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Abstract

Despite a wealth of EEG epilepsy data that accumulated for over half a century, our ability to understand brain dynamics
associated with epilepsy remains limited. Using EEG data from 15 controls and 9 left temporal lobe epilepsy (LTLE) patients,
in this study we characterize how the dynamics of the healthy brain differ from the ‘‘dynamically balanced’’ state of the
brain of epilepsy patients treated with anti-epileptic drugs in the context of resting state. We show that such differences can
be observed in band power, synchronization and network measures, as well as deviations from the small world network
(SWN) architecture of the healthy brain. The h (4–7 Hz) and high a (10–13 Hz) bands showed the biggest deviations from
healthy controls across various measures. In particular, patients demonstrated significantly higher power and
synchronization than controls in the h band, but lower synchronization and power in the high a band. Furthermore,
differences between controls and patients in graph theory metrics revealed deviations from a SWN architecture. In the h
band epilepsy patients showed deviations toward an orderly network, while in the high a band they deviated toward a
random network. These findings show that, despite the focal nature of LTLE, the epileptic brain differs in its global network
characteristics from the healthy brain. To our knowledge, this is the only study to encompass power, connectivity and graph
theory metrics to investigate the reorganization of resting state functional networks in LTLE patients.
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Introduction

Brain dynamics arise from complex interactions that depend on

several factors including neuron type [1,2,3], synaptic properties

[2,3], gap junctions [4,5] and synchronization of neural oscilla-

tions [6,7,8]. A delicate balance between these factors gives rise to

a stable dynamical state [9] that characterizes the healthy brain.

This stable dynamical state is characterized by a balance between

excitation and inhibition [10]. When the network is dominated by

excitation, a high neuronal firing occurs resulting in the

impairment of neural processing [11]. In most models of epileptic

seizures a transition from a balanced state to an excitatory

dominated state results in a transition from the interictal to ictal

state [12].

Epilepsy is of particular interest in understanding brain

dynamics in general as the dynamical balance is only breached

during a small time period over which a seizure occurs. This

points to two important aspects that can shed some light on the

functional impairment associated with epilepsy. Firstly, how do

the dynamics of the healthy brain differ from the ‘‘dynamically

balanced’’ state of the epileptic brain; and, secondly, how does

the transition occur between this ‘‘dynamically balanced’’ state

to an epileptic state [13,14,15,16,17,18,19,20]? In this paper we

pursue the first of these questions in the context of resting state

dynamics.

While EEG and MEG data have been recorded for decades,

renewed interest in resting state dynamics has recently emerged

following numerous positron emission tomography (PET) and

functional magnetic resonance imaging (fMRI) studies showing

that spontaneous brain activity is not random. These studies

revealed highly coherent functional networks closely related to

the underlying anatomical structure [21]. While resting state

networks (particularly the DMN network) have been well

established in dozens of PET [22,23] and fMRI [24,25] studies

for over a decade, electrophysiological data started emerging

recently in healthy controls [26,27,28,29] and epilepsy patients

[30,31,32].

The realization that neurons constitute an electrophysiological

dynamical system that is structurally and functionally connected

has naturally led to the application of network theory to the study

of brain dynamics. In the context of network theory, the physics of

any complex system can be characterized by the same parameters

despite profound differences in their constituent elements [33].

Network theory, also referred to as graph theory when displayed

PLOS ONE | www.plosone.org 1 July 2013 | Volume 8 | Issue 7 | e68609



topologically as a set of nodes and edges [34], has shown great

promise in understanding complex interactions in the healthy

brain [35], as well as impaired network function resulting from

various diseases [36,37,38]. A host of network metrics can be used

to study network dynamics, many of which have been used in

neuroimaging to characterize the healthy human brain [34,35,39],

and to characterize differences associated with various neurologic

and psychiatric disorders [40,41,42,43,44]. A main outcome of

these studies is that interactions in the human brain possess small

world network (SWN) properties that can be well distinguished

from random networks and from regular networks. These

properties have been attributed to evolutionary processes that

attempt to balance cost and efficiency [34]. Several studies have

reported deviations from SWN properties in various diseases

[40,43,45,46,47].

Detailed network analyses from various structural and

functional modalities have recently emerged in an attempt to

provide a better understanding of network characteristics of the

epileptic brain, changes in these characteristics over time and

the relation of network measures to surgery outcome. In one

study comparing cortical thickness connectivity in TLE patients

and healthy controls, patients showed disruptions in various

network measures, suggesting a reorganization of cortical

thickness across brain networks. Longitudinal analysis demon-

strated that network alterations intensify over time [48]. A

resting state fMRI study comparing TLE patients and healthy

controls showed deviations from the optimal SWN architecture

[49] in patients. Deviations from SWN architecture in the h
band were reported to be related to greater vulnerability to

seizures in an MEG study of individuals with tumor-related

epilepsy [50]. An intracranial EEG study employed graph

theory methods to identify critical network nodes in cortical

networks during ictal and interictal states. A key network

measure (betweenness centrality), was found to correlate with

the location of the resected cortical regions in patients who were

seizure free following surgical intervention [51]. In this regard,

network measures provide a quantitative approach to charac-

terizing complex network dynamics and can lead to a better

understanding of epileptogenesis in addition to providing a

valuable diagnostic and predictive tool [52,53].

