
Citation: Ananchenko, A.; Hussein,

T.O.K.; Mody, D.; Thompson, M.J.;

Baenziger, J.E. Recent Insight into

Lipid Binding and Lipid Modulation

of Pentameric Ligand-Gated Ion

Channels. Biomolecules 2022, 12, 814.

https://doi.org/10.3390/

biom12060814

Academic Editors: Klaus Groschner

and Christoph Romanin

Received: 5 May 2022

Accepted: 8 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Recent Insight into Lipid Binding and Lipid Modulation of
Pentameric Ligand-Gated Ion Channels
Anna Ananchenko, Toka O. K. Hussein , Deepansh Mody, Mackenzie J. Thompson and John E. Baenziger *

Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Road,
Ottawa, ON K1H 8M5, Canada; aanan080@uottawa.ca (A.A.); thuss090@uottawa.ca (T.O.K.H.);
dmody103@uottawa.ca (D.M.); mthom214@uottawa.ca (M.J.T.)
* Correspondence: john.baenziger@uottawa.ca; Tel.: +1-(613)-562-5800 (ext. 8222)

Abstract: Pentameric ligand-gated ion channels (pLGICs) play a leading role in synaptic communica-
tion, are implicated in a variety of neurological processes, and are important targets for the treatment
of neurological and neuromuscular disorders. Endogenous lipids and lipophilic compounds are
potent modulators of pLGIC function and may help shape synaptic communication. Increasing struc-
tural and biophysical data reveal sites for lipid binding to pLGICs. Here, we update our evolving
understanding of pLGIC–lipid interactions highlighting newly identified modes of lipid binding
along with the mechanistic understanding derived from the new structural data.

Keywords: pentameric ligand-gated ion channels; lipid binding sites; lipid–protein interactions;
annular; non-annular; allosteric modulation

1. Introduction

Pentameric ligand-gated ion channels (pLGICs) mediate or modulate fast synaptic
communication in the central and peripheral nervous systems making them vital for
neurological processes ranging from memory and learning to nicotine addiction [1–4].
pLGICs respond to the binding of neurotransmitters by transiently opening either cation- or
anion-selective ion channels across the post-synaptic membrane, with prolonged exposure
favoring a non-conductive desensitized state(s). The relative stabilities of the resting, open
and desensitized states, as well as the rates of inter-conversation between them, shape
the magnitude and temporal nature of the agonist-induced response to establish effective
inter-neuronal or neuromuscular communication. pLGICs are also targeted by a variety
of exogenous molecules that allosterically modulate the agonist-induced response in a
manner that alters synaptic communication [5,6].

Lipids are potent activators and/or modulators of ion channels including inward rec-
tifying potassium channels, voltage-gated potassium channels, transient receptor potential
channels, mechanosensitive ion channels and pLGICs [7]. The functional sensitivity of
pLGICs to membrane lipids was first shown in the 1970s through studies that sought to
identify the structural features in the muscle-type Torpedo nicotinic acetylcholine recep-
tor (nAChR) that are responsible for both agonist binding and channel gating. These
studies showed that to retain both binding and gating, cholate-solubilized receptors
must be purified in the presence of lipids and then placed in a bilayer with a particu-
lar lipid composition [8,9]. Since then, the effects of lipids on Torpedo nAChR function
have been characterized extensively [10–12]. More recently, studies of pLGIC–lipid in-
teractions have extended to other members of the super-family, including the prokary-
otic Gleobacter violaceus ligand-gated ion channel, GLIC, and Erwinia chrysanthemi (now
Dickeya dadantii) ligand gated ion channel, ELIC.

Over the past 15 years, increasing numbers of structures have shed light on the modes
of lipid binding to pLGICs, thus providing a structural context for interpreting functional
data on pLGIC–lipid interactions [13]. Here, we review our evolving understanding of the
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mechanisms by which lipids alter pLGIC function highlighting new insight along with
gaps in our knowledge.

1.1. pLGIC Structure

Both eukaryotic and prokaryotic pLGICs exhibit a common architecture consisting of
five subunits arranged either symmetrically (homomeric) or pseudo-symmetrically (het-
eromeric) around a central ion channel pore (Figure 1). In humans, there are four main
families of pLGICs that conduct either cations or anions leading to either excitatory or
inhibitory post-synaptic responses, respectively. The excitatory cation-selective pLGICs
respond to the neurotransmitters, acetylcholine (nicotinic acetylcholine receptor, nAChR)
and serotonin (serotonin receptor, 5-HT3R), while the inhibitory anion-selective pLGICs
respond to γ-aminobutyric acid (GABA receptor, GABAAR) and glycine (glycine receptor,
GlyR). Humans also uniquely express a cation-selective zinc-activated channel, ZAC [14].
Each of the four main families includes a variety of functional hetero- and homo-pentamers
that form from different combinations of the sixteen distinct nAChR subunits (α1–α7,
α9–α10, β1–β4, δ, γ, and ε), the five distinct 5-HT3AR subunits (A–E), the nineteen distinct
GABAAR subunits (α1–α6, β1–β3,γ1–γ3, ε, δ, π, θ, and ρ1–ρ3) or the five distinct GlyR
subunits (α1–α4, and β). Each combination leads to a pLGIC with a unique electrophysio-
logical and pharmacological fingerprint. Receptors with different subunit are also targeted
to specific cell types and/or regions of the brain [15].
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ange; ECD, red; TMD, blue; ICD, green). Bound agonists are presented as cyan spheres at the inter-
faces between two subunits. In the side views, the principal subunit is on the left and the comple-
mentary subunit is on the right. Residues forming the channel gate are presented as tan spheres. 
Top-down views of the Torpedo nAChR ECD (top) and TMD (bottom) are shown on the far right 
colored according to subunit (α, red; β, blue; γ, purple; δ, green). 

The core of each pLGIC structure consists of an N-terminal extracellular domain 
(ECD), which typically defines agonist binding, and a transmembrane domain (TMD), 
which contains both the ion-selective pore and the channel gate. In each subunit, the ECD 
contains ten β-strands (β1–β10) that form two β-sheets folded together into a β-sandwich. 
The TMD from each subunit is formed from four transmembrane 𝛼-helices (M1 to M4), 
with M2 lining the channel pore, M1 and M3 shielding M2 from the surrounding lipids, 

Figure 1. pLGICs display a conserved core architecture with diverse auxiliary features. Side views of
the prokaryote DeCLIC (PDB: 6V4S, far left), the human α1β3γ2 GABAAR (PDB: 7QNE, middle left),
and the Torpedo nAChR (PDB: 7QL5, middle right) colored according to domains (NTD, orange; ECD,
red; TMD, blue; ICD, green). Bound agonists are presented as cyan spheres at the interfaces between
two subunits. In the side views, the principal subunit is on the left and the complementary subunit is
on the right. Residues forming the channel gate are presented as tan spheres. Top-down views of the
Torpedo nAChR ECD (top) and TMD (bottom) are shown on the far right colored according to subunit
(α, red; β, blue; γ, purple; δ, green).

