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Background: Major depressive disorder (MDD) is a serious mental illness characterized
by mood changes and high suicide rates. However, no studies are available to support a
blood test method for MDD diagnosis. The objective of this research was to identify
potential peripheral blood biomarkers for MDD and characterize the novel
pathophysiology.

Methods: We accessed whole blood microarray sequencing data for MDD and control
samples from public databases. Biological functions were analysed by GO and KEGG
pathway enrichment analyses using the clusterprofile R package. Infiltrated immune cell
(IIC) proportions were identified using the CIBERSORT algorithm. Clustering was
performed using the ConsensusClusterPlus R package. Protein–protein interactions
(PPI) were assessed by constructing a PPI network using STRING and visualized using
Cytoscape software. Rats were exposed to chronic unpredictable mild stress (CUMS) for
6 weeks to induce stress behaviour. Stress behaviour was evaluated by open field
experiments and forced swimming tests. Flow cytometry was used to analyse the
proportion of CD8+ T cells. The expression of the corresponding key genes was
detected by qRT–PCR.

Results: We divided MDD patients into CD8H and CD8L clusters. The functional
enrichment of marker genes in the CD8H cluster indicated that autophagy-related
terms and pathways were significantly enriched. Furthermore, we obtained
110 autophagy-related marker genes (ARMGs) in the CD8H cluster through
intersection analysis. GO and KEGG analyses further showed that these ARMGs may
regulate a variety of autophagy processes and be involved in the onset and advancement
of MDD. Finally, 10 key ARMGs were identified through PPI analysis: RAB1A, GNAI3,
VAMP7, RAB33B, MYC, LAMP2, RAB11A, HIF1A, KIF5B, and PTEN. In the CUMSmodel,
flow cytometric analysis confirmed the above findings. qRT–PCR revealed significant
decreases in the mRNA levels of Gnai3, Rab33b, Lamp2, and Kif5b in the CUMS groups.

Conclusion: In this study, MDD was divided into two subtypes. We combined immune
infiltrating CD8+ T cells with autophagy-related genes and screened a total of 10 ARMG
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genes. In particular, RAB1A, GNAI3, RAB33B, LAMP2, and KIF5B were first reported in
MDD. These genes may offer new hope for the clinical diagnosis of MDD.

Keywords: MDD, GEO, immune infiltration, autophagy, depression subtypes

INTRODUCTION

Major depressive disorder (MDD) is the leading cause of the
burden of mental health-related disease, affecting approximately
300 million people worldwide (Herrman et al., 2019). Currently,
MDD is mainly diagnosed and treated on the basis of different
symptoms and signs fitting to rigorous diagnostic categories, such
as the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-5) (Hasin et al., 2018). However, this
diagnostic method has a certain degree of subjectivity,
resulting in considerable limitations and errors in the
diagnosis results. In the last several decades, some diagnostic
biomarkers for MDD have been identified. However, none of
these biomarkers achieve satisfactory specificity and sensitivity
for clinical application (Kennis et al., 2020). One of the main
causes of this dilemma is the lack of a thorough understanding of
the pathophysiology and pathogenesis of depression, which
complicates the diagnosis and treatment of depression.

Clinical and preclinical studies have suggested that the
immune system is implicated in the pathophysiology of MDD
(Dantzer et al., 2008; Wohleb et al., 2016). Changes in peripheral
and central immune function are found in MDD patients
(Medina-Rodriguez et al., 2018). The reduced circulating
T cells and regulatory B cells indicate that the adaptive
immune system malfunctions in MDD patients (Ahmetspahic
et al., 2018). In addition, the ability of T cells in MDD patients to
respond to stimuli is decreased, suggesting that T cells have an
immunosuppressive phenotype in MDD (Herbert and Cohen,
1993; Zorrilla et al., 2001; Irwin and Miller, 2007). The above
results have motivated a search for biomarkers of immune status
that can be used to stratify MDD cases. Blood is an easily
obtainable tissue used to analyse immune biomarkers, while
collecting brain tissue is inconvenient. Among the blood
biomarkers associated with MDD immune pathogenesis, the
central nervous system (CNS) immune status has been
identified to be related to or result from peripheral immune
status. Furthermore, gene transcription detected within human
blood samples has been increasingly suggested to be related to the
transcript levels detected in numerous additional body systems,
such as the CNS (Wittenberg et al., 2020). Therefore, the
development of immune biomarkers and accompanying
diagnoses could be used to guide new therapeutic methods.

Previous studies have demonstrated that autophagy is
associated with the immune response, cytokine production
and secretion, and inflammasome activation in many
physiological and pathological processes (Ali et al., 2020; Lee
et al., 2020). Autophagy is a self-degradation process that
maintains cellular homeostasis by autophagosome formation
(Onorati et al., 2018). Widely used antidepressants such as
amitriptyline and fluoxetine activate autophagy in
hippocampal neurons (Gulbins et al., 2018). Autophagy

marker levels are increased after treating cells with
antidepressants (Gassen et al., 2015). Although the function of
autophagy in MDD has been reported, the intersection between
immune infiltration and autophagy affecting the MDD process is
unknown.

In this study, we studied immune status biomarkers that could
be used for MDD stratification. Briefly, we identified IIC-based
MDD subtypes by CIBERSORT and consensus clustering using
the GEO database. Marker genes of the subtypes were also
obtained and functionally enriched to reveal potential
functions. In summary, this study identified new subtypes of
depression that exceed the current diagnostic limits, which may
help identify individuals who are most likely to benefit from
targeted therapies.