Despite a wealth of scalp EEG literature on epileptic seizures

collectively pointing to an overall increase in synchronization

during seizures [54], there are few studies that compare the resting

state of healthy controls to that of epileptic patients in the interictal

state at the network level. In one recent study [30] graph theory

measures were applied to data from a 29-electrode EEG system.

However, their study encompassed patients with different epileptic

foci originating from one or both hemispheres, making it difficult

to draw specific conclusions about the spatial extent and nature of

the network disorder.

In this paper we use a 64-electrode EEG system to investigate

various measures of brain dynamics at the local and network levels

to characterize the properties of the epileptic brain in resting state

and how it differs from the healthy brain. While it is well known

that the dynamics of the epileptic brain differ from the healthy

brain during seizures and transition to seizures, we show that

differences at multiple levels can be observed during the

‘‘dynamically balanced’’ state at rest with no task demand. Our

analysis extends across multiple frequency ranges, and examines

band power, synchronization, and network measures for a more

comprehensive evaluation of these differences in resting state

dynamics.

Materials and Methods

Subjects
Fifteen healthy volunteers between the ages of 22 and 59 (mean

age = 33610) and nine individuals with left temporal lobe epilepsy

(LTLE) between the ages 24 and 59 (mean age = 42613) were

recruited for this study. Healthy subjects were excluded if they had

any neurological or psychiatric disorders or used psychotropic

medication. LTLE patients were recruited from individuals who

were determined to be candidates for resection surgery at Toronto

Western Hospital and as such had focal seizures originating from

the left medial temporal lobe that were refractory to medication.

To determine seizure focus and surgical candidacy, patients were

admitted to the Epilepsy Monitoring Unit and underwent

continuous video-EEG monitoring concurrently with anti-epileptic

drugs titration until a minimum of three seizures with unequivocal

unilateral temporal onset were recorded. If independent bitempo-

ral seizures were recorded, 80% of seizures were required to be on

the same side. Most patients had left temporal lobe sclerosis as well

as a history of febrile convulsions. Detailed patient data are

provided in Table 1. All participants gave written consent to

participate in this study which was approved by the hospital’s

ethics committee.

Data Acquisition
Subjects were asked to sit in a quiet room and to stay fully

relaxed. A total of three minutes of EEG data were recorded with

eyes closed (EC) and another three minutes with eyes open (EO). A

Neuroscan 64-channel EEG system was used to record data at a

sample rate of 500 Hz. Two (EOG) electrodes were used to record

horizontal and vertical ocular artifacts.

While both the EC and EO condition have been used in various

neuroimaging experiments to represent resting state, substantial

differences are typically seen in scalp EEG between the two

conditions. In particular, a power is typically substantially higher

in most subjects in the EC than the EO condition and is known to

contribute to brain connectivity. We thus chose to record data

with both conditions.

Data Analysis
Preprocessing. In the offline data preprocessing, each

channel was re-referenced to the average of all channels to avoid

systematic effects that may arise from referencing to a particular

channel, particularly in the context of synchronization analysis

[55,56,57]. A DC offset was subtracted based on the entire time

range, and bad channels were removed then interpolated from

neighboring channels.

Spectral power from EEG signals is generally difficult to

quantify at low and high frequencies due to ocular and muscle

artefacts in these regions. Signals from ocular artefacts are orders

of magnitude higher than neural signals and result in a sharp rise

in spectral power at low frequencies, while muscle artefacts make

large contributions at high frequencies. Despite the various

methods available to reduce such artefacts, determining their

contribution to systematic errors is difficult to achieve in data with

small statistics (with respect to both number of samples and

number of subjects). The data was therefore further bandpassed in

the 2 to 20 Hz range to avoid such artefacts. Remaining artefacts

were removed manually by rejecting segments containing

artefacts.

Spectral power. The cleaned data was fast Fourier trans-

formed (FFT) to obtain the absolute spectral power for each

channel in five frequency bands: d (2–4 Hz), h (4–7 Hz), al (7–
10 Hz), ah (10–13 Hz) and b (13–20 Hz). In order to allow power

Altered Brain Dynamics in Temporal Lobe Epilepsy
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comparisons across bands of different width, the power spectrum

was normalized by the frequency range resulting in units of mV/
Hz.

We utilized the spectral power information to construct a single

measure that can be used to quantify the observed differences

across frequency bands between healthy controls and patients

[58,59,60]. To this end, we used the power, P, in individual

frequency bands to define a low-high asymmetry measure (Alh)

such that.

Alh ~
P(d)zP(q){P(ah){P(b)

P(d)zP(q)zP(ah)zP(b)
: ð1Þ

Similar measures have been previously constructed to charac-

terize Alzheimer’s disease [58,61] and depression [60] and, in the

former, were correlated with clinical measures that characterize

the severity of dementia. In epilepsy, an epileptogenicity index has

been defined to quantify the degree of epileptogenicity using high

frequency (rapid discharges) recorded with depth electrodes [62].

Functional connectivity. Synchronization of chaotic systems

has captured tremendous interest in the field of non-linear

dynamics and has been used in a wide range of scientific

applications. Phase synchronization, a specific measure of

synchronization which was first introduced by Rosenblum et al.