The core of each pLGIC structure consists of an N-terminal extracellular domain
(ECD), which typically defines agonist binding, and a transmembrane domain (TMD),
which contains both the ion-selective pore and the channel gate. In each subunit, the ECD
contains ten β-strands (β1–β10) that form two β-sheets folded together into a β-sandwich.
The TMD from each subunit is formed from four transmembrane α-helices (M1 to M4), with
M2 lining the channel pore, M1 and M3 shielding M2 from the surrounding lipids, and
M4 interacting extensively with the lipid bilayer. Human pLGICs exhibit an intracellular
domain (ICD), located between M3 and M4, that interacts with the cytoskeleton. In cation-
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selective pLGICs, the ICD starts with a short MX α-helix oriented parallel to the bilayer
surface that participates in lipid binding, followed by a mainly disordered region and
then a long amphipathic a-helix, termed MA, which is contiguous with M4 in most cation-
selective pLGICs [16]. In anion-selective pLGICs, electron density has not yet been observed
for the ICD, making it uncertain whether the MX and MA α-helices are conserved in
these pLGICs [17,18]. Prokaryotic pLGICs lack the ICD, but in some cases contain extra
N-terminal domains located just prior to the ligand-binding ECD. Many of these N-terminal
domains exhibit sequence similarities to periplasmic binding proteins, possibly allowing
these pLGICs to participate in chemotaxis and/or quorum sensing [19].

Agonist sites are typically formed from a series of loops in the ECD extending from
the interfaces between the principal and complementary subunits (Figure 1). Agonist
binding leads to a compression of these loops around the bound agonist, which drives a
conserved rocking motion of the adjacent β-sandwich. The agonist-induced motions of the
β-sandwich ultimately translate to the TMD through the covalent link between β10 and
M1 and through non-covalent interactions between the β1–β2, β6–β7, and β9–β10 loops
and the M2–M3 linker to open the channel gate [20–22]. In the resting state, conserved
hydrophobic residues in the extracellular half of M2 create an unsolvated energetic barrier
that prevents ion flux into the cell [23]. Concerted movements at the ECD–TMD interface
lead to a tilting and twisting of the M2 pore lining α-helices away from the central pore
axis, thus widening the hydrophobic barrier to allow the diffusion of hydrated ions down
their electrochemical gradient [24–28].

Prolonged exposure of pLGICs to agonist leads to the formation of a desensitized
state(s) that binds agonist with high affinity, but does not open in response to agonist
binding [29]. In anion-selective pLGICs, desensitization arises from a constriction of a
gate located near the intracellular end of the transmembrane pore [30]. Loops at the
interface between the ECD and TMD and residues near the desensitization gate both
govern the rates of pLGIC desensitization [30,31]. Of particular relevance to this review,
lipid binding adjacent to M4 influences the rates of desensitization in the prokaryote, ELIC
(see below) [32].

1.2. Nicotinic Acetylcholine Receptors
1.2.1. Functional Sensitivity of the nAChR to Lipids

Cell-based assays and mutagenesis indirectly suggest that numerous members of the
nAChR family exhibit a functional sensitivity to lipids [33–40]. In addition, functional
measurements using the Torpedo nAChR reconstituted into liposomes with defined lipid
compositions show definitively that a broad range of lipids influence the agonist-induced
response, and do so through complex mechanisms. For example, ternary lipid mixtures
containing phosphatidylcholine (PC) and both cholesterol and anionic lipids support a
robust agonist-induced response, while PC membranes lacking both lipids lock the nAChR
in a non-responsive uncoupled conformation that binds agonist but does not normally
undergo agonist-induced conformational transitions [41].

The above observation was interpreted to suggest that both cholesterol and anionic
lipids are essential for nAChR function and that both lipids exert their functional effects by
binding to distinct allosteric sites, a view still prevalent in the literature. Three subsequent
observations, however, suggested that neither lipid/lipid-type is essential for the nAChR
to undergo agonist-induced conformational transitions. First, increasing levels of either
cholesterol or the anionic lipid, phosphatidic acid (PA), in a PC membrane stabilize an
increasing proportion of agonist-responsive nAChRs, although PA is more effective in
this regard [42,43]. Second, in the presence of anionic lipids a variety of neutral lipids
substitute for cholesterol in supporting nAChR function [13,44,45]. Finally, in the presence
of cholesterol a variety of anionic lipids substitute for PA in supporting a functional nAChR.
Collectively these observations show that if both cholesterol and anionic lipids influence
function by binding to distinct allosteric sites, then the lipid specificities for these sites are
low and their occupancies not absolutely required for an agonist-induced response.
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There are also intriguing differences in the capacities of anionic lipids to influence
the agonist-induced response. For example, PC membranes containing high levels of PA
stabilize a large proportion of agonist-responsive nAChRs, while PC membranes containing
similar levels of phosphatidylserine (PS) or other anionic lipids do not [46–48]. These and
other observations [43] suggest that PA has a unique capacity to stabilize an agonist
responsive nAChR. One possibility is that the small anionic headgroup allows PA to bind
with higher affinity and thus greater occupancy to an allosteric site to promote channel
function. Another is that high levels of PA increase the ordering of the surrounding bilayer,
possibly in a manner that mimics the ordering observed in the presence of cholesterol [48].
High levels (40 mol%) of PA in a PC membrane may be particularly effective at stabilizing
a functional nAChR because PA exhibits both the required anionic headgroup charge
and an ability to influence bulk membrane physical properties in a manner that supports
agonist-induced conformational transitions. Further supporting a role for bulk membrane
physical properties in nAChR function, hydrophobically thick PC membranes promote
conformational transitions even in the absence of cholesterol and anionic lipids [49].

1.2.2. Sites of Lipid Action at the nAChR

Early biophysical and computational studies suggested that cholesterol, and possi-
bly other lipids, bind to both annular and non-annular sites on the nAChR to influence
function [50–52]. Annular sites are those located at the periphery of the TMD in rapid
exchange with lipids in the bulk membrane environment, while non-annular sites are
those buried between TMD α-helices that are shielded from bulk membrane lipids [53].
In contrast to the plethora of annular lipid sites observed in nAChR structures (discussed
below), none of the nAChR structures solved to date exhibits density attributed to buried
non-annular lipids. Both the abundance of observed annular lipid sites, which should be
more mobile than non-annular lipids, and the absence of observed buried non-annular
lipids argue against the existence of functional non-annular lipid binding to the nAChR. On
the other hand, structures of the nAChR and other pLGICs reveal density due to annular
lipids, but with the acyl chains extending in between TMD α-helices (see below). In these
cases, the distinction between annular and non-annular lipid binding is blurred.

The first direct structural evidence for annular lipid binding to the nAChR was ob-
tained from cryo-electron microscopy (cryo-EM) structures of the detergent-solubilized
human neuronal α4β2 nAChR (both α43β22 and α42β23 stoichiometries) and the azolectin
nanodisc-reconstituted human neuronal α3β4 nAChR, the two sets of structures solved in
the presence of the water-soluble cholesterol analog, cholesterol hemisuccinate (CHS) [54,55].
Each structure exhibits regions of electron density at the periphery of the TMD that was
modeled as cholesterol (Figure 2). The bound cholesterol, located in the cytoplasmic leaflet
at both the M4–M1 and the M4–M3 interfaces of each subunit, is close to residues cova-
lently labeled in the Torpedo nAChR by a photoactivatable cholesterol probe [56]. Notably,
the electron density attributed to cholesterol disappears when the cryo-EM samples are
prepared in the absence of CHS.

