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Abstract: Fe and Cr are regarded as two of the most important friction components in Cu-based
composites (Cu–BCs). In this study, the microstructural detection and micro- and macro-tribology
evaluation of Cu–BCs containing Fe and Cr were performed. The results indicated that both Fe and
Cr formed diffusion interfaces with the copper matrix. Because of the generation of a defect interface
layer, the Cr/Cu interface exhibited a low bonding strength. Owing to the excellent binding interface
between Fe and Cu, the high coefficient of friction (COF) of Fe, and the formation of a mechanical
mixing layer promoted by Fe, the Cu–BCs containing Fe presented better friction performance under
all braking energy per unit area (BEPUA) values. The main wear mechanism of Cu–BCs containing
Fe and Cr changed from abrasion to delamination with an increase in BEPUA, and the delamination
of Cu–BCs containing Fe was induced by breaks in the mechanical mixed layer (MML).

Keywords: abrasion component; interface; tribological performance; Cu-based composites

1. Introduction

Cu-based composites for brake applications are generally composed of three different
components: matrix components, lubrication components, and friction components [1].
The matrix components control the basic physical and mechanical properties. Copper is
widely used as a matrix component because of its good ductility, electrical conductivity,
and thermal conductivity [2–4]. The lubrication components are used for smoothing the
braking process and the friction components, which determine tribological performance,
play an important role in Cu–BCs [5–7].

Fe and Cr are the most crucial friction components owing to their low solubility
and high wettability with the copper matrix, which effectively increase the temperature
resistance, resistance to plastic deformation, coefficient of friction, and wear resistance
of Cu–BCs. Therefore, Cu–BCs containing the friction components mentioned above are
utilized in high-energy braking systems for aerospace, high-speed trains, and heavy-duty
engineering machinery applications [8,9].

To analyse the role of Fe and Cr for Cu–BCs in detail, several studies have been carried
out. Peng et al. [10,11] determined that a high Fe content helps the formation of oxidative
film, thereby improving the wear resistance and stability of the coefficient of friction (COF)
of Cu–BCs during braking. Zhang et al. [12] reported the friction characteristics of Fe types
in Cu–BCs, and the results showed that the performance of reduced Fe powder was better
than that of carbonyl Fe powder and flake Fe powder thanks to the former’s ability to
maintain a high and stable COF under high-energy braking. Zhong et al. [13] studied
the effects of Fe content on the tribological performance of Cu–BCs, and the conclusions

Materials 2021, 14, 3417. https://doi.org/10.3390/ma14123417 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma14123417
https://doi.org/10.3390/ma14123417
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14123417
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14123417?type=check_update&version=2


Materials 2021, 14, 3417 2 of 19

showed that an increasing Fe content contributed to friction torque stabilization, COF
growth, and wear reduction. However, it was easy to produce a sharp drop in the wear
performance of Cu–BCs with the addition of excess Fe. Shen [14] studied mechanical
properties of Cu–Fe interfaces, and the results showed that Cu (111)/Fe (110)-NW and
Cu (111)/Fe (110)-KS interfaces have higher strength, which increases the tensile strength
of the materials. Wang [15] studied the relationship between the tensile property and the
γ-Fe/Cu interface, and the conclusions showed that the Fe (110)/Cu (110) interface shows a
higher strength metal bond, which showed that Fe accelerate nucleation and growth of Cu.

The functions of Cr are different from those of Fe. Cr is the hardest metal in nature;
at the same time, Cr has a high melting point, strong corrosion resistance, and oxidation
resistance. This type of friction component is utilized for raising hardness, improving
electrical properties, and strengthening oxidation resistance of Cu–BCs [16,17]. Gao [18]
studied the influence of Cr content on the friction and wear properties of Cu–BCs, and the
results showed that COF gradually increased with Cr content in the range of 3–5 wt.%.
However, Fang [19], who obtained opposite results, noted that an increase in Cr content
reduced the wear of Cu–BCs, but also decreased COF, especially under conditions of
15–20 wt.% Cr content. Fu et al. [20] argued that Cr not only contributed to an increase in
COF, but also enhanced wear resistance. Chen [21] studied that the relationship between
the tensile strength and Cu/Cr interface of Cu-Cr-Zr alloy, and the results showed that a
semi-coherent interface was formed of Cu/Cr, which increased the strength of Cu-Cr-Zr
alloy and suppressed the formation of dislocations.

