st-rank module were focused on. Furthermore,
five of them (FN1, TIMP1, SPP1, APOE, and VCAN) were
found to be related to gastric cancer. Therefore, it provides

Table 1: Top 5% of candidate genes in the centrality analysis.

Gene Degree Betweenness Eigenvector

FN1 127 77922.220 0.253395320

MMP9 93 45189.664 0.198073490

CXCL8 85 33816.297 0.146214620

CD44 84 41183.110 0.172110660

MYC 82 48818.060 0.120246940

CXCL12 70 19844.107 0.157128860

TIMP1 65 8912.090 0.174682420

PTGS2 64 26884.875 0.114611500

SPP1 62 9094.989 0.165916760

APOB 54 28650.291 0.087770930

VCAN 52 9312.416 0.134104030

ICAM1 52 10434.576 0.122722970

CXCL1 52 10233.371 0.106985554

APOE 51 17188.280 0.110692450

STAT1 51 19835.434 0.081156254

KRAS 51 27196.115 0.077731330

BGN 48 11646.911 0.141241250

C3 42 9121.711 0.088115714

8 BioMed Research International



0.0

0.2

0.4Pr
ob

ab
ili

ty 0.6

0.8

1.0

500

Expression
Low
High

Time (months)
Number at risk

Low
High

586
289

222
76

37
11

1
0

100 150

HR = 1.54 (1.29 – 1.83)
Logrank p = 1e–06

(a)

0.0

0.2

0.4Pr
ob

ab
ili

ty 0.6

0.8

1.0

500
Time (months)

100 150

HR = 1.94 (1.58 – 2.38)
Logrank p = 1.5e–10

Expression
Low
High

Number at risk

Low
High

253
622

130
168

14
34

0
1

(b)

0.0

0.2

0.4Pr
ob

ab
ili

ty 0.6

0.8

1.0

500
Time (months)

100 150

HR = 2.22 (1.79 – 2.75)
Logrank p = 7.1e–14

Expression
Low
High

Number at risk

Low
High

251
624

132
166

7
41

0
1

(c)

0.0

0.2

0.4Pr
ob

ab
ili

ty 0.6

0.8

1.0

500
Time (months)

100 150

HR = 1.46 (1.23 – 1.74)
Logrank p = 1.8e–05

Expression
Low
High

Number at risk

Low
High

378
497

151
147

22
26

0
1

(d)

0.0

0.2

0.4Pr
ob

ab
ili

ty 0.6

0.8

1.0

500
Time (months)

100 150

HR = 1.43 (1.2 – 1.7)
Logrank p = 5.2e–05

Expression
Low
High

Number at risk

Low
High

591
284

224
74

29
19

0
1

(e)

Figure 6: Survival analysis of key genes by the KM plotter in gastric cancer. (a) Gastric cancer patients with high expression of FN1 had poor
prognosis. (b) Patients of gastric cancer with high expression of TIMP1 had poor prognosis. (c) Patients of gastric cancer with high expression
of SPP1 had poor prognosis. (d) Patients of gastric cancer with high expression of APOE had poor prognosis. (e) Patients of gastric cancer
with high expression of VCAN had poor prognosis (p < 0:01).
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new research directions for the detection and treatment of
gastric cancer. However, their involvement in the molecular
mechanisms of disease needs further clinical studies.
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