Annular cholesterol sites are observed in cryo-EM structures of the azolectin nanodisc-
reconstituted Torpedo nAChR, which were solved using receptors purified from native
Torpedo membranes [57]. Three endogenous cholesterol sites, deemed high affinity, are
observed bound to an intracellular leaflet hydrophobic pocket framed by M4, M3 and MX
on the principal face of the two α subunits and the single β subunit. In all three cases, the
planar sterol ring is sandwiched between a valine and an arginine on M3 (e.g., αV294 and
αR301 with αR301 projecting towards the hydroxyl of cholesterol), and a valine/isoleucine
and phenylalanine on MX (e.g., αV312 and αF316). Each of the observed cholesterol binding
poses overlaps with, but is distinct from, those observed at the M4–M3 interface in the
neuronal α4β2 and α3β4 nAChRs—the distinct poses could reflect improved modeling due
to the higher resolution of the Torpedo structures (2.6 Å for the highest resolution Torpedo
structure versus 3.3 and 3.5 Å for the α3β4 and α4β2 structures, respectively) or different
binding of CHS versus cholesterol. Additional cholesterol sites are observed in structures
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solved in the presence of exogenously added cholesterol. These extra sites, deemed low
affinity, are found in the extracellular leaflet where they frame either side of M4.
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Figure 2. Lipid binding to both extracellular and intracellular leaflet sites on the nAChR. Side views
of the TMD for the cholesterol-bound α3β4 nAChR (PDB: 6PV7, far left) and α7 nAChR (PDB: 7EKI,
middle left), phospholipid-bound Torpedo nAChR (PDB: 7QL5, middle right), and cholesterol- and
phospholipid-bound Torpedo nAChR (PDB: 7SMQ, far right) represented as surfaces, with principal
and complementary subunits colored in pink and blue, respectively. Bound cholesterol (brown) and
phospholipids (yellow) are presented as spheres with oxygen, nitrogen, and phosphorus colored in
red, blue, and orange, respectively.

It is notable that the cholesterol sites observed in the α3β4, α4β2 and Torpedo nAChR
structures overlap with regions of low electron density in cryo-EM images recorded from
native Torpedo post-synaptic membranes, with the low-density regions attributed to bound
cholesterol [58–60]. The bound cholesterol is observed at both inner and outer leaflet
transmembrane sites. Interestingly, the presence of cholesterol stabilizes a “splayed-apart”
arrangement of the M1–M3–M4 α-helices in the outer leaflet of the bilayer, with this
arrangement postulated to create space for the pore-lining M2 α-helices to move during
gating [59,60]. Cholesterol-interacting regions become more extensive, thus leading to the
formation of microdomains in areas bridging adjacent receptors, particularly in the vicinity
of the disulfide linkage between δ-δ dimers of neighboring nAChRs.

Annular sites for phospholipids are also observed in each of the Torpedo nAChR
structures solved to date, including a conserved inner leaflet site adjacent to, but in some
cases overlapping with the high affinity cholesterol sites noted above [57,61,62]. In most
cases, the phosphate of the modeled phosphatidylcholine (PC) is sandwiched between
two positively charged residues, a conserved arginine located just after the M3 α-helix
from the principal subunit and a lysine, arginine, or histidine from the complimentary
M4 α-helix (e.g., αR301 and γK449 at the α-γ site; Figure 3). The conserved arginine is
positioned by a conserved coordinating tryptophan on the M4 α-helix (e.g., αW399) and a
M3–MX loop histidine (e.g., αH306), both on the principal face of the lipid binding site. An
aromatic side chain from the complimentary M1 α-helix (e.g., γF242) also forms a stacking
interaction with one acyl chain. Note that the binding pose of the choline moiety of the
headgroup varies from subunit to subunit and from structures to structure likely because
there are no specific coordinating interactions. Furthermore, PC or PA bind quickly to this
motif and remain bound for the duration of all trajectories in molecular dynamics (MD)
simulations [62]. This site is connected to a salt bridge between M4 and the back of the M2
α-helix, previously shown to be important in channel gating in the human adult muscle
nAChR [63]. The five noted residues may constitute a signature motif for a functionally
important phospholipid binding site that could have a particularly high affinity for PA.
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structures. Zoomed in views (defined in Figure 2) of Torpedo nAChR structures with bound phos-
pholipids (PDB: 7QL5) or both phospholipids and cholesterol (PDB: 7SMQ). Subunits and lipids
are colored as in Figure 2, with residues interacting with bound lipids represented as sticks colored
according to residue type (non-polar, tan; aromatic, yellow; polar, green; cationic, blue; anionic, red).
The M2–M4 salt bridge adjacent to the bound lipids is shown as a dashed line.

In the extracellular leaflet, the annular phospholipids typically bind to a shallow cavity
formed by a positively charged residue on M3 (e.g., αK276), the M2–M3 loop and the Cys-
loop from the principal subunit along with M1 from the complementary subunit. The bound
phospholipid is located between, but in some cases overlaps with the two extracellular
leaflet cholesterol sites. It is notable that the outermost M4 α-helix from αδ, and to a lesser
extent from αγ, tilts away from the rest of the TMD in agonist bound structures. The
outward tilt of M4 allows the acyl chain of an outer leaflet phospholipid to enter the void
between the end of M4 and the rest of the TMD where it contacts the strictly conserved
Cys-loop FPF motif [62]. The outward tilt of M4 allows the inhibitor d-tubocurarine to bind
in the same cavity [57]. It has been proposed that dynamic movements of M4 underlie both
the uncoupling of binding and gating that occurs with the Torpedo nAChR reconstituted
into PC membranes lacking cholesterol and anionic lipids [46]. Dynamic movements of M4
leading to altered lipid and/or allosteric modulator binding is a common theme observed
in several pLGIC structures, as discussed below.

It is intriguing that although the actual number of bound lipids generally increases
with the resolution of the solved structure, several bound lipids are observed in each
of the nine Torpedo structures solved to date. In contrast, structures of the neuronal α7
nAChR exhibit either no or only a few bound lipids. Specifically, structures of the α7
nAChR reconstituted into similar azolectin nanodiscs do not exhibit any bound lipids
even though they were solved at relatively high resolutions (2.7 Å to 3.6 Å) [64]. In a
second study, diffuse density was observed at the periphery of the TMD of α7 nAChR
structures solved in detergent, with one region of electron density in each subunit modeled
as cholesterol (Figure 2) [65]. One speculative interpretation derived from this observation
is that the membrane facing surface of the Torpedo nAChR TMD is more amenable to lipid
binding than the membrane exposed surface of the α7 nAChR. An increased propensity to
bind lipids could underlie the exquisite functional sensitivity of the Torpedo nAChR to its
membrane environment.

