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Abstract: Copper elbows are an important product in industry. They are used to connect pipes for
transferring gas, oil, and liquids. Defective copper elbows can lead to serious industrial accidents.
In this paper, a novel model named YOT-Net (YOLOv3 combined triplet loss network) is proposed
to automatically detect defective copper elbows. To increase the defect detection accuracy, triplet
loss function is employed in YOT-Net. The triplet loss function is introduced into the loss module of
YOT-Net, which utilizes image similarity to enhance feature extraction ability. The proposed method
of YOT-Net shows outstanding performance in copper elbow surface defect detection.

Keywords: copper elbow; defect detection; YOLOv3; triplet loss; deep learning

1. Introduction

Quality control is a key problem in industry. Surface defect detection plays an im-
portant role in quality control tasks. Many industry companies pay much attention to
developing surface detection technology, and spend much effort and money on this en-
deavour.

In practice, the task of surface defect detection is mostly conducted manually by
workers. Since worker energy is limited and the task is boring, after a long, continuous
work-time, defect detection decreases. To deal with this problem, it is necessary to perform
surface defect detection tasks automatically so as to enhance detection efficiency.

With the rapid development of AI technology, automatic surface defect detection has
become a promising area in recent years. The current methods can be mainly divided into
two categories. One is based on traditional methods, while the other is based on machine
learning methods.

1.1. Current Methods
1.1.1. The Traditional Detection Approaches

Most early studies on surface defect detection use artificial design features to achieve
good results [1–3]. These methods heavily depend on professional domain knowledge,
and are subject to specific conditions.

The traditional approach uses hand-crafted features to detect defects. There are four
kinds of approaches, i.e, spectral-based, statistical-based, threshold-based, and model-
based methods [4]. For example, the spectral-based method used in defect detection tasks
involves Fourier transform [5], Gabor filters [6], and Wavelet transform [7,8].

Although the traditional methods have achieved good performance in surface defect
detection, they are very sensitive to illumination and background. The use of traditional
image processing methods to solve the problem of surface defects relies on images with
uniform illumination and obvious surface defects. However, in the actual complex indus-
trial environment, there are situations such as small differences between defect imaging
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and background, low contrast, large variation of defect scale and various types, or a large
amount of noise in the defect image. These issues make the methods difficult to deploy. To
solve these problems, machine learning methods are employed to detect surface defects.

1.1.2. Detection Approaches Based on Machine Learning

A. Shallow Learning

Shallow learning was a popular method to detect surface defects in the past decades.
These methods mainly include Bayesian algorithm [9], KNN [10], NNs [11], SVM [12],
and so on. Ref. [13] utilizes Bayesian network to classify steel surfaces. Ref. [14] uses
k-nearest neighbor algorithm to inspect rail surfaces. Ref. [15] utilizes a small set of wavelet
features and employs support vector machine methods for defect detection. However,
shallow learning lacks the ability to represent the complex function and make it restricitive
of generalization ability for hard classification problems. Otherwise, shallow learning
methods rely more on human expertise, i.e., SVM suffers from artificial feature extraction,
KNN depends on choosing a good category number to classify.

Shallow learning methods still cannot achieve satisfied detection accuracy although
they are more universal than the traditional methods. These methods, which can be called
shallow methods compared with the deep learning method, are more stable and less
dependent on human knowledge. These shallow methods achieve appreciated results in
the defect detection domain. Now that the computation power has greatly improved, large
neural networks have been introduced into the defect detection problem and the results, so
far, have proved to be satisfactory.

B. Deep Learning

As the big data era began, especially since the AlexNet won the first prize of ILSVRC
2012 [16], deep learning has become a brilliant sub-domain.

Many convolutional neural networks (CNNs) are employed to surface defect de-
tection, such as AlexNet [16], VGG [17], GoogLeNet [18], ResNet [19], DenseNet [20],
and MobileNet [21].

The previous classification networks can only classify the defect without pointing out
the region and coordinates of defect. Fast R-CNN [22] and Faster R-CNN [23] are employed
to defect detection. Ref. [24] introduces a refined Fast R-CNN model and make a test on
a defect dataset NEU-DET. Fast R-CNN and its variants achieve good results in practice,
but they are slow.