METHODS

Data Collection
Two gene expression profiles of whole-blood samples fromMDD
patients and healthy donors were obtained from the Gene
Expression Omnibus (GEO) database. The GSE98793 dataset
included 128 MDD patients and 64 healthy controls. Twenty-one
MDD samples, eight bipolar disorder samples (BDI), and 24
healthy donors were included in the GSE39653 dataset. Eight
bipolar disorder samples were excluded from this study. The
GSE98793 dataset was used as a training set, and the GSE39653
dataset was used as a testing set. In addition, a total of
222 autophagy-related genes (ARGs) were obtained from the
Human Autophagy Database (HADb).

Elimination of the Batch Effect
Batch effects are subgroups of measurements with different
qualitative behaviours under different conditions independent
of the biological or scientific variables under study (Leek et al.,
2010). In this study, the GSE98793 dataset used as the training set
was composed of two batches of sequencing data. Therefore, we
performed a batch effect reduction exercise on the two batches of
sequencing data in this dataset using the removeBatchEffect
function of the limma package in R. Principal component
analysis (PCA) was used to demonstrate the distribution of
samples before and after the removal of the batch effect
(Supplementary Figure S1). Moreover, to maximally increase
the reliability of the validation results in the GSE39653 dataset, we
narrowed the batch effect between the GSE39653 dataset and the
GSE98793 dataset using the same method (Supplementary
Figure S2).

Assessment of Immune Infiltration
CIBERSORT (an analytical tool from the Alizadeh Lab and
Newman Lab to impute gene expression profiles and provide
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an estimation of the abundances of member cell types in a mixed
cell population, using gene expression data) precisely quantified
the different types of immune cells in each sample (Newman
et al., 2015). In the current study, LM22 (the original
CIBERSORT gene signature file) was utilized to measure the
fractions of immune cells from MDD and healthy samples.
Samples with a p-value less than 0.05 suggested that the
fractions inferred by the algorithm are accurate (Ali et al.,
2016) and could be used for further analysis. In the present
study, all samples from the GSE98793 (128 MDD and 64 healthy
samples) and GSE39653 (21 MDD samples and 24 healthy
samples) datasets were satisfied with the CIBERSORT-P < 0.05
criterion. The sum of the immune cell type fractions assessed for
each sample was 1, which could be regarded as cell fractions
compared between immune cell types and datasets. Based on the
IIC abundance profiles in the GSE98793 and GSE39653 datasets,
a Wilcoxon rank-sum test was performed to analyse the
comparison of IIC proportions between the healthy and MDD
groups. Next, the correlation between IICs was analysed by
Pearson correlation analysis. In addition, immune cytolytic
activity was another criterion used to measure immune
infiltration following the geometric mean of granzyme A and
perforin 1 (Connor et al., 2017).

Unsupervised Consensus Clustering
Based on the fraction profile of IICs obtained by CIBERSORT,
unsupervised consensus clustering was performed using the R
package ConsensusClusterPlus (Wilkerson and Hayes, 2010) on
MDD samples in the training set (n = 128) and validation set (n =
21) to identify MDD immune subtypes. Notably, 128 MDD
samples in the training set were from the GSE98793 dataset;
21 MDD samples in the validation set were taken from the
GSE39653 dataset. All MDD samples passed the CIBERSORT-
P < 0.05 test. The K-means algorithm was used for 1,000
resampling iterations to ensure the stability of the consensus
clustering. The optimal cluster number was determined using the
consensus matrix (CM) and CDF curves of the consensus score
(Zhou et al., 2020).

Identification of Marker Genes in Different
Clusters
The Limma R package (version 3.42.2) based on t-test statistical
significance was applied to identify the marker genes, which were
defined as significant by an adjusted p-value less than 0.05 (Tusher
et al., 2001). The gene expression level acted as the primary variable
for comparison between three clusters in the GSE98793 dataset.
Here, marker genes of subgroups refer to genes that were
overexpressed or repressed in the target subgroup compared to
other subgroups, For example, marker genes for the T cell CD8H
subpopulation were defined as genes that were significantly up-
and down-regulated in the T cell CD8H subpopulation compared
to the T cell CD8L + control group (adj. p < 0.05).

Enrichment Analysis
Annotations and classifications of genes were carried out by GO
(Zhang et al., 2017) according to biological process (BP),

molecular function (MF), and cellular component (CC)
(Ashburner et al., 2000; Consortium, 2006). KEGG interpreted
molecular interactions, reactions and relationship networks
(Kanehisa and Goto, 2000). Herein, the clusterPrifiler R
package was applied for GO enrichment and KEGG pathway
analyses of the identified marker genes and ARMGs with a
threshold p-value < 0.05.

Formation of Protein–Protein Interaction
Network
STRING (http://string-db.org/) (von Mering et al., 2003), a tool
for interacting gene retrieval, is a biological database for
predicting PPI information. The marker genes were mapped
to STRING for interaction evaluation, and a confidence level
>0.9 was considered significant. Subsequently, we selected nodes
with a degree ≥10 to construct a subnetwork and identified
marker genes belonging to ARGs. Then, Cytoscape (Shannon
et al., 2003) was utilized to construct PPI networks.

Identification of Key Autophagy-Related
Marker Genes
Overlap analysis was performed to identify common elements
between marker genes of T cell CD8H and 222 ARGs, which were
defined as ARMGs. the overlap analysis was performed by the
Jvenn online analysis tool (http://jvenn.toulouse.inra.fr/app/
example.html). Briefly, the list of T cell CD8H-marker genes
and 222 ARGs was uploaded to the Jvenn tool to identify the
overlapping elements in the two gene lists. Subsequently, the
same method was used to identify ARMGs in the list of T cell
CD8H-marker genes with degree ≥10, which were considered as
key ARMGs.