Another striking feature of the various Torpedo structures is that, while there is conser-
vation of phospholipid binding sites, which hints at a role for such sites in channel function,
the bound cholesterol observed in structures reported by Rahman et al. [57] are not observed
in all Torpedo structures, particularly those reported by Zarkadas et al. [62]. The absence of



Biomolecules 2022, 12, 814 7 of 21

bound cholesterol in the latter structures likely reflects the fact that Zarkadas et al. washed
the detergent-solubilized nAChR extensively with detergent-solubilized soybean azolectin
during purification leading to cholesterol–phospholipid exchange. The Rahman et al. and
Zarkadas et al. Torpedo structures show, not surprisingly, that the protocol used to prepare
a pLGIC for cryo-EM imaging can dramatically alter the observed lipid binding. Compari-
son of the structures also shows that phospholipids and cholesterol bind to overlapping
annular sites, thus giving credence to the hypothesis that the low lipid specificity of the
Torpedo nAChR results, at least in part, from the binding of different lipids to overlapping
sites, albeit with different affinities/occupancies and different efficacies for stabilizing an
agonist-responsive nAChR [13,46].

The ensemble of solved nAChR structures also highlight limitations in how structural
data can inform our understanding of lipid–nAChR interactions. As noted above, the
pattern of bound lipids differs depending on the protocols used to prepare the cryo-EM
samples. There may also be subtle differences in lipid binding that result from the different
scaffolding proteins used to encapsulate the reconstituted nAChR in a lipid nanodisc. For
example, lipid binding in the Zarkadas et al. structures is suggestive of distinct lipid sites,
while lipid binding in some of the Rahman et al. structures approaches a continuous
annular belt between the M4 α-helices from adjacent subunits (Figure 2). Zarkadas et al.
imaged the nAChR embedded in nanodiscs formed using the circular scaffolding protein,
MSP2N2, with two molecules of the scaffolding protein surrounding a lipid bilayer with a
fixed diameter of 15–17 nm, while Rahman et al. imaged the nAChR in nanodiscs formed
using the scaffolding protein, saposin A. The more globular saposin A monomers assemble
in different stoichiometries to form nanodiscs with different diameters, depending on
the size of the encapsulated membrane protein. It has been suggested that saposin A
encapsulates membrane proteins with a minimal number of lipids trapped between the
membrane protein and each saposin A monomer [66]—an observation supported by recent
structures of the 5-HT3R (see below). The additional lipids observed in structures solved by
Rahman et al. could partly reflect a tighter saposin A nanodisc that prevents the diffusion
of encapsulated lipids within the nanodisc, thus allowing the detection of both high affinity
allosteric and lower affinity annular sites.

Finally, it is significant that the virtually superimposable structures, solved by Zarkadas et al.
and Rahman et al., in the presence of the agonist carbamylcholine (Carb) were attributed
to different physiological states. Prolonged exposure to Carb should lead to a stable
desensitized conformation that binds agonist with high affinity but does not flux cations
across the membrane, a finding consistent with functional assays performed on the nanodisc
reconstituted nAChR. Backbone restrained MD simulations suggest that the pore of the
agonist-bound nAChR is hydrated and likely conductive for cations, a finding inconsistent
with a non-conductive desensitized conformation [62]. In unrestrained MD simulations,
the pore collapses to a non-conductive conformation like that observed in the resting
state. Diffuse density, however, was observed in the pore of the Carb and nicotine bound
structures. When this density was modeled as lipids, the conformation of the nAChR
was stable in backbone unrestrained MD simulations, with the dynamic lipid blocking
hydration of the pore and, thus, cation flux.

The simplest interpretation of the MD simulations is that lipid, possibly from lipid
vesicles or empty lipid nanodiscs that are destroyed during sample vitrification, lodges in
the open pore in the presence of Carb and traps the nAChR in a transient conformation
along the reaction coordinate between an open or pre-open state and the desensitized state.
A second speculative interpretation is that the structures represent a true desensitized state,
but that the blockage of cation-flux upon desensitization results from the diffusion of lipids
from the surrounding bilayer into the pore. Note that lipids have been observed bound
to the pores of other ion channels, such as the bacterial mechanosensitive channel, MscS,
and have been proposed to play a role in mechanosensitive channel gating [7,67]. Lipid
headgroup density has also been observed penetrating into the wide open pore of the
prokaryotic pLGIC, DeCLIC [19]. Regardless, the lack of clarity regarding the physiological
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state of the agonist bound structures highlights the ongoing struggle to definitively assign
solved structures to physiologically relevant conformations—particularly for lipid-sensitive
ion channels. The limitations in our ability to definitively assign structures to physiological
states impacts our ability to elucidate state-dependent lipid–nAChR interactions and, thus,
fully understand the mechanisms by which lipids influence nAChR function.

1.2.3. Mechanisms of Lipid Action at the nAChR

Functional assays show that cholesterol and anionic lipids are important to nAChR
function and that lipids influence the magnitude of the agonist-induced response mainly by
interacting preferentially with and, thus, preferentially stabilizing different proportions of
activatable (resting) versus non-activatable (desensitized or uncoupled) conformations [46,68].
Lipids can also interact with transition states to influence the rates of conformational
transitions [49]. Despite the available structures revealing both cholesterol and phospho-
lipid binding sites on the nAChR, it remains equivocal as to whether lipids preferentially
stabilize different conformations by binding to allosteric sites, by altering bulk membrane
physical properties that in turn preferentially stabilize different conformations, or by a
combination of both. Although the observation that cholesterol and phospholipids bind
to mutually overlapping sites gives credence to the hypothesis that the low specificity of
the Torpedo nAChR for different lipids may result from the binding of different lipids to
overlapping sites, albeit with different affinities/occupancies and different efficacies for sta-
bilizing an agonist-responsive nAChR [13,46], a definitive functional role for lipid binding
in nAChR function remains to be equivocally established. In this context it is notable that
both the apo and the agonist-bound Torpedo structures solved in the presence and absence
of bound cholesterol are virtually superimposable suggesting that cholesterol binding does
not alter nAChR structure in a manner that influences nAChR function. The mechanisms
by which lipid binding and/or membrane physical properties interact preferentially with
and, thus, stabilize one conformation over another remains a central unanswered question
underlying the mechanisms of nAChR–lipid interactions.

Both the Torpedo and α7 nAChR structures solved in the presence and absence of
ligands reveal structural changes in the lipid-exposed TMD surface, which could underlie
conformation-specific interactions with lipids and/or bulk membrane properties. The
Torpedo and α7 nAChR structures solved in different conformations provide a starting
point for understanding conformationally specific nAChR–lipid interactions. In addition,
the lipid-dependent uncoupled nAChR observed in PC membranes lacking cholesterol
and anionic lipids exhibits enhanced rates of peptide hydrogen exchange relative to the
resting and desensitized conformations suggesting that a region(s) of the polypeptide
backbone that is buried from the aqueous solvent in both the resting and desensitized
states becomes exposed to solvent in the uncoupled state [41]. Given the importance of the
interface between the ECD and TMD in “coupling” agonist binding to channel gating, it
was proposed that lipid-dependent uncoupling results from weakened interactions and,
thus, a physical separation at the ECD–TMD interface. Further structural insight into the
uncoupled state should shed light on the mechanisms by which lipids alter channel gating.