In summary, the current research mainly focuses on the influence of Cr and Fe on
mechanical properties and the macro friction and wear performance of Cu–BCs, whereas
the intrinsic micro tribology behaviours of Fe, Cr, and their interface with matrix are still not
fully understood. In addition, influences of Fe and Cr on high energy braking performance
of Cu–BCs are not clear as well. Therefore, it is necessary to carry out a comprehensive
and detailed study on micro–macro perspectives on the action mechanisms of Fe and Cr in
Cu–BCs. This study aims to systematically investigate the differences between Fe and Cr
regarding their interface characteristics with the copper matrix, as well as their micro and
macro tribology properties. The purpose of this research is to clarify in detail the influence
of friction components Fe and Cr on tribology behaviour of Cu–BCs, specially under high
braking energy conditions. The findings of this work will contribute to the development of
high performance braking materials.

2. Experimental Section
2.1. Materials

Table 1 lists the compositions of Cu–BCs prepared by the powder metallurgy method.
The raw powders included reduced Fe and Cr with 99.85% purity manufactured by Jinjiang
Powder Metallurgy Factory (Quanzhou, China), electrolytic Cu powder (99.98%) from the
Huahao company (Chongqing, China), and KS150-600SP graphite powder of 97% purity
(Imerys Graphite & Carbon Company, Paris, France); these powders were used as the raw
materials. The characteristic parameters of these powders are listed in Table 2.

Table 1. Chemical compositions of Cu–BCs (vol. %).

Cu Fe Cr Graphite

1# 90 10 \ \
2# 90 \ 10 \
3# 50 10 \ 40
4# 50 \ 10 40
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Table 2. Characteristics of the raw powders.

Raw Powders Element Content Particle Size

Cu Cu ≥ 99.98 wt.% <74 µm
Fe Fe ≥ 99.8 wt.% <74 µm
Cr Cr ≥ 99.8 wt.% <74 µm

Graphite C ≥ 97.0 wt.% 150–600 µm

The production process for Cu–BCs is presented in Figure 1. The preparation process
of the experimental samples was as follows: (1) weighing raw powders according to the
formula in Table 1; (2) mixing raw powders in a roller mixer for 6 h; (3) pressing the
mixed powders in moulds under a pressure of 400 MPa; and (4) sintering green compacts
using home-made pressure sintering furnace with a pressure of 2.5 MPa at 970 ◦C for 3 h.
During the sintering process, hydrogen was selected as a protective atmosphere to prevent
oxidation of metal at a high temperature.
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In order to ensure that Cu-Fe and Cu-Cr have roughly the same relative density, the
ratio of ρ/ρth needs to be calculated. It is calculated as follows:

ρth =
ρ1V1 + ρ2V2

V1 + V2
(1)

where ρ1, ρ2—component density; V1, V2—component volume.

ρr =
ρ

ρth
(2)

where ρr—relative density; ρ—material measured density; ρth—theoretical density.
After sintering is complete, densities (ρ) of the Cu–BCs were measured according to

the drainage method. ρth is calculated according to Equation (1). The relative density (ρ/ρth)
and density (ρ) as shown in Table 3.

Table 3. Relative density and density of Cu–BCs.

No. Sample ρth ρ (g cm−3) ρr

1# Cu–Fe 8.55 8.12 0.918
2# Cu–Cr 8.14 7.42 0.912
3# Cu–Fe–C 6.17 4.96 0.804
4# Cu–Cr–C 5.20 4.12 0.793
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2.2. Experimental Methods

Microstructural characterizations of the experimental samples and bonding interfaces
were surveyed using a Leica-Q550 metallurgical microscope (Leica Camera AG, Wetzlar,
Germany) and a scanning electron microscope (FEI Quanta 250 FEG SEM, FEI company,
Hillsboro, OL, USA) equipped to examine the energy dispersion spectrum.