Animals
The Animal Care and Use Committee of Dalian Medical
University (Dalian, China) authorized the animal experiments
in this study, which were performed in accordance with the
National Institute of Health Guide. The Experimental Animal
Centre of Dalian Medical University provided Sprague–Dawley
rats (200–250 g), which were housed in a specialized pathogen-
free facility. Rats were maintained under a stringent 12-h light
and 12-h dark cycle and had free access to water and food. All
experimental protocols were approved by Animal Experiment
Ethics Committee of Dalian Medical University (Reference
number: AEE19087).

Chronic Unpredictable Mild Stress
Procedure
Chronic unpredictable stress stimulation was used to establish the
chronic stress model. According to our previous research, we
adopted an improved stress stimulation method (Zhang et al.,
2021). All animals were allowed to adapt to the living
environment for 1 week. During this experiment, the rats were
placed in a cage in a separate room without interference. Animals
received one of the following stressors once a day for 6 weeks:
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restraint for 1 h, cold water swimming (4°C) for 5 min, warm
water swimming (45°C) for 5 min, food or water deprivation for
24 h, tail clamp for 1 min, overnight illumination for 12 h, damp
bedding (200 ml water in 100 g sawdust bedding) for 24 h, and
cage tilting (45°C) for 24 h. To prevent habituation and provide
an unpredictable characteristic for stressors, all the stressors were
randomly applied within 1 week and repeated throughout the 6-
week experiment. At the same time, animals in the control group
maintained a normal feeding schedule.

Open Field Test
The rats’ behaviour in the open field was examined using the
Super Maze V2.0 Animal Behaviour Video Analysis System
(Shanghai Xinruan Technology Co., Ltd., China). Rats were
recorded for 5 min. The box (50 cm × 50 cm × 40 cm)
included black inner walls with a bottom containing a 25-
square lattice for analysis. The light was set at approximately
40 LX, while the laboratory noise in the background was set <65
dB. The total distance travelled and the number of crossing in
central area of the open field were analysed. The total motor
distance reflected the general locomotor activity of rats.
Exploratory behavior and anxiety were measured by the
number of crossing in central area. The cages were cleaned
with 75% alcohol after the test to avoid odour affecting tests
with subsequent animals.

Forced Swimming Test
The FST was used to assess motivated behavior. The FST was
performed according to previously reported methods (Zhang
et al., 2021). Briefly, a rat was placed into a transparent
cylinder filled with water (25°C). The rats were considered
immobile as long as they remained passively floating in the
water with their noses out of the water. All rats were forced to
swim for 6 min: the first 2 min were the adaptation stage, and the
duration of immobility was recorded during the last 4 min.

Flow Cytometric Analysis
The peripheral blood samples from all the groups at 6 weeks were
collected in EDTA tubes (BD Vacutainer, United States). The
samples were blocked with fuorescence conjugated antibodies
[anti-mouse CD3 antibody and anti-mouse CD8 antibody (BD
Biosciences, United States)] for 20 min in the dark, at room
temperature. After washing, the samples were lysed using the
lysing solution for 10 min and washed and suspended in PBS. A
minimum of 10,000 stained nucleated cells per tube were
acquired using a flow cytometer (BD Biosciences,
United States) and analyzed using FlowJo 7.6 software
(TreeStar, Inc.).

Quantitative Real-Time Polymerase Chain
Reaction
All whole-blood samples lysed with TRIzol LS reagent
(Invitrogen, United States), and total RNA was isolated
following the manufacturer’s instructions. Then the
concentration and purity of the RNA solution were quantified
using a NanoDrop 2000FC-3100 nucleic acid protein quantifier

(Thermo Fisher Scientific, United States). The extracted RNAwas
reverse-transcribed to cDNA using the TranScript Top Green
qPCR kit (TransGen Biotech, China) prior to qRT-PCR. The
qRT-PCR reaction consisted of 2 µl of reverse transcription
product, 10 µl of 2 × SYBR Qpcr Master Mix (Bori, China),
and 0.4 µl each of forward and reverse primer. PCR was
performed in a BIO-RAD CFX96 Touch TM PCR detection
system (Bio-Rad Laboratories, Inc., United States) under the
following conditions: initial denaturation at 95°C for 30 s,
followed by 40 cycles that each involved incubation at 95°C
for 5 s, 60°C for 30 s, followed by 65°C for 5 s, and 95°C for
5 s. The forward primer of Rab1a was “TCCTCCCCTTCCTTT
ACCCG”. The reverse primer of Rab1a was “CCGTATACGTGT
CATCCGCAA”. The forward primer of Gnai3 was “TGAGGA
CGAGGAAATGAACCGA”. The reverse primer of Gnai3 was
“TGCACGTTTTTGGTGTCAGTG”. The forward primer of
Rab33b was “ATGGAGAACGCATTAAGATCCAGT”. The
reverse primer of Rab33b was “AAGCTGGCCATGTTGGTC
AT”. The forward primer of Lamp2 was “GGCTAATGGCTC
AGCTTTCCA”. The reverse primer of Lamp2 was “TGATGG
CGCTTGAGACCAAT”. The forward primer of Kif5b was “ACG
AGTCTGAAGTGAACCGC”. The reverse primer of Kif5b was
“ATGCATAAGGCTTGGACGCA”. The forward primer of
Gapdh was “ATGCCGCCTGGAGAAACC”. The reverse
primer of Gapdh was “GCATCAAAGGTGGAAGAATGG”.
All primers were synthesized by Sangon biotech (Sangon
biotech, China). The GAPDH gene served as an internal
control, and the relative expression of five genes was
determined using the 2−Δ (ΔCT) method. Statistical differences
of Rab1a, Gnai3, Rab33b, Lamp2, Kif5b genes between control
and CUMS samples were detected by unpaired t-tests, using
GraphPad Prism 7 (GraphPad Software, United States), and the
level of statistical significance was tested and represented as * for
p < 0.05.