Lipids and/or bulk membrane physical properties could influence the coupling of
binding and gating via the lipid exposed M4 α-helix, which packs against the adjacent TMD
α-helices, M1 and M3. Altered M4–M1/M3 interactions have long been thought to play a
role in translating nAChR–lipid interactions into altered channel function, a hypothesis
supported by the observation that mutations that influence the strengths of M4–M1/M3
interactions modulate the functional sensitivity interface of the prokaryotic pLGIC, ELIC,
to lipids (see below) [69]. Lipid-dependent alterations in the packing of M4 against M1/M3
may modify interactions between the M4 C terminus and the Cys-loop, a structure at the
ECD–TMD interface that is important in channel gating [22]. Interactions between M4 and
the Cys-loop (i.e., the β6–β7 loop) are critical for folding and function of the prokaryotic
pLGIC, GLIC and the α7 nAChR [64,70]. On the other hand, M4 C-terminal deletions
have little effect on function in the human adult and Torpedo nAChR, suggesting that M4–
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Cys-loop interactions are not critical for function [62,71]. Although altered M4–Cys-loop
interactions could underlie altered coupling of binding and gating in some pLGICs, they
appear to be unimportant in others. The observation that M4 tilts away from the rest of
the TMD upon Carb binding to the Torpedo nAChR leading to altered lipid binding lends
support to the idea that M4 acts as a lipid sensor that translates changes in the surrounding
lipid environment into altered nAChR function.

1.3. Serotonin Receptor (5-HT3R)
1.3.1. Functional Sensitivity of the 5-HT3R to Lipids

Although several studies suggest that both the structure and function of 5-HT3Rs
are sensitive to lipids, the specific effects of lipids on agonist-induced 5-HT3R gating
remain to be characterized [13]. On the other hand, alanine and other substitutions show
that the putative M4 lipid sensor influences mouse 5-HT3AR function, possibly in a lipid-
dependent manner [72,73]. Deletion or mutation of the C-terminal alanine residue leads
to a decrease in expression of 5-HT3ARs, consistent with a role for the M4 C-terminus
in folding/trafficking [74]. Unlike the Torpedo nAChR, interactions between the M4 C-
terminus and the ECD appear to be critical in the 5-HT3AR. The variabilities observed
in 5-HT3R structures solved in detergent with and without added lipids versus in lipid
nanodiscs, as discussed below, provides the most compelling evidence that lipids play a
significant role in 5-HT3R function.

1.3.2. Sites of Lipid Action at the 5-HT3R

Several studies over the past ~10 years have reported structures of the detergent-
solubilized homomeric 5-HT3AR in multiple conformational states with and without added
lipids, including numerous structures in complex with a class of drugs, setrons, that are
used to manage vomiting associated with both radio and chemotherapies [75–77]. Even the
highest resolution structure of the detergent-solubilized 5-HT3AR solved in the presence
of added lipids (2.8 Å resolution), however, lacks density at the periphery of the TMD
that could be confidently modeled as lipid [77]. In contrast, structures of the 5-HT3AR
reconstituted into saposin A lipid nanodiscs reveal the presence of bound annular lipids [78].
In both apo and serotonin-bound open states, density attributed to cholesterol is observed
in the extracellular leaflet in a shallow groove formed by M1, M4 and the Cys loop, a
position close to that seen with low affinity cholesterol binding to the nAChR. It was
suggested that cholesterol stabilizes tighter interactions at the ECD–TMD interface, thus
leading to a conformation where agonist-binding is coupled to channel gating. Additional
densities attributed to phospholipids were also seen in the serotonin-bound structures in the
extracellular leaflet at an inter-subunit site between M1 and M3 from the complementary
and principal subunits, respectively, with the lipid headgroup projecting towards the
pore-lining M2 α-helices where they make additional contacts with the M2–M3 linker.
Inter-subunit density was not observed in apo structures where the inter-subunit cavities
are smaller [78].

MD simulations using the original 3.5 Å X-ray structure of the 5-HT3AR as a template
have explored 5-HT3AR–lipid interactions. In a heroic 15–20 µs atomistic simulation of
the 5-HT3AR imbedded in a bilayer composed of stearoyl-docosahexaenoyl PC, palmitoyl-
oleoyl PC and cholesterol, stearoyl-docosahexaenoyl PC adhered more compactly to the
TMD ultimately leading to clustering around the TMD periphery [79]. One MD simulation
detected simultaneous hydrogen-bonding between a bound phospholipid headgroup and
both the M2-M3 loop and the Cys loop, bridging interactions that could promote functional
coupling between the ECD and TMD [80]. Dynamic movements of the C-terminal half of
M4 led to gaps in the extracellular leaflet at the M4–M1/M3 interface, these gaps can be
filled by both phospholipid acyl chains and cholesterol, as is observed structurally with the
Torpedo nAChR. As noted, dynamic movements of M4 leading to altered interactions with
lipids and other allosteric modulators appear to be a common theme of all pLGICs.
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One notable limitation of the MD simulations is the conformational ambiguity of
the 5-HT3AR structures solved in different laboratories. For example, the most recent
nanodisc-reconstituted 5-HT3AR open structure solved in the presence of serotonin ex-
hibits larger displacements of the M1, M3, M4 and MX α-helices leading to a larger pore
diameter than observed in the serotonin-bound open structures solved in detergent ei-
ther with or without added lipid. The two reported open structures solved in detergent
with or without added lipid result from symmetric movements of the five subunits, while
the nanodisc-reconstituted open structure results from asymmetric subunit movements.
Further complicating the interpretation of these conformations, MD simulations provide
conflicting evidence as to whether the pores in the open states are hydrated and thus have
the capacity to flux cations. Although the observed conformational differences emphasize
that structural sensitivity of the 5-HT3AR to lipids, the inability to unequivocally assign
solved structures to defined physiological states limits our ability to define conforma-
tionally specific lipid binding. It is also intriguing that saposin A scaffolding protein in
the nanodisc-reconstituted symmetric apo 5-HT3AR structure interacts tightly with the
outermost TMD α-helices, including M4 and MX (see Supplemental Figure 1f in [78]). It
will be interesting to probe whether direct interactions between saposin A and the 5-HT3AR
alter the structure of the TMD in a manner that influences lipid binding.

1.3.3. Mechanisms of Lipid Action at the 5-HT3R

Although the noted differences in 5-HT3R structure in different lipid environments
provide compelling evidence for a functional sensitivity to lipids, there is currently in-
sufficient data regarding both the effects of lipids on 5-HT3R function and the modes of
lipid binding to develop detailed models of 5-HT3R–lipid interactions. Despite this, both
structural and MD simulations suggest that the lipid-exposed M4 α-helix moves relative
to M1/M3 during channel gating [27] to alter the shape of a cavity at the M4–M1/M3
interface, which is the proposed site for binding of the lipophilic allosteric potentiator,
trans-3-(4-methoxyphenyl)-N-(pentan-3-yl)acrylamide [27]. This cavity is one of the sites
proposed for cholesterol and neurosteroid binding to the nAChR. Furthermore, dynamic
movements of M4 have been proposed to underlie lipid-dependent uncoupling of binding
and gating in the nAChR. The cavity between M4 and M1/M3 may be an allosteric site for
lipids and other lipophilic compounds that is conserved in all pLGICs.