(1996), found applications to time series recorded from brain

activity soon after (Tass 1998, Mormann 2000). For a given signal

s(t), with a Hilbert transform s’(t), the instantaneous phase

difference w(t) between two time series (labeled as a and b) is

given by.

Dw(t)~wa(t){wb(t)~ tan{1 s
0
a(t)sb(t){sa(t)s

0
b(t)

sa(t)sb(t)zs
0
a(t)s

0
b(t)

 !
, ð2Þ

and is confined to the interval [0,2p]. Following Mormann et al.

(2000), we use a mean phase coherency measure of synchroniza-

tion defined as

R~D
1

N

XN{1

j

eiDw(jDt)D, ð3Þ

where j is the sample number and N is the total number of

samples. Mean phase coherency takes on values between 0 and 1,

indicating no synchronization and full synchronization, respec-

tively. In comparison to amplitude-based correlation measures,

phase synchronization measures are less influenced by signal to

noise fluctuations, and as such, result in a more robust measure of

functional connectivity.

Network theory. Network theory can be represented geo-

metrically as a set of nodes (representing processing centres) and

edges that represent the information flow between them. This

topological representation of the geometry is known as graph

theory. In this context, a metric known as path length represents the

number of edges traversed to go from one node to another.

Overall, a network where a smaller number of edges are traversed

on average to go from one node to another would be considered

efficient. Hence, efficiency is defined as the inverse of path length.

Another metric, clustering coefficient, indicates how connected a

Table 1. Clinical data for patients included in this analysis.

Subject ID Age Gender
Seizure
duration

Age of
onset AED

Dosage/day
(mg)

Left medial
temporal
sclerosis Febrile seizure

207 39 m 6 33 LTG TPM 400 yes yes

200

208 24 m 4 20 LTG CLB 600 yes unknown**

30

220 46 m 44 2 CBZ LTG 800 yes yes

300

301 25 m 23 2 LEV SVAL 3000 yes yes

2000

302 36 f 34 2 LEV TPM CBZ 1500 yes Yes

200

800

303 59 m 58.5 0.5 CBZ LTG 600 yes yes

200

304 59 m 11 48 CBZ TPM 800 no* no

300

305 37 m 7 30 LTG CLB 400 yes yes

10

306 54 f 27 27 CBZ LTG 1000 yes yes

500

Antiepileptic drugs (AED): CBZ, Carbamazepine; CLB, Clobazam; LEV, Levetiracetam; LTG, Lamotrigine; TPM, Topiramate; SVAL, Sodium Valproate.
*Has sclerosis of the amygdale and hippocampus but not sufficient for an MTS diagnosis.
**Admitted to hospital for extended time as an infant, but exact circumstances are unknown.
doi:10.1371/journal.pone.0068609.t001
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network is to its nearest neighbours. While random networks are

characterized by high efficiency and low clustering coefficient,

regular networks are characterized by low efficiency and high

clustering coefficient. SWNs, on the other hand, lie somewhere in

between, thus, balancing local specialization and global integra-

tion.

In the present analysis we used mean phase coherency

described in the previous section to generate a connectivity

matrix. The connectivity matrix was binarized at a preset

proportional threshold to ensure that networks in the patients

and control groups have the same number of edges so that

group differences reect alterations in network organization [48].

As there is no formal consensus on a robust method for

threshold selection, based on previous studies [45,49], we

investigated a set of proportional thresholds over the range

0.3#T#0.6 corresponding to a degree range of 18.9#K#37.8

and a number of edges range of 1210#D#2420. A propor-

tional threshold of 0.3 indicates that the strongest 30% of the

connections were selected. The efficiency and clustering

coefficient were calculated from the binary matrix using the

Brain Connectivity Toolbox (BCT) [63].

For a network with N nodes belonging to set G, where the

connectivity between any two nodes (i,j) is aij ( = 1 if the connection

exists and 0 otherwise), the clustering coefficient of node i is

defined as [63,64].

Ci~
2ti

Ki(Ki{1)
, ð4Þ

where Ki is the degree of node i defined as

Ki~
X
j[G

aij ð5Þ

and

ti~
1

2

X
j,h[G

aijaihajh ð6Þ

is the number of triangles that can be formed between node i and

its neighboring nodes.

The efficiency of the network is defined as.

Ei~
1

Li

, ð7Þ

where Li is the characteristic path length given by [63,64]

Li~
X
i=j[G

dij

N{1
ð8Þ

and

dij~
X

amn[gi<j

amn, ð9Þ

where gi<j is the shortest path between nodes i and j. A network

degree, absolute network clustering coefficient, and absolute

network efficiency can be defined as

X~
1

N

X
i[G

Xi, ð10Þ

where X corresponds to K , C or E, respectively

For a random network of N nodes and K network degree, the

clustering coefficient of the network, Crand and characteristic path

length Lrand can be approximated as [45].