Statistical Analysis
R software (version 3.6.0) was used for statistical analyses. The
Wilcoxon rank-sum test assessed the different ARMGs in the
CD8+ T cell cluster and other clusters. SPSS 20.0 (IBM, NY) and
GraphPad Prism 7 (GraphPad, CA) software were used for
statistical analysis. The data are presented as the mean ± SEM.
One-way ANOVA and Tukey’s multiple comparison post hoc
tests were conducted to determine differences between individual
groups. Student’s t-test was employed to identify differences
between two groups. A value of p < 0.05 was considered
statistically significant.

RESULTS

Analysis of Immune Landscape in the
GSE98793 Dataset
CIBERSORT (p < 0.05) was used to calculate the differential IICs
between 128 MDD samples and 64 controls following the
Wilcoxon rank-sum test from GSE98793 (Figures 1A,B,
Supplementary Table S1). The number of resting NK cells
(p < 0.01), monocytes (p < 0.01) and M0 macrophages (p <

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 7023664

Sun et al. Potential Diagnostic Biomarkers of MDD

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


0.01) was increased inMDDpatients, while the other immune cell
types, including CD8+ T cells (p < 0.05) and gamma delta T cells
(p < 0.001), were decreased (Figures 1A,B, Supplementary Table
S1). These results indicated different IIC proportions in MDD
samples and controls from the GSE98793 dataset.

We further explored the relationship of IICs by correlation
analysis. The results showed a negative relationship between
T cells CD8 and T cells CD4 memory resting (cor = −0.48,
p < 0.001) and Neutrophils (cor = −0.42, p < 0.001); B cells naïve
had a negative correlation with B cells memory (cor = −0.46, p <
0.001) and positively correlated with T cells CD4 naïve (cor =
0.31, p < 0.001); Monocytes negatively correlated with
Macrophages M2 (cor = −0.43, p < 0.001) (Supplementary
Figure S3A). Furthermore, Supplementary Figure S3B
demonstrated that cytolytic activity was positively correlated
with T cell gamma delta (cor = 0.51, p < 0.001), T cell CD8
(cor = 0.37, p < 0.001), and NK cell resting (cor = 0.33, p < 0.001),

whereas it was negatively correlated with Neutrophils (cor =
−0.51, p < 0.001).

Identification and Validation of Major
Depressive Disorder Subtypes Based on
Infiltrated Immune Cell
To identify subgroups of samples, immune infiltration MDD
samples were selected based on a consensus clustering analysis
using the Consensus Cluster Plus package. Based on the
CIBERSORT algorithm, 128 MDD samples with p < 0.05 were
mined from the GSE98793 cohort and analysed by consensus
clustering using the R package Consensus Cluster Plus. The
results revealed that the relative change in the area under the
cumulative distribution function (CDF) curve was significantly
reduced when k = 3, which implied that the sample clusters were
stable and robust (Figures 2A–C). Among them, Cluster one

FIGURE 1 | Evaluation and visualization of immune cell infiltration in the GSE98793 dataset. (A) The proportion of immune cells in the MDD and control groups.
Immune cells were represented by different colors. The vertical bars represented different samples. (B) The violin plot exhibited the differences in CIBERSOFT immune
cell fractions between MDD and controls. MDD (n = 128): major depressive disorder. Control (n = 64): healthy donors. CIBERSOFT: an analytical tool from the Alizadeh
Lab and Newman Lab to impute gene expression profiles and provide an estimation of the abundances of member cell types in a mixed cell population, using gene
expression data. p < 0.05 was considered statistically significant.
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contained 68 MDD samples, Cluster two included 48 MDD
samples, and Cluster three comprised 12 MDD samples.
Similarly, the cluster dendrogram also exhibited three
individualized clusters among all MDD samples (Figure 2D).

The heatmap showed that CD8+ T cells and neutrophils exhibited
significantly different proportions among the three clusters,
including a high proportion of CD8 or neutrophils, an
intermediate proportion of CD8 or neutrophils, and a low

FIGURE 2 | Identification of MDD subtypes based on IICs in the GSE98793 dataset. (A) The cumulative distribution function (CDF) curves in consensus cluster
analysis. Consensus scores for different subtype numbers (k = 2–6) are presented. (B) The relative change in area under the CDF curve for k = 2–6. (C) The consensus
matrix of all samples was distributed into three clusters at k = 3. (D) The cluster dendrogram among all samples. (E) Heatmaps of IICs proportions of each cluster. The
higher and lower expressed genes were shown in red and green, respectively, and geneswith the same expression level in black. IICs, infiltrated immune cells; MDD
(n = 128), major depressive disorder.
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FIGURE 3 | Validation of the clustering in the GSE39653 dataset. (A) Unsupervised clustering with the k-means algorithm of entire samples. (B) Relative change in
area under CDF curve for k = 2–6. (C) The optimal number of consensus clustering. (D) The cluster dendrogram among all samples. (E)Comparison of IIC proportions of
the top five MAD (median absolute deviation) values among MDD clusters. Red indicates relative upregulation of gene expression; blue indicates the relative
downregulation of gene expression; light yellow indicates no significant change in gene expression. MDD (n = 21), major depressive disorder; IICs, infiltrated
immune cells.
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proportion of CD8 or neutrophil clusters (Figure 2E), indicating
differentially expressed IICs between MDD samples, especially
CD8+ T cells and neutrophils.