1.4. GABAA Receptors
1.4.1. Functional Sensitivity of the GABAAR to Lipids

Limited functional studies suggest that both cholesterol and the anionic lipid, phos-
phatidylserine (PS), modulate GABAAR function. Specifically, incubating both GABAAR
containing synaptosomal membranes and detergent-solubilized native GABAARs from
rat cerebral cortex with increasing concentrations of PS enhances binding of the benzo-
diazepine, flunitrazepam [81]. Methyl-β-cyclodextrin-induced depletion of cholesterol
levels in the cell membranes of rat hippocampal neurons expressing GABAARs diminished
the magnitude of the agonist-induced response, an effect that was not reversed by enrich-
ment with the cholesterol stereoisomer, epicholesterol [82]. Based on the observation that
neurosteroids are less effective at modulating GABAAR function in cholesterol-enriched
membranes, it was concluded that cholesterol and neurosteroids bind to overlapping
sites [83]. Similar to the nAChR, optimal levels of cholesterol in native membranes are
required, with both increasing or decreasing cholesterol levels away from endogenous
levels diminishing the agonist-induced response [42,83]. Membrane vesicle size, which
influences membrane curvature, modulates flunitrazepam binding implicating a role for
bulk membrane physical properties in GABAAR function [84].

1.4.2. Sites of Lipid Action at the GABAAR

A structure of the detergent solubilized α1β2γ2 GABAAR solved in the presence of
CHS at a resolution of 3.9 Å was the first GABAAR structure to identify bound lipids [85].
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Regions of electron density attributed to twelve molecules of CHS were observed pre-
dominantly at annular sites, although density at subunit interfaces penetrates deeper
into the TMD. A subsequent structure of the agonist-responsive human synaptic α1β3γ2
GABAAR solved in MSP2N2 lipid nanodiscs at higher 3.2 Å resolution, however, sug-
gested that the initial α1β2γ2 GABAAR structure does not represent a true physiological
state [86]. Although no cholesterol was observed bound to the nanodisc-reconstituted
α1β3γ2 GABAAR, electron density at the M4–M1 interface in the extracellular leaflet was
modeled as PC. Two molecules of 4,5-bis phosphate (PIP2) were also observed bound
between M4 and M3 in the intracellular leaflet of the α1 subunit, with the two PIP2 binding
sites subsequently confirmed in a full length α1β3γ2 GABAAR structure solved at 2.7 Å
resolution [17]. The two bound PIP2 molecules are notable because they represent the only
phospholipids bound to a eukaryotic pLGIC structure that have been unambiguously iden-
tified. In addition, the PIP2 headgroup is highly coordinated by positively charged residues
extending from the intracellular loop following M3, the base of M4, and the M1–M2 loop,
thus suggesting an important role in GABAAR function (Figure 4) [86].
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Figure 4. PIP2 binds to a highly coordinated site in the α1β3γ2 GABAAR. Side view of the α1β3γ2
GABAAR TMD (PDB: 7QNE) shown on the left as surface, with a zoomed in view of the boxed region
highlighting PIP2 and its coordinating residues (colored as residue-type, with positively charged
residues colored in blue and neutral hydrogen bonding residues colored in green) represented as
sticks on the right. The bound PIP2 lipid is colored as in Figure 2, with dashed lines indicating
residue-mediated coordination of the head group phosphates. A 90◦ rotated view is shown on the
extreme right to delineate coordinating residues.

Note that, despite the lack of observed cholesterol binding to the α1β3γ2 GABAAR,
crystal structures of chimeras with GABAAR TMDs (a homomeric ELIC ECD–α1 GABAAR
TMD, a GLIC ECD–α1 GABAAR TMD and a β3 GABAAR ECD–α5 GABAAR TMD) exhibit
both inhibiting and potentiating neurosteroids bound to intracellular leaflet sites between
M4 and M3 and between M3 from the principal subunit and M1/M4 from the complemen-
tary subunit, respectively [87–89]. Both these sites overlap with binding sites for CHS in
the original α1β2γ2 structure, with the functional sensitivity of these sites to neurosteroids
supported by both mutagenesis and affinity labeling [90,91].

The highest resolution structure (2.8 Å) within a set of human α1β3 GABAAR struc-
tures solved in bovine brain lipid nanodiscs also exhibit numerous regions of electron den-
sity at the periphery of the TMD in both leaflets of the bilayer, although the regions of elec-
tron density are too small to provide detailed insight into the modes of lipid binding [92].
Of note, one region of electron density penetrates an inter-subunit site between the principal
α1 and complementary β3 subunits, as observed above in the original α1β2γ2 GABAAR
structure. Allosteric modulators, such as phenobarbital, etomidate and propofol, bind to
an inter-subunit cavity in α1β2γ2 GABAAR structures, although not at the α1–β2 interface
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where lipid binding is observed [93]. Lipids may bind to an inter-subunit allosteric site in
the TMDs of many GABAARs.

Docking studies further suggest the existence of cholesterol binding sites on GABAAR
structures, including one site in the extracellular leaflet at the inter-subunit interface [94].
The inability of epicholesterol to substitute for cholesterol in supporting GABAAR function
suggests the existence of specific cholesterol regulatory sites, a hypothesis supported by
another docking study which proposed that interactions between cholesterol and the β3
homo-pentameric GABAAR are not mimicked by the binding of epicholesterol [95].

1.4.3. Mechanisms of Lipid Action at the GABAAR

Despite compelling biochemical and structural data suggesting that GABAAR function
is sensitive to lipids, the mechanisms by which lipids modulate GABAAR function remain
unclear. One intriguing MD simulation showed that the binding of positive allosteric
modulators to the α1β2γ2 GABAAR attenuates local motions within the TMD, whereas an
allosteric antagonist enhances TMD motions leading to an altered structure of the ECD and
the dissociation of GABA. Lipids and lipophilic drugs may influence function by stabilizing
the TMD structure in an optimal conformation for interactions with the ECD [93,96], as
suggested for the nAChR [41]. The observed PIP2 binding sites on the α1β3γ2 GABAAR are
particularly intriguing sites for lipid action, although the minimal functional data obtained
to date suggest that PIP2 binding serves a role in receptor trafficking, as opposed to channel
gating [86].

1.5. Glycine Receptors
1.5.1. Functional Sensitivity of the GlyR to Lipids

GlyRs purified from rat spinal cord and reconstituted into soybean azolectin mem-
branes are capable of undergoing agonist-induced anion flux [97]. Beyond that, however,
no studies have systematically examined the effects of different lipids on GlyR function.
The single channel conductance of both homomeric α2 and heteromeric α2β GlyRs are sim-
ilar in both planar bilayers composed of either polar lipids extracted from brain tissues or a
combination of both phosphatidylethanolamine and phosphatidylglycerol [98]. Depletion
of cholesterol from HEK cell membranes expressing homomeric α1 or α3 and heteromeric
α1β GlyR using methyl-β-cyclodextrin did not affect the maximal glycine-induced current;
although it did inhibit the potentiation of GlyR currents by the cannabinoid; tetrahydro-
cannabinol [99]. Interestingly; M4-swapped chimeric constructs of the homologous glycine
receptor α1 and α3 subunits demonstrate that subunit-specific agonist efficacy is driven in
large part by M4 and residues at the M4-lipid interface [100]. M4 is crucial for trafficking of
the GlyR to the cell surface [101]. M4–M1/M3 interactions play a critical role in channel
folding and function [101,102]. The structural variability of GlyR structures solved in
detergents versus different lipid nanodiscs highlight a conformational sensitivity of the
GlyR to lipids, as discussed below.