The micro tribological properties of the Fe and Cr phases and interface strength
were measured by a micro friction tester (manufactured by CSM instrument, Acacias,
Switzerland). The samples were machined into cylinders about 25 mm in diameter and
then polished until surface roughness values (Ra) of 1.2 were attained before testing.

The micro-friction test was carried out in three stages: pre-scan of the indenter, friction
test, and data calculation. Because the experimental procedures were described in our
previous work, the detailed test procedures will not be elaborated on in detail here [22]. In
this paper, we used the same test method and simplified the test parameters. Table 4 lists
the key parameters for the micro-friction tests. The COF of tests was measured as

µ =
Ft

Fn
(3)

where Ft is the tangential force and Fn is the normal force. The detailed test parameters are
shown in Table 4.

Table 4. Microfriction test parameters for different areas.

Test Area Fe/Cr Phases and Their Interface with Matrix

Test parameters
Radius of indenter: 10 µm, load: 0.3 N/0.5 N

Sliding distance: 100 µm, sliding speed: 200 µm/min
Relative humidity: 50%

The influences of Fe and Cr on the macro tribological properties of Cu–BCs under
different BEPUA were evaluated by a braking tester (MM-3000, Shuntong electromechani-
cal technology research institution, Xi’an, China), as shown in Figure 2. Next, 30CrMnSiV
steel alloys containing 0.27–0.34% C, 0.8–1.1% Mn, 0.8–1.1% Cr, 0.3–0.4% V, 0.9–1.2% Si,
p ≤ 0.0035%, and S ≤ 0.03% were adopted as counterparts, which shows a Rockwell hard-
ness of 39–42. All samples and counterparts were machined into rings with an inner
diameter of 53 mm and an outer diameter of 75 mm. These rings were then polished
until surface roughness values (Ra) of 1.2 were attained before testing. The macro friction
parameters are given in Table 5. According to the test parameters, the test conditions
can be divided into low BEPUA (3000 rpm, 8.47 J/mm2), medium BEPUA (5000 rpm,
23.50 J/mm2), and high BEPUA (46.10 J/mm2).

Table 5. The test parameters of macro-friction.

Brake Pressure/MPa Inertia/kg·m2 Rotation Speed/rpm Theoretical
BEPUA/J/mm2

0.6 0.35 3000/5000/7000 8.47/23.50/46.10
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3. Results and Discussion
3.1. Morphology, Microstructure, and Interface Characteristics

The shape of Fe and Cr particles was generally similar, but the morphologies were
different. The Fe powder had a typical spongy and spherical-like structure. However,
compared with the Fe powder, the Cr powder possessed a denser and smoother particle
morphology, as shown in Figure 3b, which was mainly caused by the small volume
shrinkage during the reduction of Cr.
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Micrographs of the Cu–Fe composite are shown in Figure 4a, which indicates that
the grey Fe particles were uniformly distributed in the matrix. Figure 5b provides further
illustrations of the Fe/Cu interface. Notably, a tightly bonded interface formed between the
Fe phase and Cu matrix because of the excellent wettability between them. Nevertheless, a
small number of microvoids with high curvature were present on the interface owing to
vacancy aggregation, which is caused by the Kirkendall effect.
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The interface morphology of the Fe/Cu interface is shown in detail in Figure 4b.
According to the EDS scanning results of line B, the content of Cu and Fe changed rapidly
in the interface, indicating no formation of an obvious diffusion layer in this area. However,
the EDS analyses of point 1 (light Cu-rich phase inside Fe) and point 2 (dark Fe-rich phase
inside Cu matrix), as shown in Table 6, indicated that mutual diffusion between Fe and
Cu occurred during the sintering process. The generation of Cu-rich phases and Fe-rich
phases was caused by a decrease in solid solubility between the two elements after the
cooling process based on the Fe–Cu phase diagram [23].