SSD (Single Shot MultiBox Detector) [25] and YOLO (You Only Look Once) [26] are
applied to handle the problem. Without requiring the region proposal stage, these methods
directly generate the category probability and the position coordinate of the object, which
improves the detecting speed. Ref. [27] utilizes the SSD network as the meta structure
and combine it with base MobileNet for surface defect detection. Ref. [28] introduces
YOLOv3 to detect multiple concrete bridge damages. Batch normalization and focal loss
are incorporated in the model.

Deep learning methods have made great progress in surface defect detection. There
are successful applications, especially for plane surface, such as steel plane [29], fabric
plane [30], and glass plane [31]. There are also successful applications on surface defect
detection in non-planar objects. Ref. [32] employes a defect detection algorithm based
on a single short detector network for tiny parts in manufacturing. Ref. [33] proposes an
improved YOLOv3 model named DC-TLMDDNet (Dense Connection Based Track Line
Multi-target Defect Detection Network) for multi-target defect identification of the railway
track line. Ref. [34] utilizes SSD and YOLO to build up a three-stage cascaded DCNN for
detecting catenary support device defects. However, rare investigations have been done
on copper elbow surface defect detection.

1.2. Objective and Structure

Copper elbows are used to link pipelines and change their direction. Copper elbows
are often used for gas and oil pipeline connections. Poor quality of copper elbow can
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lead to severe accidents, such as natural gas leakage, fire, explosion, and so on. Therefore,
the quality of copper elbow matters a great deal. It’s important to detect the defect of
copper elbow accurately.

In this paper, a new defect detection model, named YOT-Net (YOLOv3 combined with
triplet loss network) is proposed to deal with the copper elbow defect detection problem.
The innovation of YOT-Net lies in the following aspects. Firstly, the triplet loss is introduced
into the loss module of YOT-Net. To enhance feature extraction ability, the triplet loss
is used as a regulation term to maximize the image similarity within the same category.
Secondly, transfer learning is employed in YOT-NET, which provides a better initialization
for the network. These modifications make the proposed model converge more quickly.
The performance is higher than the original YOLOv3.

The remainder of this paper is organized as follows. The proposed method is discussed
in detail in Section 2 . Then, experiments are presented in Section 3. Finally, Section 4 is
the conclusion.

2. The Methodology of YOT-Net

Our objective was to inspect whether the copper elbow is qualified to be a product
on-line. As a result, not only the detection accuracy but also the detection speed should be
satisfiable. YOLOv3 is fast and accurate for target detection. Triplet loss [35] is a method
to enhance feature extraction ability. A new defect detection model, named YOT-Net is
proposed. YOT-Net consists of three major components, i.e., Triplet data input module,
YOLOv3 module, and LCCT (Location-Confidence-Class probability-Triplet) loss module,
as shown in Figure 1.

(a)Triplet data input

COCO

YOLOv3

(b)YOLOv3

Transfer Learning

Pre-training 32, conv3x3

64, conv3x3 /2
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Figure 1. The architecture of YOT-Net. YDT-Net is a surface defect detection model and mainly composed of three basic
components: (a) Triplet data input module. (b) YOLOv3 feature extract module. (c) LCCT (Location-Confidence-Class
probability-Triplet) loss module.

First of all, the raw images are separated into triplets. A triplet contains a base, which
is either positive or negative. The input is a batch size of triplet raw images and the
corresponding ground truth to the YOLOv3 network. The COCO (Microsoft Common
Objects in Context) dataset [36] was used to pretrain and initialize the YOLOv3 model.

Next, image features were extracted through backbone, multiple convolutional opera-
tions, and three feature maps are outputed.

Finally, a novel loss module, named LCCT (Location-Confidence-Class probability-
Triplet) loss module was constructed. The triplet loss function was applied to the loss
layer as a regulation term to learn the similarity among triplet images. The loss layer was
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composed of location loss block, confidence loss block, class loss block, and triplet loss
block. LCCT loss makes the model converge more quickly and accurately.