1.5.2. Sites of Lipid Action at the GlyR

Several studies have reported structures of GlyRs with densities attributed to bound
lipids. The structure of an apo closed state of the zebrafish α1 GlyR reconstituted into
soybean azolectin nanodiscs exhibited three densities in each subunit attributed to bound
phospholipids, with two lipids binding to the extracellular leaflet at the M1–M4 and
M4–M3 interfaces and one lipid binding to the inner leaflet at the M4–M3 interface [103].
No coordinating interactions were observed between the α1 GlyR and the bound lipid
headgroups, suggesting that these phospholipid sites, as in other pLGICs, have low lipid
specificity. Interestingly, the inner leaflet phospholipid binds predominantly to the M4–M3
interface of the principal subunit at a site that overlaps with the high affinity cholesterol
sites observed in the nAChR, but not with the conserved intracellular phospholipid site on
the complementary subunit of the nAChR. The lack of an ordered MX α-helix may shape
distinct phospholipid binding to the GlyR.
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A second study reported structures of both heteromeric and homomeric GlyRs detergent-
solubilized from porcine spinal cord and brain stem [18], with the highest resolution het-
eromeric α1β GlyR structure (2.7 Å) exhibiting 45 regions of electron density surrounding
the TMD. Unfortunately, these regions of density were too small to accurately model
bound lipids. Another study of the zebrafish α1 GlyR reconstituted into both SMA and
MSP1E3D1 nanodiscs yielded numerous structures ranging in resolution from 2.9 to 4.0 Å,
with similar densities at the periphery of the TMD corresponding to between 47 and
65 lipid fragments [104]. No densities attributable to bound lipids were observed in the
structures solved in SMA nanodiscs, despite the structures being solved at similar or higher
resolutions. The diffuse nature of the observed lipid densities suggests that they reflect
nonspecific annular bound lipids rather than lipids bound with high affinity to allosteric
sites (Figure 5). No conserved interactions between phospholipids and the GlyR have
been detected, suggesting that lipid effects on function, if they exist, likely occur through
packing or bulk membrane properties rather than through specific modulatory sites.
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Figure 5. GlyR structures display an annular layer of lipid acyl chains around the perimeter of the
TMD. Side views of the detergent-solubilized native porcine GlyR (PDB: 7MLY, far left), GABA-
bound SMA-solubilized α1 GlyR (PDB: 6PLU, middle left), taurine-bound SMA-solubilized α1
GlyR in a closed state (PDB: 6PLU, middle right) and taurine-bound SMA-solubilized α1 GlyR in
a desensitized state (PDB: 6PLS, far right) with diffuse density corresponding to lipid acyl chains
shown as yellow spheres.

Of particular note, an early α1 GlyR structure solved in detergent exhibited a super-
open conformation with a pore diameter ~8.8 Å [26,105]. Cryo-EM data sets obtained for
the α1 GlyR in MSP1E3D1 nanodiscs captured numerous conformations including a super-
open conformation with a pore diameter of ~7 Å that was deemed non-physiological as the
pore diameter is large enough to conduct the impermeant organic anion, isethionate [104].
The data set obtained using MSP1E3D1 nanodiscs also captured a smaller open pore
conformation with a diameter of ~5.6 Å, which is consistent with the open pore diameter
of 5.3 Å predicted from single channel conductance measurements. Significantly, extracting
the α1 GlyR directly from the insect cell membranes in which it was expressed increased the
proportion of receptors in the physiologically relevant open state. These variable structures
highlight the exquisite conformational sensitivity of the α1 GlyR to lipids.

Conformationally specific lipid binding to the GlyR has been further explored in
coarse-grained MD simulations using a homology model of the homomeric human α1
GlyR closed structure and the homomeric zebrafish α1 GlyR super-open structure [106].
One intriguing finding of this study was that cholesterol binds to an inter-subunit site at a
location similar to the site of ivermectin binding to both the C. elegans glutamate-activated
chloride channel (GluCl) and the α3 GlyR [107,108]. Cholesterol binding was observed in
simulations of the super-open state, whereas in the closed state cholesterol remained at
the periphery of the TMD. These experiments are significant because they demonstrate
that it is possible to use MD simulations to investigate conformation-specific lipid binding.
Given that the super open conformation structures used in this study was subsequently
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deemed non-physiological, the data further highlight the need for definitive structure to
state assignments to define pLGIC–lipid interactions.

1.5.3. Mechanisms of Lipid Action at the GlyR

As with the 5-HT3R, there is currently insufficient structural and functional data
to develop detailed models regarding the mechanisms by which lipids modulate GlyR
function. Despite this, one intriguing feature of both GABAARs and GlyRs is that they
exhibit an extensive network of interacting aromatic residues at the M4–M1/M3 interface.
In the prokaryotic pLGICs, GLIC and ELIC, a similar network of interacting residues has a
dramatic effect on their functional sensitivities to lipids [69], as discussed below.

1.6. Prokaryotic pLGICs
1.6.1. Functional Sensitivity of Prokaryotic pLGICs to Lipids

The two prokaryotic pLGICs, GLIC and ELIC, have become attractive models for
probing the mechanisms underlying pLGIC–lipid interactions. Although the effects of
lipids on GLIC and ELIC function have not been characterized extensively, GLIC retains
the ability to undergo agonist-induced channel gating when reconstituted in a minimal PC
membrane, while ELIC does not [69,109]. The ability of GLIC to function in a PC membrane
was attributed to the presence of an extensive network of interacting aromatic residues
at the M4–M1/M3 interface, which stabilizes the TMD structure, likely rendering it less
malleable and thus less sensitive to changes in the surrounding lipid environment [101].
In contrast, ELIC has fewer aromatic residues at this interface, which may sterically pre-
vent effective M4–M1/M3 interactions leading to a more malleable TMD structure that
requires an optimal lipid environment for channel function [110]. Consistent with this
hypothesis, transplanting the GLIC aromatic-interacting network into ELIC restores its
ability to undergo agonist-induced channel gating in minimal PC membranes [69]. In
addition, reconstituting wild-type ELIC into PC membranes containing either of the an-
ionic lipids, phosphatidylglycerol (PG) or cardiolipin, restores a robust agonist-induced
response [32,111,112].

Cholesterol and the fatty acid, docosahexaenoic acid (DHA), influence both GLIC and
ELIC function, albeit with different phenotypic effects. Increasing levels of cholesterol
in a reconstituted membrane either enhances or reduces the rates of GLIC and ELIC
desensitization, respectively. ELIC desensitization is slowed even further in the presence
of the anionic lipid, PG (see below) [32,111,113]. The fatty acid DHA increases the rates of
GLIC desensitization [114], while treatment of ELIC with DHA leads to a reduction in the
magnitude of the agonist-induced peak current, but does not alter the EC50 for channel
gating [115].