Next, the GSE39653 dataset was used to validate the clustering
in Figure 2. The fractions of IICs among 45 samples (24 controls
and 21 MDD samples) from the GSE39653 dataset were
evaluated, and the results showed that B cell memory (p <
0.01) and CD8+ T cells (p < 0.05) were significantly lower in
MDD samples than in the control group; naive B cells (p < 0.05)
were significantly overexpressed in MDD samples

(Supplementary Figure S4, Supplementary Table S2). The
consensus clustering results revealed that MDD samples were
divided into two clusters (Figures 3A–D). Among them, Cluster
one contained 15 MDD samples and Cluster two included six
MDD samples. All samples were divided into high and low
proportions of CD8+ T cells based on IIC fractions (Figure 3E).

Based on a previous study (Figure 2), MDD was finally
divided into two subtypes—a high proportion of CD8+ T cells
(T cells CD8H; n = 12) and a low proportion of CD8+ T cells
(T cells CD8L; n = 116)—for further research.

FIGURE 4 | Potential functions of marker genes in the T cell CD8H cluster and T cell CD8L cluster. (A) The expression heatmap of the top 100marker genes (sorted
according to |log2 Fold change|) for the normal group, T cells CD8H cluster, and T cells CD8L cluster. Red indicates relative upregulation of gene expression; blue
indicates the relative downregulation of gene expression; light yellow indicates no significant change in gene expression. (B,C) The dotplot of the GO enriched BP, MF,
and CC terms in marker genes of the T cell CD8L (B) and T cell CD8H (C) clusters. (D,E) Significant KEGG pathways of marker genes in the T cell CD8H (D) and
T cell CD8L (E) clusters. The larger the circle, the more genes it contained; conversely, the smaller the circle, the fewer genes it contained. The color of the circle is
correlated with the p Value. The lower the p Value is, the closer it is to the red value. The higher the p Value is, the closer it is to the green value. GO, Gene Ontology; BP,
biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes andGenomes. Control: healthy donors (n = 64). T cell CD8H: a
high proportion of CD8+ T cells (n = 12). T cell CD8L: a low proportion of CD8+ T cells (n = 116).
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Identification of Marker Genes in the T Cell
CD8H Cluster and T Cell CD8L Cluster
To explore the differences between subclusters and identify the
biomarkers of each cluster, the marker genes were determined using
the LimmaR package. A total of 6,159marker genes, including 3,728
upregulated and 2,431 downregulated genes, were screened in the
T cell CD8H cluster (compared to the T cell CD8L + control group).
The top five genes with the largest fold change were CTB-167B5.2,
TMEM55A, RP11–488L18.10, OLFM4, and RAB33B (Figure 4A;
Table 1). Moreover, 2,423 marker genes, including 1,059
upregulated and 1,346 downregulated marker genes, were
identified in the T cell CD8L cluster (compared to the T cell
CD8H + control group), including LCN2, CNTNAP3B, DEFA4,
CEACAM8, and OLFM4, which were the five genes with the largest
fold change (Figure 4A; Table 1). One hundred thirty-six marker
genes (56 upregulated genes and 80 downregulated genes) were
identified in the normal group (compared to the T cell CD8H +

T cell CD8L group, Figure 4A), but this study did not focus on
these genes.

Functional Enrichment Analysis of Marker
Genes in the T Cell CD8H Cluster and T Cell
CD8L Cluster
All of the marker genes, as previously described, were analysed for
their potential function in the Gene Ontology resource (GO; http://
geneontology.org) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways. GO terms in different GO categories (BP,MF, and
CC) showed that T cell CD8L marker genes were mainly related to
immune cell activation (neutrophil and T cell activation) (Figure 4B).
Meanwhile, the marker gene CD8H of T cells was significantly
associated with immune (immune response-regulating cell surface
receptor signalling pathway), macroautophagy, and

TABLE 1 | Top 10 marker genes in two clusters.

Gene symbol Cluster Log FC AveExpr t p-value Adj. p-value B

CTB-167B5.2 TcellsCD8H −1.6757872 8.422562 −7.739781 p < 0.001 p < 0.001 20.5402649
TMEM55A TcellsCD8H −1.6712836 6.246543 −6.538500 p < 0.001 p < 0.001 14.0320453
RP11-488L18.10 TcellsCD8H −1.6068182 6.966996 −5.322798 p < 0.001 p < 0.001 8.1650660
OLFM41 TcellsCD8H −1.4794778 6.931726 −2.760569 p < 0.01 p < 0.05 −0.9998805
RAB33B TcellsCD8H −1.4475769 6.942980 −5.648441 p < 0.001 p < 0.001 9.6551374
LCN2 TcellsCD8L 0.7106662 8.076157 3.905290 p < 0.001 p < 0.01 2.5653464
CNTNAP3B TcellsCD8L 0.7758796 6.827838 5.073552 p < 0.001 p < 0.001 7.0221153
DEFA4 TcellsCD8L 0.8900738 7.326248 4.246896 p < 0.001 p < 0.01 3.7715552
CEACAM8 TcellsCD8L 0.9371861 8.643687 4.441836 p < 0.001 p < 0.01 4.4969027
OLFM4 TcellsCD8L 1.0600829 6.931726 3.844797 p < 0.001 p < 0.01 2.3605874