Crand~
N

K
ð11Þ

and

Erand~
ln (K)

ln (N)
: ð12Þ

In order to quantify SWN characteristics we computed a SWN

parameter, s, as [65].

s~ec, ð13Þ

where e is the normalized efficiency of the network given by

e~
E

Erand

ð14Þ

and c is the normalized clustering coefficient of the network given

by

c~
C

Crand

: ð15Þ

Results

Spectral Power
Significant differences in band power between controls and

patients were observed in the EC (ANOVA p,0.0001) and EO

(ANOVA p=0.002) conditions. Figure 1a shows power over the

five frequency bands defined above. For the EC condition, an

increase in power in patients relative to controls is observed in the

d (Kruskal-Wallis p,0.001) and h (p,0.0004) bands. While the al
band shows higher power in patients than controls, the difference

was not statistically significant due to large variations among

subjects. In the ah band, on the other hand, patients show

significantly lower spectral power than controls (Kruskal-Wallis

p,0.03). For the EO condition (Figure 1b), statistically significant

differences in spectral power were observed in the d (Kruskal-

Wallis p,0.001), h (p,0.009) and al (p,0.05) bands, with patients

showing higher power than controls in all three bands. Table 2

summarizes these findings.

An investigation of the topography shows that the decrease in

spectral power in LTLE patients in the ah band for the EC

condition results mainly from highly focal activity in the parietal

regions as shown in Figure 1c (controls.LTLE). The topographic

maps are normalized to the maximum power in each power band

for the purpose of showing the spatial distribution of power across

the scalp for a given band across patients and controls as well as

conditions. As such, a comparison across bands in Figure 1c would

not be meaningful (this information can be obtained from

Figures 1a and b). Figure 1c (LTLE.controls) shows that the

increase in spectral power in the d band results largely in an

Altered Brain Dynamics in Temporal Lobe Epilepsy
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increase in power in the left temporal region for both the EC and

the EO condition. In the h band, the higher activity in patients

with eyes closed results mainly from highly focal bilateral activity

in the temporo-parietal regions. In the al band with eyes closed, on

the other hand, most of the increase is in the central channels.

Since our patients have left temporal lobe epilepsy we further

investigated left-right power asymmetry in the two regions where

most of the activity difference between controls and patients was

observed, namely, the central and parietal-occipital channels. No

power asymmetry was observed in these regions to within the

statistical significance of our measurement in any of the five

frequency bands, neither in controls nor patients (see Figure S3).

Spectral Ratio Measures
In order to utilize the observed differences in spectral power, we

constructed a single power ratio measure that allowed us to

distinguish patients from controls for the EC condition with very

high accuracy, as shown in Figure 2a. This spectral power

amounts to a low-high asymmetry (Alh) and can clearly distinguish

between controls and patients in both the EC (Kruskal-Wallis

p,0.0001) and the EO (p,0.04) conditions. Figure 2b shows the

Alh for each individual subject. For the EC condition, the

asymmetry results in Alh,0 for 14 out of 15 controls, while 8

out of 9 LTLE patients show Alh .0. For the EO condition, only 7

out of 15 controls showed Alh ,0 while all patients showed Alh .0.

Figure 1. a) Total power over the range 2–20 Hz from healthy controls and LTLE patients for the EC and EO conditions. Figures b and
c show the same across the various frequency bands as labeled on the figures for eyes closed and eyes open, respectively. Asterisks indicate where
the difference between healthy controls and patients resulted in p,0.05 from a Kruskal-Wallis test. d) Topographical maps of spectral power for the
EC and the EO condition showing the regions where power is greater in controls than patients (top) and where power is greater in patients than
controls (bottom) for EC and EO as labelled.
doi:10.1371/journal.pone.0068609.g001
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Functional Connectivity
Significant differences in mean channel synchronization

(calculated between a specific channel and all other channels

then averaged) between controls and patients were observed in

the EC (ANOVA p,0.0001) and EO (ANOVA p,0.0001)

conditions across frequency bands. An investigation of the

individual frequency bands showed significantly increased mean

channel synchronization in the h band in patients for both the

EC (Kruskal-Wallis p = 0.003) and the EO (p= 0.02) conditions,

but a significantly decreased synchronization in the ah band

(p = 0.003) for EC as can be seen from Figure 3a. The

synchronization of individual channels was also computed and

plotted in Figure 3b in the bands that showed statistically

significant differences between patients and controls to show

how connectivity is distributed across channels (see Figure S1

for a channel map). The connectivity matrices in Figure 4 show

the difference in synchronization between controls and patients

for all pairs of electrodes and thus provide more detailed

information on region to region interconnectivity. In the h band

(Figure 4a), higher synchronization in controls in the EC

condition was confined to few electrode pairs showing mainly

frontal-central connections. Increased connectivity in LTLE

patients, on the other hand, was very wide spread and largely

symmetric except for an increase in frontal-central right

hemisphere connectivity. The EO condition revealed a similar

pattern. In the ah band (Figure 4b), relative to LTLE patients

controls showed a wide spread increased connectivity over the

frontal and central regions (i.e. frontal-frontal, frontal-central

and central-central), as well as increased connectivity in long

range connections linking mainly occipital channels to frontal

and central channels in the temporal regions.