Figure 5 shows the interface characteristics and the microstructure of the Cu–Cr
composite. There was an obvious interface layer generated in the Cr/Cu interface, showing
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a completely different structure from the Fe/Cu interface. To determine the detailed
features of the Cr/Cu interface, we employed micrography at high magnification, as shown
in Figure 5c. The interface layer showed a pore-filled structure with 7–10 µm thickness.
The EDS results of line 3, on which the Cr and Cu composition gradients changed, indicate
that the mutual diffusion between Cr and Cu was stronger than that between Fe and Cu.

Table 6. EDS point results for the Cu–Fe interface in Figure 4b area A (at.%).

Point Number Cu Fe

1 60.34 39.66
2 18.71 81.29

According to the analysis mentioned above, both Fe and Cr formed a diffusion bonding
interface with the matrix. However, there were noteworthy differences between the two
kinds of interfaces in morphology and structure owing to differences in the diffusion rate.
For Cu–Fe composites, with an increase in the sintering temperature, the crystals of Fe
changed from BCC structures to FCC structures, leading to an improvement in the solid
solubility between γ-Fe and Cu. However, the extremely low inter-diffusion rate between
the two phases resulted in the formation of a diffusion bonding interface without the
interface layer. For Cu–Cr composites, the formation of interface morphology may lead by
a combination of multiple mechanisms. The first influence factor is the inequality diffusion
between Cu and Cr. When the temperature was raised to 970 ◦C, the solid solution of Cu
within the Cr (bcc) phase was less than 0.25 at.%, but the maximum solid solution of Cr
within the Cu (fcc) phase was close to 0.9 at.% [24]. In addition, according to the diffusion
constants and activation energies of diffusion at sintering temperature, the bulk diffusivity
of Cr towards Cu (DCr–Cu: 2.32 × 10−13) was two orders of magnitude higher (DCu–Cr:
6.93 × 10−15) than that of Cu towards Cr. Therefore, the diffusion fluxes of Cr within
Cu were considerably higher than those of Cu in Cr. However, owing to a low mutual
solubility between Cr and Cu, the effect of Kirkendall in interface morphology is limited.
In this condition, the generation of pores in Cr/Cu interface may also be attributed to the
precipitation of supersaturated hydrogen from metals, or the producing of undischarged
water vapor formed by the reduction of oxide of Cr particles during the sintering process.
Eventually, a pore-filled diffusion layer was formed in the Cr/Cu interface.

3.2. Microstructure and Mechanical Properties of Cu–BCs

Figure 6 shows the microstructure of Cu-Fe-Gr and Cu-Cr-Gr materials. Fe, Cr, and
Gr were evenly distributed in the Cu matrix. Among them, the black bulky phases were
granular graphite, which were used to reduce the vibration and stabilization braking.
Light dark irregular phases in Figure 6a and white granular phases in Figure 6b were Fe
and Cr respectively, which were used for improving tribology performance and reducing
wear resistance.
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The Brinell hardness of Cu–BCs is presented in Figure 7. Fe and Cr phases had a
hardness of HV0.1 109 N/µm2 and HV0.1 248 N/µm2, respectively. Owing to the diffusion
bonding interface formed between the friction component and matrix, the addition of a
friction component can effectively improve the hardness of composites by means of particle
strengthening. Between them, because of higher hardness, Cr showed a better particle
strengthening effect than Fe, though its interface strength is relatively lower. It can also
be noticed that, owing to the low strength of the lubrication component, the addition of
graphite led to an obvious decrease in the hardness of Cu–BCs.
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Figure 7. Brinell hardness of Cu–BCs.

3.3. Micro-Friction Tests

During the braking process, macro friction can be regarded as the accumulation of
micro friction. Therefore, an analysis of the micro friction performance of Fe and Cr
components and their interface was needed to better understand the macro-tribological
behaviours of the friction materials.