FIGURE 5 | Identification of ARMGs in the T cell CD8H cluster. (A) Venn diagram showed the intersecting genes (denoted as ARMGs) from marker genes of T cell
CD8H cluster (denoted as DEGs) and ARGs of HADb. Blue-Green area: marker genes of T cell CD8H cluster; red area: ARGs of HADb; cross area: genes expressed in
both gene sets. (B) Volcano plot of the 110 ARMGs in the T cell CD8H cluster. Blue: upregulation with adj. p < 0.05; red: downregulation with adj. p < 0.05; green:
unchanged genes. ARMGs, autophagy-related marker genes; DEG, differentially expressed gene; ARGs, autophagy-related genes; HADb, Human Autophagy
Database.
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posttranscriptional modification processes (ribonucleoprotein
complex biogenesis) (Figure 4C).

Furthermore, KEGG pathway analysis found that T cell
CD8H marker genes were mainly involved in the T cell
receptor signalling pathway, endoplasmic reticulum
protein processing, and endocytosis (Figure 4D), while
T cell CD8L marker genes were enriched in Th17 cell
differentiation and the T cell receptor signalling pathway
(Figure 4E). Notably, we found that the marker genes of the
T cell CD8H cluster were enriched in terms related to
autophagy, such as “macroautophagy”. Therefore, we
focused on the T cell CD8H cluster, which was enriched in
many autophagy-related terms.

Analysis of Autophagy-Related Marker
Genes in the T Cells CD8H Cluster
To understand the possible role of ARGs in the T cell CD8H
clusters in MDD patients, we performed the following

analyses. First, 222 ARGs integrated from the HADb
database intersected with 6,159 marker genes identified in
the T cell CD8H cluster (Figure 5A). The Venn diagrams and
volcano plots in Figures 5A,B show 47 upregulated and 63
downregulated ARMGs (p < 0.05). Then, the heatmap
displayed the expression pattern of the ARMGs between
T cells CD8H and other clusters (Supplementary Figure
S5A). The PCA based on the different clusters revealed a
distinguishing outcome, which is shown in Supplementary
Figure S5B. These findings showed that 110 of 222 ARGMs in
the HADb database were differentially expressed in T cell
CD8H subtypes, suggesting that autophagy-related genes
might play a role in T cell CD8H subtypes.

Functional Enrichment Analysis of
Autophagy-Related Marker Genes in the
T Cell CD8H Cluster
GO enrichment analysis was performed following the 110
ARMGs, including the BP, CC, and MF categories. The results
indicated that macroautophagy, processes utilizing
autophagic mechanisms, and autophagosome assembly
were enriched terms in the BP category. In the CC
category, 110 ARMGs were considerably enriched in terms
of the autophagosome, phagophore assembly site, and
membrane region. In the MF category, those ARMGs had
obvious enrichment in terms of heat shock protein binding,
cysteine-type endopeptidase activity, and ubiquitin-like
protein ligase binding (Figure 6A, Supplementary Table S3).

KEGG pathway analysis suggested that ARMGs had visible
enrichment in “Autophagy–animal” and “Autophagy–other”.
In addition, the “Apoptosis” pathway was enriched in
ARMGs, which was potentially implicated in the
development and progression of MDD (Figure 6B,
Supplementary Table S4).

Screening of the Key Autophagy-Related
Marker Genes
To investigate the interactions between 6,159 marker genes of
the T cell CD8H cluster, we obtained a PPI network
containing 566 nodes and 2,299 edges after presenting
discrete individual proteins in STRING with an interaction
score >0.9 (Supplementary Figure S6A). Among them,
UBE2D1 (degree = 52), PIK3CA (degree = 41), and EP300
(degree = 40) were the top three proteins in terms of degree
value, indicating that these proteins had tight interactions
with numerous other marker gene proteins. We screened 170
marker genes with a degree ≥10 to further identify important
ARGs and visualized a PPI subnetwork containing 1,363
interactions by Cytoscape (Supplementary Figure S6B).
We found that RAB1A (degree = 30), RAB11A (degree =
26), VAMP7 (degree = 17), GNAI3 (degree = 16), PTEN
(degree = 14), MYC (degree = 13), HIF1A (degree = 12),
RAB33B (degree = 11), KIF5B (degree = 11), and LAMP2
(degree = 10) were ARGs, which were considered key ARMGs
(Table 2).

FIGURE 6 | Functional analysis of 110 ARMGs in the T cell CD8H cluster.
(A) GO enrichment result of ARMGs. The x-axis label represents fold
enrichment and y-axis label represents GO terms. (B) Top 10 significantly
enriched KEGG pathway in ARMGs. Y-axis label represents pathway,
and X-axis label represents fold enrichment. Size and color of the bubble
represent amount of ARMGs enriched in term and enrichment significance,
respectively. The larger the circle, the more genes it contained; conversely, the
smaller the circle, the fewer genes it contained. The color of the circle is
correlated with the p Value. The lower the p Value is, the closer it is to the red
value. The higher the p Value is, the closer it is to the green value. GO, Gene
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ARMGs,
autophagy-related marker genes. “BP” stands for “biological process”, “CC”
stands for “cellular component” and “MF” stands for “molecular function”.
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The Proportion of CD8+ TCells and the Level
of Corresponding Key Genes in the
Peripheral Blood of Rats in the Chronic
Unpredictable Mild Stress Model
To confirm the success of the chronic stress model, we first
evaluated stress response by open field experiments and forced
swimming tests. The results showed that rats exhibited stress
response (Figures 7A–D). Furthermore, we detected the
proportion of CD8+ T cells using flow cytometry. The results
showed that the proportion of CD8+ T cells was reduced in the
CUMS groups compared with the control groups (Figures 7E,F).
In addition, we selected five key ARMGs reported inMDD for the
first time from 10 key ARMGs for verification. qRT–PCR
revealed significant decreases in the mRNA levels of Gnai3,
Rab33b, Lamp2, and Kif5b in the CUMS groups compared to
those in the related control groups (Supplementary Figure
S7A–D).