2.1. Basics of YOLOv3

Each input image was divided into N × N grids with the same size of the feature
map. The grid in which the center of an object was located was selected to perform the
prediction. Each grid predicted three bounding boxes.The output format of each grid is
shown in Figure 2. The first four letters depict the location of the predicted bounding box.

ox oy ow oh oc c1 c2 … cn

coordinates confidence

class probabilities

Figure 2. The output format of each grid.

The cener coordinates are (ox, oy), and ow, oh are the width and height. While oc
denotes the confidence score of the bounding box; c1, c2, . . . , cn are the probabilities of each
class of object. In order to get a better prediction, prior anchor box and bounding regression
were introduced to the network, as shown in Figure 3.

(cx, cy)
(rbx, rby)

rbw

rbh

Aw

Ah

)( yt

)( xt

Figure 3. Bounding boxes for location prediction.

Assume the coordinates of the top left corner of the cell are represented by (cx, cy) and
the prior anchor box has width and height Aw, Ah, the bounding box predictions can be
updated by the following formulas,

rbx = σ(ox) + cx

rby = σ
(
oy
)
+ cy

rbw = Aweow

rbh = Aheoh

oc = Pr(object)× IoUtruth
pred

(1)

where rbx, rby, rbw, rbh are the regression bounding box coordinates, and σ(∗) indicates the
sigmoid function. Meanwhile, oc reflects the probability that the bounding box contains the
target defect and the likelihood of the bounding box coinciding with the ground truth box
(intersection-over-union, IoUtruth

pred ). Pr(∗) indicates the probability of the object appearing
in the box. If there is an object in the cell Pr(object = 1), otherwise, Pr(object = 0).
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2.2. Triplet Loss

Triplet loss was first proposed in [35]. A triplet data group may include three kinds of
images, a base sample, a positive sample, and a negative sample. The triplet loss learns
to make the distance from the base to the positive sample closer; meanwhile, making the
distance to the negative sample farther. Therefore, the triplet loss was employed to improve
accuracy, as shown in Figure 4.

Negative

Base Positive

Triplet loss

Negative

Base Positive

Learning

(a)Triplet images before learning (b)Triplet images after learning

Figure 4. The main idea of learning with triplet loss. Triplet loss learns to minimize the distance between positive samples
and the base, maximizing the distance between negative samples with the anchor. (a) Samples before triplet loss learning.
(b) Samples after triplet loss learning.

The calculation of triplet loss is,

losstriplet =
N

∑
i

[
‖ f
(

Xb
i

)
− f

(
Xp

i

)
‖

2

2
− ‖ f

(
Xb

i

)
− f (Xn

i )‖
2

2
+ m

]
(2)

where f (∗) represents the output of YOT-Net; Xb
i , Xp

i , Xn
i stand for the base, positive

sample, and negative sample; m refers to a margin that helps triplet loss function not be
subjected to a local optimum and makes it more robust.

2.3. Location-Confidence-Class Probability-Triplet (LCCT) Loss Module

Triplet loss is introduced to YOT-Net as a regulation term. The YOT-Net loss function
can be rewritten as Equation (3), including four parts, i.e., location loss, confidence loss,
class probability loss, and triplet loss, which constitute the LCCT loss modules.

LOSS = losslocation + losscon f idence + lossclassprobability + α× losstriplet (3)

losslocation, losscon f idence, lossclassprobability are computed in a similar way as the original
YOLOV3 [37]. The losstriplet was computed by Equation (2); α is a hyper parameter, usually
set to be 0.05. By introducing the losstriplet to the LCCT loss module, YOT-Net can converge
more quickly and predict more accurately.
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Location loss is used to compute the location loss between the predict coordinates
with the ground truth. It can be calculated as:

losslocation =
S2

∑
i=0

B

∑
j=0

Iobj
ij (2− wi × hi)(−xi × log x̂i)− (1− xi)× log(1− x̂i)

+
S2

∑
i=0

B

∑
j=0

Iobj
ij (2− wi × hi)(−yi × log ŷi)− (1− yi)× log(1− ŷi)

+
S2

∑
i=0

B

∑
j=0

Iobj
ij (2− wi × hi)