Graph Theory Metrics
We used graph theory metrics to gain further insight into the

network properties of the epileptic brain and how it may

deviate from a small world network (SWN). Since graph theory

metrics are based on the functional connectivity results, only the

h and ah bands for the EC condition were investigated as they

showed robust statistically significant differences between con-

trols and patients (p,0.0001). Figure 5 shows normalized

efficiency, e; normalized clustering coefficient, c; and small

world index, s, in the h and ah bands as a function of a

proportional threshold in the range 0.3,T,0.6 and as a

function of the corresponding network degree. Following

previous literature [49,65,66], we further investigated differences

in network topology between the two groups and the

relationship between efficiency and clustering coefficient at a

sample proportional threshold of 0.5. At this threshold,

differences between the patient and healthy controls are

statistically significant in e, c and s in the h and ah bands.

Figure 6 shows the results for EC in the two frequency bands

that showed statistically significant synchronization differences

Table 2. Spectral power of healthy controls and LTLE patients
for the eyes closed (EC) and eyes open (EO) conditions and
the statistical significance of the difference as determined
from a Kruskal-Wallis test.

Freq
Band Power (mV2/Hz)

EC EO

HC LTLE p HC LTLE p

d 0.89 1.77 0.001 0.73 1.26 0.001

h 0.65 2.52 0.0004 0.50 1.32 0.009

al 3.58 5.91 0.39 1.03 2.62 0.046

ah 3.10 1.49 0.03 1.19 1.04 0.57

b 0.64 0.64 0.30 0.50 0.52 0.11

doi:10.1371/journal.pone.0068609.t002

Figure 2. a) Group averaged power asymmetry (eqn. 1) contrasting brain activity in the high and low frequency bands, where a
positive value indicates more power in the d and q bands compared to ah and b. The asterisks indicate statistical significance based on a
Kruskal-Wallis test. The p vales are displayed on the plots in figure b. b) Same as figure a but for the individual subjects in the EC condition (top) and
EO condition (bottom).
doi:10.1371/journal.pone.0068609.g002
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between controls and patients. Electrodes that showed statisti-

cally significant differences between controls and patients in

graph theory metrics are displayed topographically in each plot.

In the h band the channels showing higher efficiency in controls

than patients are concentrated mainly in the mid parietal

regions. The topography of channels that showed statistically

significant differences in clustering coefficient are also highly

concentrated in the parietal regions with patients showing

higher clustering coefficient than patients. In order to gain

further insight into deviations of these patterns from the SWN

architecture, we plotted efficiency versus clustering coefficient in

Figure 6c. As can be seen from this figure, patients showed a

deviation from controls in their SWN architecture. As there is

no formal procedure in the choice of graph theory thresholds

the analysis results in Figure 6 are exploratory in nature.

Discussion and Conclusions

In this paper, we investigated how spontaneous resting state

activity from epilepsy patients differs from that of healthy controls.

We showed that such differences can be observed using EEG at

many levels encompassing spectral power, functional connectivity

and graph theory measures and manifest as deviations from the

optimal SWN architecture. Generally, various elements contribute

Figure 3. a) Mean synchronization computed by averaging synchronization between all pairs of electrodes in a given frequency
band for EC (top) and EO (bottom). The asterisks indicate statistical significance in a Kruskal-Wallis test. b) Mean synchronization for every
electrode computed by averaging the synchronization values between a given electrode and every other electrode in a given frequency band as
labeled on the plots. The p values are obtained from a Kurkas-Wallis test and indicate statistical significance in the control to patient contrast for the
specific band. Asterisks indicates channels that show statistically significant differences (p,0.05) between patients and controls.
doi:10.1371/journal.pone.0068609.g003

Altered Brain Dynamics in Temporal Lobe Epilepsy
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to brain dynamics including neuron types, receptor bindings, gap

junctions and connectivity. The ability to model how these

components interact to give rise to a certain observable pattern is

highly complex and beyond the scope of this work. Even in the

context of epileptic seizures where the EEG recordings show

substantial changes in the observed signals, the ability to fully

identify the impairment in the underlying elements and their

interactions is still lacking.

Spectral Power
Investigation of band power revealed a very similar pattern in

both EC and EO where the h band showed higher power in

patients than controls, while the ah band showed lower power in

patients than controls. While the d band also showed increased

power in patients relative to controls in both the EC and the EO

condition, the EO condition did not reach statistical significance.

Spectral topography plots revealed that this increase results mainly

from focal activity over the left temporal region. This is in

agreement with previous studies that showed increased d power on

Figure 4. Connectivity matrices showing synchronization between each pair of electrodes in the a) q band and b) ah band for EC
and EO as labeled on the plots. The spatial distribution is shown in the network diagrams in the right panels for the two cases where large
differences were seen in the controls vs LTLE patient contrast. The line thickness indicates the connection strength. All figures are thresholded at
p,0.05.
doi:10.1371/journal.pone.0068609.g004
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the side of the epileptogenic focus in TLE patients and was not

changed by discontinuation of anti epileptic drugs (AEDs) [67]. An

investigation of the topology in other frequency bands indicates

wide spread differences in resting state dynamics between controls

and patients that are largely left-right symmetric as seen in scalp

EEG. This is not particularly surprising as EEG signals are

dominated by cortical activations with little contributions from

medial temporal lobe regions, and brain activity originating in

deep structures unilaterally show little asymmetry in scalp

electrical potential, making it difficult to detect an asymmetry

with limited statistics. Furthermore, effects of AEDs would likely

make a main contribution to this symmetric pattern. In particular,

some AEDs have been shown to result in spectral slowing (i.e. a

shift of the a peak to lower frequency, see Figure S2) [67,68], but

whether the observed effect can be entirely attributed to AEDs is

difficult to assert from this data. One interesting feature is the wide

spatial spread in spectral slowing where all electrodes showed a

shift in the a peak toward lower frequency (Figure S2). However,

in the EC condition, the temporal and central channels showed

maximum shift exceeding 2 Hz. No asymmetry in spectral slowing

was observed (Figure S3 shows the channels used to compute the

asymmetry).