Tribological Properties of the Fe and Cr Phase and Its Interface

Figure 8 presents the scratch grooves across the Fe/Cu and Cr/Cu interfaces under
different levels of normal force. The widths of the grooves noticeably increased when
the indenter slid from the friction component to the Cu matrix. However, the width
increase of the Fe–Cu composite was relatively small compared with that of the Cr–Cu
composite. When the normal force increased gradually, there was also significant growth
in the widths of the grooves, especially for the copper matrix under normal force of 0.5 N.
The morphology of the groove in the interface bonding area is illustrated in detail on the
right side of Figure 8. For Fe–Cu composites, distinct interface deformation occurred at the
Fe/Cu interface along the sliding direction under all test conditions. Notably, the Fe/Cu
interface still maintained good interface bonding after the scratch process. Compared with
the Fe/Cu interface, although the deformation degree of the Cr/Cu interface was smaller,
partially broken and local interfacial debonding began to occur when the normal force
reached 0.5 N.
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Figure 9 shows the COF curves with sliding distance under different levels of normal
force. The value of COF was positively correlated with normal force. However, the different
interface types showed completely different change tendencies in COF. For Fe–Cu compos-
ites, the COF increased slowly when the indenter slid across the Fe/Cu interface, especially
under a pressure of 0.5 N. For Cr–Cu composites, the COF first showed a decreasing
tendency and then an increasing tendency. When the normal force reached 0.5 N, the COF
displayed a sharp decrease at the Cr/Fe interface. Figure 10 exhibits the penetration depth
(Pd) and Rd (residual depth) curves with sliding distance under different normal forces.
Notably, the Pd and Rd curves show similar change patterns to the COF curves. However,
the changes in the Pd and Rd curves showed a slight difference in the interface area.
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Figure 11 displays a schematic of the micro-friction tests. According to the adhesive
friction theory, the COF can be obtained as [25]

µ = µp + µa (4)

where µp is the COF of ploughing and µa is the COF of adhesion. Owing to the poor
adhesive tendency between the indenter and Cu–BCs, µp plays a leading role during the
sliding process. Moreover, for µp, the values of Pd and Rd are close to each other, indicating
that plastic deformation is the main deformation mechanism during the sliding process
(elastic recovery is limited). Thus, the COF of ploughing can be given as [26–28]

µp =
fp

N
=

Ap Hp

AsHs
(5)

where Ap and As are the projection areas of the contact region along the horizontal and
vertical directions, respectively, as shown in Figure 11. Hp and Hs are the plough hardness
and scratch hardness of the friction components or Cu matrix, which are defined as the
deformation resistance per unit projected area along the horizontal and vertical direction,
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respectively. Thanks to the homogeneity of the friction components and the matrix, Hp and Hs
can be regarded as identical, which means that the COF of ploughing can be calculated as

µp =
Ap

As
=

R2 cos−1(1− hPd
R )− (R− hPd)

√
2RhPd − hPd

2

π(RhPd − 1
2 hPd

2)
(6)

where R is the indenter radius, hPd is the penetration depth, and r is the radius of the
vertical projection semicircle. Equation (6) shows that the COF increased with hPd, which
explains why COF and hpd shared similar patterns of change and indicates that the COF is
positively correlated with normal force, but negatively correlated with hardness.
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The COF of adhesion can be calculated as

µa =
kτs As

Hs As
=

kτs

Hs
(7)

where k is the ratio of adhesive area to contact area and τs is the shear strength. According
to Equation (7), the adhesion component of COF is almost constant. The change of COF
mainly was mainly caused by the variation of the plough component of COF. As shown
in Equation (6), a sudden change in hardness on both sides of the interface leads to a
rapid change in the COF and hpd during the micro-friction tests. A low scratching normal
pressure and a relatively high hardness usually indicate a deeper hPd and higher COF;
therefore, the values of hPd and COF increase with normal pressure and present a rapid
increase when sliding from hard friction components to the soft matrix. Nevertheless,
because of the obvious deformation of the Fe/Cu interface along the sliding direction
owing to its stronger bonding strength and better ductility, the changing trend of hardness
at the interface slowed, causing a reduction in the rate of growth of hpd and COF in the
interface area. The phenomenon that COF showed a decrease prior to an increase in
the Cr/Cu interface under a normal force of 0.5 N was caused by the debonding of the
Cr/Cu interface, which meant that Cr/Cu interface was no longer able to provide sufficient
plough resistance during scratching. The micro-friction test results confirmed that the
Fe/Cu interface has a higher strength than that of the Cr/Cu interface.