[
(wi − ŵi)

2 −
(

hi − ĥi

)2
]

(4)

where Iobj
ij is the indicator function; xi, yi, wi, hi stand for truth bounding boxes coordinates;

S2, B are the number of grids in the input image and the number of bounding boxes
generated by each grid, respectively. Meanwhile, x̂i, ŷi, ŵi, ĥi are the predictions. When the
i-th cell of the j-th bounding box contains an object, the value is one, otherwise it is zero.
Different from YOLOv2 [38], there is no hyper-parameter to increase or decrease the loss
for the bounding box coordinate prediction according to the object in, or not in, the box.

The proposed model computes the confidence loss through binary cross entropy loss
function as shown below:

losscon f idence = −
S2

∑
i=0

B

∑
j=0

Iobj
ij
[
Ci log Ĉi + (1− Ci) log

(
1− Ĉi

)]
−

S2

∑
i=0

B

∑
j=0

Inoobj
ij

[
Ci log Ĉi + (1− Ci) log

(
1− Ĉi

)] (5)

where Iobj
ij and Inoobj

ij are the indicator functions that determine whether there is an object

center in the box; C and Ĉi stand for the ground truth confidence and the predicted
confidence, respectively.

The class probability loss is calculated in the same way of confidence loss.

lossclassprobability =
S2

∑
i=0

B

∑
j=0

Iobj
ij

(
∑

c∈classes
[pi(c) logp̂i(c) + (1− pi(c)) log(1− p̂i(c))]

)
(6)

where c is the class; pi(c) and p̂i(c) stand for the truth class probability and predicted class
probability in i-th box, respectively.

3. Experiments and Analysis
3.1. Dataset

First of all, the manufacturers hope to pick out the defect elbows. Furthermore, they
also would like to know what is the distribution of each kind of defect, so that the reason
causing the defect with the maximum proportion could be analyzed in time.

In order to perform these two tasks, two new surface defect detection datasets, named
“TJ-CE-CLS” and “TJ-CE-DET”, are construed in this paper. The TJ-CE-CLS dataset includes
317 images, i.e., 229 samples in the defective class and 88 samples in the defect-free class.
The TJ-CE-DET dataset includes 229 images containing of 384 defects, i.e., 131 samples in
the extrusion class, 85 samples in the crack class, and 168 samples in the pitted-surface class.

Copper elbow defect images were collected from a copper elbow manufacturer.
Some samples of copper elbow are shown in Figure 5. The defect images are RGB

images, with a scale of 2456 × 2048. There are three major defects on the copper elbow
surface, i.e., extrusion, crack, and pitted-surface.
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(a) (b) (c) (d)

Figure 5. Some images of the copper elbow surface. (a) Defect-free. (b) Extrusion. (c) Crack.
(d) Pitted-surface.

3.2. A View of Results

YOT-Net was implemented on the open source deep learning toolbox TensorFlow [39].
The model runs on a NVIDIA GTX 1080TI GPU (with 11GB memory) with Ubuntu
18.04 Linux.

Transfer learning was introduced in the training pipeline. The proposed model was
pretrained on the COCO dataset and then trained on the TJ-CE-CLS and TJ-CE-DET
datasets. YOT-Net was trained with a learning rate of 0.00001, weight decay of 0.9995,
and momentum of 0.9. The exponential moving average was applied to the training
process, which makes the model more robust. The leaky ReLU function was selected as the
activation function.

For comparison, SSD, Faster R-CNN, YOLOv3, and YOT-Net were carried out on the
same dataset, as shown in Figure 6, and the detection results are given in columns 2 to
5. The first column are the ground truth defects. It’s clear that SSD and Faster R-CNN
got higher scores than YOLOv3 and YOT-Net, but they are more likely to make mistakes.
Take the first image of the third column as an example. There is only one crack defect on
the image, but Faster R-CNN predicts three defects, one crack defect, and two extrusion
defects. This mistake will lead to a high false negative rate, and make more normal copper
elbows to be classified into the defect group. YOT-Net shows more robustness.