Alterations to the frequency spectra are well known in a variety

of neural disorders. In particular, spectral slowing is known to

occur in Parkinson disease related dementia [69,70] and

Alzheimer’s disease [59]. In Parkinson disease, it is generally

believed that spectral slowing arises from a degeneration in the

cholinergic system as treatment with the cholinterase inhibitor,

revastigmine which breaks down acetylcholine, counteracts

spectral slowing [69]. On the other hand, treatment with levedopa

has shown no effect on spectral slowing arguing against the

involvement of the dopaminergic system in the observed

oscillatory dynamics [70].

While increases in low frequency power and decreases in high

frequency power have been observed in Parkinson disease,

Alzheimer’s disease and epilepsy, this is not the only direction in

which impairments can manifest. In depression, a robust increase

in high frequency oscillations has been observed that is highly

consistent and reproducible across subjects [60].

Figure 5. Graph theory metrics e (top row), c (middle row) and s (bottom row) in the h and ah bands as labelled on the figure. The
metrics are plotted against a proportional threshold in the range 0.3,T,0.6 (first column) and the corresponding degree range of 18.9,K,37.8
(second column). Asterisks indicate statistical significance on a Kruskal-Wallis test.
doi:10.1371/journal.pone.0068609.g005

Altered Brain Dynamics in Temporal Lobe Epilepsy

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e68609



We utilized differences in power across frequency bands to

create a single measure, Alh. We showed that this low-high

asymmetry spectral ratio can differentiate epilepsy patients from

healthy controls with high accuracy. In the EC condition this

measure resulted in 14 out of 15 controls having negative

asymmetry scores, while 8 out of 9 patients had a positive

asymmetry score. Such a measure would be particularly useful for

the purpose of correlating brain-power impairments in epilepsy

with clinical measures. The EO condition also showed a

statistically significant difference in the group averaged asymmetry

score, with all patients showing a positive score. However, scores

from individual control subjects varied with only half the subjects

showing negative scores.

Figure 6. a) Graph theory efficiency metric for each electrode computed by averaging the efficiency of the electrode with all other
electrodes. b) Graph theory clustering coefficient metric for each electrode. c) Clustering coefficient versus efficiency. For all three figures the left
plots are for the q band while the right are for the ah band. The asterisks indicate statistical significance from a Kruskal-Wallis test. All results are for
the EC condition. Topology of electrodes showing statistical significance on a Kurkas-Wallis test in figures a and b are shown in the abscissa.
doi:10.1371/journal.pone.0068609.g006

Altered Brain Dynamics in Temporal Lobe Epilepsy

PLOS ONE | www.plosone.org 10 July 2013 | Volume 8 | Issue 7 | e68609



Functional Connectivity
Mounting evidence from empirical data recorded by various

modalities and analyzed using various algorithms has accumulated

showing that synchronization of neural activity is a manifestation

of information exchange between different brain regions. Further-

more, it has been demonstrated that various diseases are associated

with a change in synchronization from the dynamically balanced

state recorded from the healthy brain. This impairment can result

from a decrease in synchronization as is the case in Alzheimer’s

disease [39], or an increase in synchronization resulting in an

epileptic seizure [16]. Increased synchronization in epilepsy has

been reported from scalp EEG and MEG recordings. Intracer-

eberal recordings in TLE patients, in particular, have demon-

strated that the increase during seizures results, at least partially,

from an increase in synchronization between the thalamus and

medial temporal lobe structures (hippocampus, entorhinal cortex

and neocortex) [71]. While seizures have often been characterized

as ‘hypersynchronous states’, several studies showed that this

description is an oversimplification [72,73]. In resting state, a

complicated pattern emerged from this data. Synchronization

differences between patients and controls were significant in the h
band for both EC and EO, where patients showed higher

synchronization than controls. In the ah band, however, controls
showed higher synchronization than patients in the EC condition,

and the same was observed in the EO condition, although the

difference did not reach statistical significance. This highlights two

important aspects regarding the dynamics of the epileptic brain in

resting state. Firstly, the disruption in synchronization does not

only happen during epileptic seizures, but is in fact observable

during resting state, and secondly, a complicated disruption in

functional connectivity is observed in the resting state that does not

amount to a simple increase (or decrease) in synchronization

across all bands. In order to gain further insight into the

characteristics of this disruption, we plotted the mean synchroni-

zation for each channel (Figure 3b) as well as the synchronization

between all pairs of channels (Figure 4) for the bands that showed

statistically significant differences between controls and patients. In

the h band, we found a wide spread increase in connectivity in

patients relative to controls that was largely symmetric, although

surprisingly, some frontal-central connections in the right hemi-

sphere showed stronger connectivity. Whether this increase is

indeed revealing a difference in LTLE patients relative to controls

would be interesting to confirm with higher statistics. Moreover,

connectivity from right temporal lobe epilepsy patients can shed

some light on this finding.