DISCUSSION

In recent decades, evidence of immune imbalance in MDD has
been increasing (Leonard, 2010). For example, compared with the
healthy group, the immune cell counts in the whole blood of
patients with MDD were increased, especially CD4+ T cells,
neutrophils, and monocytes (Pfau et al., 2017). To further
discuss the role of immune cell infiltration in MDD, we
comprehensively evaluated immune infiltration by using

CIBERSORT in MDD. In this study, we discovered different
IIC proportions between peripheral blood from patients with
MDD and that from the healthy group. Our results found that the
proportions of resting NK cells, monocytes, and macrophages in
patients with MDD were increased compared with those in the
healthy group. The proportion of gamma delta T cells in patients
with MDD was reduced compared with that in the healthy group.
According to previous research reports, monocytes and
macrophages are increased in MDD patients (Kronfol, 2002;
Hughes et al., 2021), which is consistent with our results.
Immune infiltration of resting gamma delta T cells and resting
NK cells in MDD has not been reported.

Importantly, we found in GSE98793 dataset and GSE39653
dataset that the proportion of CD8+ T cells in peripheral blood of
patients with MDD was lower than that of healthy people. We
obtained the same results in the chronic stress rats model. CD8+

T cells play a major role in immune regulation. Recent data have
demonstrated that reducing CD8 T lymphocyte apoptosis can
regulate the immune microenvironment in depressed mice (Lu
et al., 2017). Additionally, bipolar disorder is highly correlated
with a reduction in circulating CD8+ T cell subpopulations
(Magioncalda et al., 2018). Interestingly, although the
proportion of CD8+ T cells was reduced in MDD patients, it
was also different between patients with MDD. We found that
MDD was divided into two subtypes—a high proportion of CD8+

T cells (T cells CD8H) and a low proportion of CD8+ T cells
(T cells CD8L)—by further analysis, suggesting that the
proportion of CD8+ T cells may be an essential factor
affecting the development of depression. However, why some

TABLE 2 | Implications of the 10 key ARMGs.

Gene
symbol

Full name Implications

RAB1A Ras-Related Protein Rab-1A Rab1a is the small G protein that regulates vesicle transport from endoplasmic reticulum to and through Golgi.
Rab1a overexpression can increase the expression level of TLR4 Song et al. (2020). The association between
RAB1A and MDD has not been reported

GNAI3 G Protein Subunit Alpha I3 Signaling is mediated via effector proteins, such as adenylate cyclase. Inhibits adenylate cyclase activity, leading
to decreased intracellular cAMP levels Kimple et al. (2009). The association between GNAI3 and MDD has not
been reported

VAMP7 Vesicle Associated Membrane Protein 7 Involved in the targeting and/or fusion of transport vesicles to their target membrane during transport of proteins
from the early endosome to the lysosome. Vamp7 might provide insight into treatment of MDD Li et al. (2019)

RAB33B Ras-Related Protein Rab-33B Protein transport. Acts, in coordination with RAB6A, to regulate intra-Golgi retrograde trafficking. It is involved in
autophagy, acting as a modulator of autophagosome formation. The association between RAB33B and MDD
has not been reported

MYC MYC Proto-Oncogene MYC is somehow involved in depressed suicide Zeng et al. (2020)
LAMP2 Lysosomal Associated Membrane

Protein 2
Plays an important role in chaperone-mediated autophagy, a process that mediates lysosomal degradation of
proteins in response to various stresses and as part of the normal turnover of proteins with a long biological half-
live. The association between LAMP2 and MDD has not been reported

RAB11A Ras-Related Protein Rab-11A Antidepressants AMPH leads to an increase of NET (The norepinephrine transporter is a major target for
medications used for the treatment of depression) in a Rab11-dependent manner Matthies et al. (2010)

HIF1A Hypoxia Inducible Factor 1 Subunit Alpha altered expression of HIF-1 and its target genes mRNA in peripheral blood cells are associated-mainly in a state-
dependent manner-with mood disorders (especially with MDD). In addition, altered expression of HIF-1 and its
target genes may be associated with the pathophysiology of depression Shibata et al. (2013)

KIF5B Kinesin Family Member 5B Syntabulin acts as a KIF5B motor adaptor and mediates anterograde transport of presynaptic cargoes and
mitochondria, presynaptic assembly, and activity-induced plasticity Ma et al. (2009). The association between
KIF5B and MDD has not been reported

PTEN Phosphatase And Tensin Homolog PTEN serves as a key mediator in chronic stress-induced neuron atrophy as well as depression-like behaviors,
providing molecular evidence supporting the synaptic plasticity theory of depression Chen et al. (2021), Wang
et al. (2021)
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MDD samples had high CD8+ T cell infiltration while others did
not is unclear. We further studied which biological function was
related to the proportion of CD8 T cells in MDD patients.