crackcrackcrcrcrcr

exex

pipi

cr:0.6548cr:0.6548

pi:0.9912pi:0.9912

cr:0.9994cr:0.9994

pi:0.9967pi:0.9967

cr:0.5098cr:0.5098

ex:0.6706ex:0.6706

pi:0.9081pi:0.9081

cr:0.5292cr:0.5292ex:0.3107ex:0.3107 ex:0.9961ex:0.9961

ex:0.9668ex:0.9668

ex:0.9264ex:0.9264

ex:0.8106ex:0.8106

ex:0.9943ex:0.9943

ex:0.9996ex:0.9996 ex:0.7128ex:0.7128

pi:0.4423pi:0.4423 ex:0.9997ex:0.9997 pi:0.9235pi:0.9235

(a) (b) (c)  (d) (e)

Crack

Extrusion

Pitted-surface

Figure 6. A brief view of the prediction results on TJ-CE-DET. There is only one defect in each image. SSD and Faster
RCNN predict two or three defects though they get higher scores. YOT-Net gets higher scores than the Original YOLOv3.
(a) Ground truth, (b) SSD, (c) Faster R-CNN, (d) YOLOv3, (e) our proposed method.
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3.3. Performance Evaluation
3.3.1. Evaluation Metrics

Accuracy, precision, recall, F1 score, false positive rate (FPR), false negative rate
(FNR), and mean average precision (mAP) were employed to evaluate the performance
of YOT-Net.

3.3.2. Comparisons with the Other Classification Methods

Experiments were conducted on the TJ-CE-CLS dataset to compare the proposed
model with some popular classification methods, including Bayesian [9], KNN [10],
SVM [12], AlexNet [16], DenseNet [20], VGG [17], ResNeXt [40], as shown in Tables 1
and 2.

Table 1. Comparisons with the traditional classification methods.

Indicator Naive Bayes KNN SVM YOT-Net

Accuracy 51.56 62.5 73.44 84.38
Precision 27.59 31.25 53.85 73.33

Recall 44.44 27.78 38.89 64.71
F1 score 34.04 29.41 45.16 68.75

FPR 55.56 72.22 61.11 35.29
FNR 45.65 23.91 13.04 8.51

Inference time (ms per image) 0.3 33.9 44.5 215.7

Table 1 shows that YOT-Net outperforms the traditional machine learning methods.
The defects of copper elbow in the dataset are quite challenging. For example, extrusion
in the defect image is hard to classify for traditional methods and are sensitive to the
illumination in the image. In addition, traditional methods feature extraction abilities that
are inferior to deep learning methods, especially in the domain of computer vision.

YOT-Net gets better classification, while requiring more computational resources and
spending much more time on inferences, as shown in Table 1. This better performance
benefits from the outstanding feature extracting ability of the deep learning method.
Therefore, another group of experiments are carried out to compare YOT-Net with other
deep learning classification methods.

Table 2. Comparisons with the deep learning classification methods.

Indicator AlexNet DenseNet VGG ResNeXt YOT-Net

Accuracy 67.74 69.35 74.19 74.19 84.38
Precision 45.45 48.15 54.17 56.25 73.33

Recall 55.56 72.22 72.22 50.00 64.71
F1 score 50.00 57.78 61.9 52.94 68.75

FPR 44.44 27.78 27.78 50.00 35.29
FNR 27.27 31.82 25.00 15.91 8.51

Inference time (ms per image) 56.9 68.2 62.9 80 215.7

Experiment results show that the proposed YOT-Net also achieves the best results
in accuracy, precision, and F1 score. Firstly, the YOT-Net model is bigger than AlexNet,
DenseNet, and ResNeXt, so it possesses more representation ability. The second reason is
that the LCCT loss module in the YOT-Net forces the model to extract more useful features.
The triplet loss function forces YOT-net to learn to classify the same category image of
triplet samples. After that, YOT-Net behaves with the ability to maximize the distance of
different categories, which is helpful in the last inference procedure.