In the ah band, controls showed higher synchronization than

patients over a wide range, with a distinctly stronger connectivity

across frontal and central regions. Moreover, stronger long range

connectivity was found linking occipital regions with frontal and

central regions in temporal areas in both hemispheres (see network

diagrams Figure 4). Interestingly, connectivity across parietal

channels showed the smallest difference, indicating that spectral

slowing in parietal a is not likely to account for these findings.

Our result is in contrast to a recent study [30] that found

increased broad band mean synchronization in epilepsy patients

versus controls in resting state for both the EC (d band was

statistically significant) and EO (d and b were significant)

conditions. This study has also suffered from the same confound,

as the majority of their patients were on two or more AEDs.

Unlike our study, however, their patient population included those

with epileptogenicity originating from either (or both) hemispheres

and a range of focal origins. As the pathology and origin associated

with each epilepsy type is different, it is vital to separate the

different pathologies in order to uncover the specific disruptions in

functional networks associated with each pathology. Additionally,

our EEG system (64-channels) provided better spatial coverage

than that of Horstmann et al. (29-channels). Yet, the differences

between our results and those obtained by Horstmann et al.

indicate that it is unlikely that the observed effect is entirely due to

AEDs, as both patient groups where on similar AED combina-

tions. The averaged functional connectivity across channels was

not reported nor the spatial connectivity maps, both of which are

likely to be of little utility considering the wide range of

epileptogenicity considered in Horstmann et al.

Two independent studies on TLE patients using intracranial

recordings [74] and fMRI [49], both of which provide high spatial

specificity, have indicated increased synchronization in the medial

temporal lobe regions. Another study combining fMRI and

diffusion tensor imaging (DTI) found reduced structural and

functional connectivity between the posterior cingulate cor-

tex(PCC)/precuneus and the mTL regions in patients compared

to healthy controls [75]. The comparison between these findings,

however, is difficult to achieve considering the different modalities

used, the different connectivity measures used, the different

inclusion and exclusion criteria of patient groups and the different

quantities reported (e.g. averaged connectivity in the mTL vs

specific connections such as PCC-mTL). Collectively, however,

they implicate functional connectivity in altered brain dynamics

related to epilepsy.

Graph Theory Metrics
Several studies have investigated changes in network parameters

in different types of brain pathology. In schizophrenia [46], brain

tumors [76], Alzheimer’s disease [39] and depression [66], a

smaller clustering coefficient and a smaller path length (higher

efficiency) compared to healthy controls were reported. In

obsessive-compulsive disorder an increased clustering coefficient

was reported [66]. In epilepsy, network analysis of cortical

thickness correlations in a large cohort of TLE patients

(N= 122) showed increased path length and clustering coefficient

in patients relative to healthy controls suggesting a reorganization

of structural networks. Furthermore, increased network disruption

was associated with unfavorable postoperative seizure outcome

indicating adverse effects to this network reorganization [48]. A

resting state fMRI study revealed altered SWN properties in TLE

patients compared to healthy controls, smaller clustering coeffi-

cient and shorter path length [49]. Another resting state fMRI

study on idiopathic generalized epilepsy showed altered SWN

architecture in patients compared to healthy controls [77]. An

MEG study on tumor-related epilepsy, reported deviations from

SWN architecture in the h band [50].

In our study we found that the alteration in network measures

depends on the frequency band considered. In the h band, a

higher clustering coefficient was found in patients relative to

controls, while in the ah band, a lower clustering coefficient was

found in patients relative to controls. This feature remained true

for all proportional thresholds considered and was statistically

significant over a wide threshold range (Figure 5). We further

investigated the topology of these differences at a proportional

threshold of 0.5. In the h band, electrodes showing statistically

significant differences between controls and patients were mainly

in the parietal and central regions, while in the ah band they were

widely distributed over the frontal region, with a more focused

pattern in the occipital region. Since no formal procedure has

been established in determining an appropriate graph theory

thresholding scheme, we consider the analysis at this specific

threshold to be exploratory in nature.
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As the clustering coefficient signifies local processing, it is no

surprise that we see reduced local processing in patients relative to

controls in the h band, as the h rhythm is known to be associated

with hippocampal function. Surprisingly, however, the biggest and

most highly distributed reduction in local processing is seen in the

frontal region and in the ah band, indicating that the pathology of

this disease is by no means restricted to the medial temporal

regions.

Since graph theory metrics summarize connectivity results using

network-relevant measures, it is no surprise that our results would

deviate from those of Horstmann et al. (2010) where the clustering

coefficient and path length (inverse of efficiency) were both higher

in patients than controls across all frequencies were the differences

were statistically significant (clustering coefficient: d and b in both

EC and EO; path length: d in EC and d and h in EO). No

topology was reported in Horstmann et al. which is likely to be of

little utility considering the diverse epiliptogeniety included in their

analysis.