3.4. Macro-Friction Tests
3.4.1. Wear Mechanism

The friction and wear performance of Cu–BCs containing Fe and Cr (samples 3# and
4#) was measured by a MM-3000 friction tester. Wear debris, subsurface (cross-section),
and the worn surface were analysed after the macro-friction tests.
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The evolution of the worn surfaces of Cu–BCs under different BEPUAs is shown in
Figure 12. The worn surface morphology of the Cu–BCs changed from a flat surface to a
rugged and scarred surface with an increase in BEPUA.
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Under a low BEPUA, regardless of the types of friction components contained in the
Cu–BCs, the grooves parallel to the sliding direction were the main wear morphology. It is
noted that the number and width of grooves on the worn surface of Cu–BC containing Fe
is higher than that of Cu–BC with Cr. As the BEPUAs increased, the wear morphology of
tested samples started to form obvious differences. For Cu–BC containing Cr, the density
of grooves on the worn surface showed an increase tendency with BEPUA. However, for
Cu–BC containing Fe, a wave-like wear morphology began to generate on the worn surface,
which indicated strong local plastic deformation after the braking process, as shown in
Figure 12b. By continuing to increase the BEPUA to a high level, the difference in the worn
surface continued to increase for different tested samples. The worn surface of Cu–BC with
Fe featured shallow pits with a high area ratio and a small number of grooves, as shown in
Figure 12c. In addition, some undischarged fine particles can be found inside these pits.
Nevertheless, the worn surface of Cu–BC with Cr exhibited lots of deep pits, and bits of
friction components are exposed at the bottom of these pits, as shown in Figure 12f.

Figure 13 shows the typical subsurface structures and wear debris of Cu–BCs contain-
ing different friction components under different BEPUAs. Under low BEPUA conditions,
there was no obvious subsurface structure formed on the worn surfaces of the Cu–BCs
containing Fe or Cr, as shown in Figure 13a,b. A continuous plastic deformation layer (PDL)
with a thickness of 10–20 µm occurred on the worn surfaces of the Cu–BCs containing Fe,
with an increase of BEPUA. However, limited plastic deformation of the Cu–BCs containing
Cr led to the formation of thin incomplete PDLs, as shown in Figure 13e.

When the BEPUA increased to a higher level, the subsurface evolution pattern showed a
more diverse changing trend for two kinds of Cu–BCs. For instance, as shown in Figure 13c,
the Cu–BCs containing Fe showed a distinct three-layer structure, which consisted of a
mechanical mixed layer (MML) formed by the accumulation of small particles of wear
debris and second sintering under the influence of friction heat, as well as Fe-rich PDL and
an undeformed matrix from top to bottom. However, the Cu–BCs containing Cr still did
not form a typical subsurface structure, except for the generation of cracks beneath the
surface of materials, as indicated in Figure 13f.
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Under low and medium BEPUAs, the stripe-like shape was the main characteristic of
wear debris among the Cu–BCs. The shape of the wear debris transformed from stripe-like
to thin flake-like shapes on Cu–BCs containing Fe and to thick flake-like shapes for Cu–BCs
containing Cr under high BEPUAs, as shown in Figure 13.

The mechanical properties of the friction components and interface bonding strength
between the friction components and matrix were attributed to the difference in the evolu-
tionary patterns of worn surfaces or subsurfaces between two kinds of Cu–BCs. Under low
and medium BEPUAs conditions, owing to a better particle strengthening effect of Cr with
higher hardness, Cu-BCs containing Cr showed a high resistance to plastic deformation.
Therefore, plastic deformation had more difficulty developing on the worn surfaces of the
Cu–BCs containing Cr compared with that of Cu–BCs containing Fe. The result, depth, and
quantity of grooves on worn surface of Cu-BCs containing Cr were smaller than the other.
In this condition, the plough was the main wear mechanism for Cu–BCs regardless of what
friction component composites contained.