Under the concept of FNR and FPR, the lower rate means a better result. The FPR,
despite YOT-Net, is 7.41% higher than DenseNet and VGG, the performance of YOT-Net is
also acceptable. For FNR, YOT-Net gets at least a 7.4% lower prediction rate than others.
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FNR is crucial to the copper elbow, because a non-defective group of products do not go
for another check. That means a copper elbow with defects will be sent out to the customer
if it is mixed in this group.

Otherwise, YOT-Net takes more time to detect an image, because YOT-Net not only
gives the probabilities but also the coordinates.

3.3.3. Comparisons with Deep Learning Detection Methods

Experiments were conducted to compare the proposed model with Faster R-CNN [23],
SSD [25], and YOLOv3 [37], as shown in Table 3. Faster R-CNN and SSD were implemented
with the mmdetection toolbox [41].

Table 3. Comparisons with other detection methods.

Indicator Faster R-CNN SSD YOLOv3 YOT-Net

Accuracy 82.81 75 79.69 84.38
Precision 75 53.33 64.29 73.33

Recall 52.94 47.06 52.94 64.71
F1 score 62.07 50 58.06 68.75

FPR 47.06 52.94 47.06 35.29
FNR 6.38 14.89 10.64 8.51
mAP 57.89 60.41 59.19 67.42

Inference time(ms per image) 307.7 250 215.7 215.7

YOT-Net got the highest mAP among those methods involved in comparison. With re-
gard to other indicators, YOT-Net also behaves satisfactory. Although FNR of YOT-Net is a
little higher than that of Faster R-CNN, YOT-Net saves about 42.65% time. Fast inference is
helpful for elbow defect detection online.

3.3.4. Proportion of Each Kind of Defect

In the TJ-CE-DET dataset, defects are specified to be three types, e.g., extrusion, crack,
and pitted-surface.

Under YOT-Net, the proportion of each kind of defect to the total detects is easily
known, as shown in Table 4. This number if helpful for checking the reason causing the
defects.

Table 4. The ratio of extrusion, crack, and pitted-surface in TJ-CE-DET.

Extrusion Crack Pitted-Surface

22.13% 34.11% 43.75%

3.4. Ablate Study
3.4.1. The Convergence Speed of YOLOv3 and YOT-Net

An experiment with 50 epochs, 0.00001 learning rate, and 0.9995 decay rate was carried
out to study the convergence speed of YOLOv3 and YOT-Net.

As shown in Figure 7, YOT-Net converges more quickly than the original YOLOv3.
The reason is that the triplet loss help the YOT-Net learn similarity and dissimilarity of
triplet data within an epoch. This accelerates the convergence progress.
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Figure 7. The convergence speed of YOLOv3 and YOT-Net. The red line, refers to YOT-Net, and
converges more quickly than blue line for YOLOv3.

3.4.2. The Margin of Triplet Loss

In order to get a small triplet loss, the distance between the base and the positive
sample is minimized; meanwhile, the distance between the base and negative sample is
maximized. The hyper parameter m is a key factor to the loss function [35]. In this paper,
a series of experiments were conducted to find an appreciate value, and the experiment
results show that 0.2 is a good choice, as shown in Figure 8.

Figure 8. The effect on mAP of different values in margin and alpha. The left plot shows the effect of
margin on mAP. The right plot shows the effect of alpha on mAP.

3.4.3. The Hyper Parameter α in LCCT Loss Module

As shown in Equation (3), loss_triplet is a regular term to enhance feature extract
ability. It’s also key to set the hyper parameter α in Equation (3). A series of experiments
were set up to get a well-performed value. As shown in Figure 8, 0.05 is a satisfactory value
for the hyper parameter α.
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4. Conclusions

The copper elbow surface defect detection is an important and challenging task. In
this paper, a YOLOv3 combined triplet loss network(YOT-Net) is proposed to tackle this
problem. The introduction of triplet loss greatly improves the feature extracting ability.
Experiments were carried out on practical copper elbows. On distinguishing defect elbows
from non-defect ones regardless of the type of defects, YOT-Net performs quite well on
accuracy, precision, recall rate, and F1 score. Meanwhile, the proportion of each kind
of defect to the total defect can be easily known. This is helpful for checking the reason
causing different kinds of defects. In addition, YOT-Net shows faster convergence rates.
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