SWNs possess an optimal balance between modularized and

distributed information processing. In order to examine the

deviations of the epileptic brain in resting state from the SWN

architecture of the healthy brain, we plotted the SWN index, s, as
a function of a preset proportional threshold (Figure 5). Deviations

of patients from healthy controls were observed cross a wide range

of thresholds. We further explored the relationship between

efficiency and clustering coefficient at a sample threshold of 0.5. As

it is already known that brain function reveals a SWN architecture

[33], the distribution of our healthy controls represents such a

distribution. A random network displayed in this fashion is

characterized by high efficiency and low clustering coefficient and

its nodes would therefore lie in the bottom right hand side of this

graph. An orderly network is characterized by the opposite pattern

and its nodes would lie in the upper left hand side (see Figure S2).

In this context, in the h band our epilepsy patients show a trend

towards a random network, while in the ah band they show a trend

toward an orderly network. This shows a different trend from most

pathologies (see above) that typically indicate a trend toward

randomness. During seizures, however, a trend toward an orderly

network has been observed, characterized by an increase in

clustering coefficient and increase in path length [73,78].

Additionally, this result is consistent with findings in TLE

[48,49] other pathologies [66] in that the deviation from small

worldlness is fairly small, indicating that the brain still follows the

SWN architecture even in the diseased state and that small

deviations in network parameters can lead to large behavioural

impairments.

Caveats and Future Directions
Scalp EEG data is inherently limited by poor spatial resolution

making it difficult to relate the observed signals to the anatomical

location from which they originate. Although various techniques

have been used to localize sources from scalp EEG, such

techniques remain poorly quantified particularly for deep sources.

MEG provides higher spatial resolution as it is less susceptible to

inhomogeneities in the brain and the poor conductivity of the

skull. Furthermore, progress has been recently made in the

detection and localization of deep sources in MEG using

quantified analysis techniques [79,80]. Despite this progress, many

current methodologies are limited by various biases [81,82,83]

making it difficult to evaluate functional connectivity in source

space, particularly in the context of spatial filtering techniques

such as beamformers, minimum norm and (s)LORETA [83,84].

More promising techniques have been recently developed based

on Baysian models [82], Kalman filters [85,86] and particle filters

[87]. While fMRI provides high spatial resolution, the slow

hemodynamic response acts as a low pass filter obscuring the rich

neural dynamics unfolding in the temporal domain. Furthermore,

it remains unclear as to what physiological artifacts contribute to

BOLD signals as the hemodynamic response is poorly understood.

Simultaneous EEG and fMRI measurements provide another

attempt at tackling this problem by combining fMRI’s high spatial

resolution with EEG’s high temporal resolution [88,89,90].

Nonetheless, this approach also suffers from various technical

limitations. Despite all these impediments, the knowledge

currently accumulating from various modalities and methodolo-

gies, as well as the drive towards quantifying neuroscience,

promises a better way forward in understanding the human brain

in health and disease.

Conclusions
Despite 80 years of EEG and over half a century of epilepsy

recordings, our understanding of the dynamics underlying this

most common neurological disorder is still limited. In this study we

presented a characterization of brain dynamics accompanying the

epileptic brain, encompassing brain activity, functional connectiv-

ity and network metrics in the hope of providing: 1) more stringent

constraints on dynamical models as they must reproduce empirical

data, and 2) providing quantified dynamical measures that can be

correlated with clinical measures to shed some light on brain-

behavior relationships. We showed that despite the fact that

epileptic discharges are known to originate in the temporal lobe,

the dysfunction is wide spread spatially and can be observed in

spectral power, functional connectivity and graph theory metrics,

further supporting evidence that epilepsy is a complex dynamical

and structural disease [91]. Deviations in patients from controls in

all these measures are frequency dependent. Higher power and

higher connectivity is observed in the low frequency band (h) in
patients relative to controls, while the opposite is observed in the

high frequency band (ah). While the low frequency band shows

deviations in the epileptic brain toward an orderly network, the ah
band reveals a deviation toward a random network. In agreement

with previous measurements in other diseases the deviations from

SWN was small highlighting the delicate balance required to

achieve healthy brain dynamics. Due to the small sample size

(patients, n = 9 and controls, n = 15), however, we emphasize that

the generalization of our findings remains to be established by

future work.

Supporting Information

Figure S1 Channel positions of the Neuroscan system showing a

front and a back view.

(TIF)

Figure S2 a) Spectral power from healthy controls and LTLE

patients for the EC condition (top) and the EO condition (bottom)

averaged over all electrodes. A spectral shift to the left in the

patient group is observed in both conditions indicating spectral

slowing. The p values displayed on the figures indicate the

statistical significance of the a peak shift computed from a

Kruskal-Wallis test. b) Topographical map of the spectral slowing

(defined as the shift of the a peak) where zero indicates no slowing.

The maximum slowing is seen in the temporal and central

channels and exceeds 2 Hz.

(TIF)

Figure S3 Channels used in the calculation of the asymmetry

below are enclosed in a box. The left central (LC) and right central

(RC) channels were used to calculate the asymmetry, AC, in Figure
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S3 (top), while the left parieto-occipital (LPO) and right parieto-

occipital (RPO) were used to calculate the asymmetry, APO, in

Figure S4 (bottom).

(TIF)

Figure S4 Left-right power asymmetry computed from the

channels labeled in Figure S3.

(TIF)
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