Through functional enrichment analysis of the marker genes in
each cluster, we found that the marker genes of the T cell CD8H
cluster were enriched in terms related to autophagy. Autophagy
can regulate immune system components, including natural killer
(NK) cells, macrophages, dendritic cells (DCs), and T and B
lymphocytes (Gerada and Ryan, 2020). In the process of
macroautophagy, the autophagic vesicles that wrap abnormal
proteins in the cytoplasm merge with lysosomes for degradation
(Nishida et al., 2009). Interestingly, we found that the marker genes
in the T cell CD8H cluster were significantly enriched in
proteasome-mediated ubiquitin-dependent protein catabolic
process, lysosomal membrane, ubiquitin-protein transferase
activity, and ubiquitin-like protein transferase activity.
Coincidentally, autopsies of MDD patients showed that synaptic
protein synthesis in the prefrontal cortex was inhibited andmTOR
phosphorylation levels were reduced, suggesting that autophagy
was activated (Jernigan et al., 2011). Compelling evidence has
revealed that autophagy is activated in MDD patients and that
antidepressants exert antidepressant effects via autophagy
regulation through different signalling pathways, suggesting that
autophagy might be involved in the occurrence and development
of depression (Shelton et al., 2011; Abelaira et al., 2014). According
to some articles, markers for cellular autophagy are upregulated

after antidepressant treatment (Zschocke and Rein, 2011).
Additionally, the expression of markers for autophagy, such as
beclin1, in the mouse brain increases after antidepressant
treatment (Gassen et al., 2014). The above results indicate that
autophagy pathways have vital effects on MDD. Interestingly,
some articles suggest that mTOR (the major regulator of
autophagy) is associated with memory CD8+ T cell
differentiation. Based on these findings, rapamycin-mediated
mTOR inhibition enhances memory CD8+ T cell magnitude
and quality (Araki et al., 2009; Pearce et al., 2009). Therefore,
autophagy plays an important role in the survival of effector CD8+

T cells (Xu et al., 2014). Our research confirmed that autophagy
was highly correlated with the T cell CD8H cluster, suggesting that
autophagy may be an important biological process that regulates
the proportion of CD8+ T cells in MDD.

To date, although ARMGs have been widely reported as
diagnostic and/or prognostic markers for many types of
tumours, such as hepatocellular carcinoma (Huo et al., 2020),
gastric cancer (Zhou et al., 2021), and ovarian cancer (Chen et al.),
research on whether autophagy genes or proteins can serve as
biomarkers in psychiatric disorders is limited. Recently, ARMGs
have been reported to potentially be helpful for the diagnosis of
schizophrenia (Li et al., 2021). However, the diagnostic
performance of ARMGs for MDD has not yet been explored.
We established a PPI network to investigate the correlations among
ARMGs, which revealed 10 hub genes, namely, RAB1A, GNAI3,

FIGURE 7 | The proportion of CD8+ T cells in the peripheral blood of rats in the CUMS model. (A–D) The stress behavior was evaluated by open field experiment
(A–C) and forced swimming test (D). (E,F) The flow cytometric analysed the proportion of CD8+ T cells in the control groups and CUMS groups. Statistical analysis:
unpaired t-tests. Data are presented as the mean ± SEM (n = 6 per group). *p < 0.05 compared to control. Control: stress-free group. CUMS, chronic mild unpredictable
stress group.
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VAMP7, RAB33B, MYC, LAMP2, RAB11A, HIF1A, KIF5B, and
PTEN. The subnetwork of VAMP7, MYC, RAB11A, HIF1A, and
PTEN screened out fromour study has been shown to play a role in
MDD (Table 2). In particular, we discovered for the first time that
RAB1A, GNAI3, RAB33B, LAMP2, and KIF5B might be potential
markers for the diagnosis of depression. Rab1a controls the
initiation of autophagy by regulating the trafficking of the
ULK1 autophagy initiation complex to the phagophore
(Webster et al., 2016). Its overexpression can increase the
expression level of TLR4 (Song et al., 2020). GNAI3 has been
recognized as a regulator of autophagy (Vural et al., 2013); it is
abundantly expressed in immune cells and regulates cytokine
responses to bacterial products (Li et al., 2019). Defective
mitophagy is driven by dysregulation of KIF5B, which induces
an NLRP3-dependent proinflammatory response (Yang et al.,
2014). Notably, Kif5b deficiency within haematopoietic cells
plays an important role in the anticancer response mediated by
effective CD8+ T cells (Belabed et al., 2020). This evidence suggests
that Rab1a, GNAI3, and KIF5B can regulate both autophagy and
inflammation. At the same time, these autophagy-related genes
may be markers explaining why some MDD patients have a high
proportion of CD8 T cells. Whether these genes can change the
proportion of CD8 T cells and exert antidepressant effects remains
to be further experimentally verified.

LIMITATION

This study had limitations. First, we identified several genes from
microarray data analysis and verified their differential expression
in the CUMS model. However, we did not further verify the
functions of these selected genes. Therefore, we need a large
number of clinical samples to verify our findings and clarify the
potential mechanisms of how these genes affect the
pathological stage.

CONCLUSION

MDD patients may be clustered according to the proportion of
CD8+ T cells, which corresponds to the diagnosis for a certain
type of patient. After clustering, the marker genes of the T cell
CD8H cluster were found to be significantly related to autophagy,
suggesting that autophagy may affect the immune

microenvironment of MDD patients. We also screened five
hub autophagy-related genes, which may offer new hope for
the treatment and diagnosis of MDD patients in the future,
although further study is required.
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