1.6.2. Sites of Lipid Action at Prokaryotic pLGICs

The “apparently open” crystal structure of GLIC published in 2009 was the first
pLGIC structure to detect bound lipids at the periphery of the TMD. One phospholipid was
modeled in the extracellular leaflet at the interface between M4 and M1. Two phospholipids
were modeled in the intracellular leaflet at the interfaces between both M4 and M3 and
M4 and M1, although the latter lipid extends across the inter-subunit interface [116].
Surprisingly, no exogenous lipids were added during either purification or crystallization
suggesting that the observed bound lipids are endogenous to the E. coli membranes in which
GLIC was expressed. The extracellular leaflet lipid overlaps with both a phospholipid site
on the α1β3γ2 GABAAR and a low affinity cholesterol site on the Torpedo nAChR [57,86].
This site is close to a proposed neurosteroid binding site on the α1β3 GABAARs [91] and
overlaps with a cholesterol site identified by photoaffinity labeling on GLIC [117]. The
intracellular lipids overlap broadly with proposed neurosteroid and lipid binding sites in a
variety of pLGICs.

The extracellular leaflet site in GLIC is of particular interest because it bridges M4
and the β6–β7 (Cys) loop, with alanine mutations of the bridging residues either impairing
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function or eliminating functional GLIC expression [70]. This endogenous lipid is not ob-
served in resting and “locally closed” conformations of GLIC, consistent with the bridging
lipid stabilizing the open conformation. The inhibitory drugs, propofol and desflurane,
bind to an overlapping site, with the allosteric modulators eliminating or altering lipid
binding, as discussed elsewhere [118], while DHA, which enhances GLIC desensitization,
binds to a site adjacent to the bound PC [114]. Electron paramagnetic resonance suggests
that the oxygen accessibility of residues in the lipid binding pocket is enhanced when GLIC
transitions from the resting to desensitized states [119,120]. Considerable data thus suggest
that lipid binding to this site plays a modulatory role in GLIC function.

Although bound lipids were not initially observed in the original ELIC crystal
structures, a relatively high resolution crystal structure detected the binding of phos-
phatidylethanolamine (PE) to one subunit in the intracellular leaflet at the interface be-
tween M4 and M1 [32], a site shown by mass spectrometry to have higher affinity for the
anionic lipid, PG [111]. A subsequent cryo-EM structure solved using ELIC extracted from
E. coli membranes with styrene-maleic acid (SMA) confirmed the presence of PG bound
to the same intracellular leaflet site, albeit in each of the five subunits [112]. Cardiolipin
was also observed bound to each of the subunits in the extracellular leaflet primarily at an
inter-subunit site, although the large lipid with four acyl chains extends both towards the
M4-M3 interface of the principal subunit and down through the bilayer into the intracellular
leaflet adjacent to the intracellular leaflet PG/PE (Figure 6). The cardiolipin is bound to
a site where detergent has been modeled in a previous ELIC structure and is adjacent to
a Trp residue that has been implicated in lipid binding [121]. Mutations in several of the
cardiolipin binding site residues influence the gating of ELIC. Polyunsaturated fatty acids
have also been detected bound to a site at the M4–M1 interface, adjacent to where DHA
binds to GLIC [115].
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represented as surface with the principal and complementary subunits colored in pink and blue,
respectively, and bound cardiolipin and PG shown as spheres (center). Zoomed in views of the
bound cardiolipin and PG are shown on the left and right, respectively, with coordinating residues
represented as sticks, with basic residues colored in blue, aromatic residues in yellow, polar residues
in green and proline in tan.

Finally, density, modeled as a PG head group, has been observed at non-annular sites
of a recent crystal structure of the prokaryotic pLGIC, DeCLIC [19]. In this wide-open
structure, the head-group density is nestled underneath the M2–M3 loop of each subunit
and projects in between each of the pore-lining M2 α-helices into the ion channel pore.
The observation that bound lipids penetrate the ion channel pore is particularly intriguing
given that diffuse electron density has been modeled as lipids bound to the ion channel
pore of the Torpedo nAChR. The density observed in this region of DeCLIC thus lends
credence to the speculative hypothesis that the diffusion of lipids into the pore plays a role
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in Torpedo nAChR desensitization. The functional relevance of lipid binding in DeCLIC,
however, requires validation.

1.6.3. Mechanism of Lipid Action at Prokaryotic pLGICs

The improving structural and functional data for prokaryotic pLGICs provide increas-
ing insight into the mechanisms by which lipids influence pLGIC function. Structures of
GLIC, ELIC and DeCLIC suggest modulatory lipid sites in the extracellular leaflet, with the
structural data highlighting a potential role for lipid binding near the GLIC and ELIC M4
C-terminus in channel function.

The most compelling insight into the mechanisms underlying pLGIC–lipid interactions
has been obtained for ELIC. As noted, agonist-induced channel gating is severely impaired
when ELIC is reconstituted into PC membranes. Structures of ELIC in this environment
suggest that ligand binding leads to conformational changes in the ECD that propagate to
the M2–M3 linker but fail to penetrate the remainder of the TMD, an observation consistent
with the hypothesis that the physical coupling between the ECD and TMD is lost when the
Torpedo nAChR is reconstituted into the same PC membranes lacking cholesterol and anionic
lipids [41]. Furthermore, a specific functional role has been proposed for PE/PG binding
to the intracellular leaflet site. This lipid binding site is shaped by a characteristic W-R-P
motif. Both structural and functional data suggest that lipid binding to the intracellular
type stabilizes M4 in a kinked conformation to slow the rates of desensitization [32,112].
In the absence of PE/PG binding or with select mutations that eliminate the M4 kink, M4
dynamics likely increase in a manner that leads to the rapid desensitizing phenotype [32].
The links between lipid binding, M4 dynamics and the altered rates of desensitization
remain to be fully elucidated.

2. Summary and Conclusions

Our understanding of pLGIC–lipid interactions has exploded over the past decade.
This understanding is increasingly shaped by new structures of pLGICs solved in different
membrane environments. In fact, the plethora of new pLGIC structures solved over the
past decade has begun to reveal both the complexities of lipid binding to pLGICs and the
conformational transitions that underlie pLGIC function. Combining structural, functional
and computational methods will eventually allow researchers to define precisely how lipids
interact with pLGICs to preferentially stabilize one conformation over another to modulate
pLGIC function. These multidisciplinary studies will also eventually lead to a detailed
understanding of the role of pLGIC–lipid interactions in human biology.

Despite the enormous progress, there remain gaps in our knowledge. For most pLGICs,
we still do not understand how lipids and bulk membrane properties influence channel gat-
ing and desensitization kinetics. We need better functional data on nanodisc-reconstituted
pLGICs that will allow us to definitively assign solved structures to conformational states
identified by electrophysiological methods. The vast toolbox of biochemical tools available
for characterizing the function of the Torpedo nAChR should aid in this endeavor [41,62].
We also require a better understanding of how sample purification methods and different
nanodisc preparations influence both pLGIC structure and the observed pLGIC–lipid inter-
actions. Although our understanding of the mechanistic underpinnings of pLGIC–lipid
interactions still lags behind that of other ion channels, such as inward rectifying potassium
channels and mechanosensitive channels, where detailed models describing how signaling
lipids and/or bulk membrane properties lead to channel activation have emerged [7],
we are certainly at the dawn of a new age where will finally begin to understand the
mechanistic underpinnings of pLGIC–lipid interactions.
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