Under high BEPUA conditions, because of the poor wear resistance of the Cu matrix,
the quality loss of the Cu matrix was much larger than that of Fe. With the surface of the Cu
matrix being worn out, the exposed Fe phases started to spread along the sliding direction
under repeated friction shear stress, leading to the formation of an Fe-rich PDL with high
strength. Furthermore, under the premise of the stable existence of PDL, as the high-energy
braking continued, under periodic high-frequency shear stress and compressive stress, the
fine wear debris that remained on the worn surface tended to accumulate and connect
to each other due to second sintering caused by friction heat, leading to the occurrence
of MML. The wear of Cu–BCs containing Fe was caused by the peeling of MML due to
the expansion of cracks along the rubbing direction, which were nucleated in the bonding
defects and oxidation defects of MML. Therefore, the change in the wear mechanism from
ploughing to MML destruction induced delamination, as shown on the left part in Figure 14.

Thanks to the effective particle strengthening of Cr, even under high BEPUA, the plastic
deformation of the worn surface was not obvious for Cu–BCs containing Cr. However, the
defect interface layer on Cr/Cu interface easily developed into the sources of cracks, causing
the nucleation and propagation of cracks. As shown on the right part in Figure 14, when
the cracks propagated to the surface of materials along the rubbing direction, the peeling
of the copper matrix led to the wear of Cu–BCs containing Cr, resulting in the formation
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of thick flake-like wear debris. The wear mechanism transformed from ploughing- to
matrix-peeling-induced delamination, as shown on the right side of Figure 13.
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3.4.2. Friction and Wear Behaviour

The time-dependence curves of instantaneous COF under different BEPUAs are
displayed in Figure 15. Typical saddle-like braking curves were visibly formed under
nearly all test conditions. Furthermore, with an increase in BEPUA, the whole braking time
showed a growth trend, but the COF displayed the opposite change tendency. Furthermore,
Cu–BCs containing Fe showed more stable COF curves than those containing Cr under
high BEPUA.

The formation of saddle-like braking curves is attributed to the change in friction
surface morphology between the friction material and its counterpart during braking. The
sudden braking shock was the main reason for the high COF in the early stages of braking.
Then, with the generation of soft debris from the copper matrix or graphite at the friction
interface, the instantaneous COF began to gradually decrease. During the end stage of
braking, owing to a reduction in the amount of soft debris and the change from dynamic
friction to static friction, the instantaneous COF increased again, eventually giving rise to
the up-tail phenomenon of COF curves.

The differences in the braking performance of Cu–BCs containing different friction
components under a high BEPUA resulted from the friction component characteristics and
subsurface structural diversity. Fe’s contribution to the formation of oxidized MML on the
worn surface, which featured relatively high hardness and strong heat resistance, helped to
smooth the braking process. However, no obvious subsurface structure was formed on
the worn surfaces of Cu–BCs containing Cr. The distinct decrease of COF in the middle
stage of braking was mainly caused by a softening of the copper matrix due to friction heat
accumulation. This explains why the COF of Cu–BCs containing Fe showed better stability.
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Figure 15. The instantaneous coefficients of friction of Cu–BCs containing Fe (a) and Cr (b).

Figure 16 illustrates the variations in the mean COF over 10 cycles of braking for
Cu–BCs containing Fe and Cr under different BEPUAs. The overall trend of COF showed a
decrease with an increase in BEPUA for Cu–BCs containing two kinds of friction compo-
nents. Between them, Cu–BCs containing Fe always showed a higher COF compared with
those containing Cr under nearly all test conditions. In addition, under a high BEPUA, the
fluctuation of COF in the Cu–BCs containing Fe was also relatively smaller than that of the
Cu–BCs containing Cr, as shown in Figure 16a.
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intrinsic friction properties of each elements and their distribution area ratios. Under a
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low BEPUA, The absorption of braking energy by the deformation of worn surface was
the main source of friction resistance. When the materials contain multiple components,
assume that the normal pressure acting on each component is uniform, and the COF can
be expressed as [28]

µ =
N

∑
i=1

(µip + µia)·αi (8)

where αi is the covering area of each phase, µip is the ploughing COF of single component,
and µia is the adhesion COF of single component.

Because Fe and Cr had the same volume content, the difference in friction performance
was related to the frictional properties of Fe and Cr itself. According to the results of the
micro-friction tests, hpd on the Fe particles was deeper under the same pressure, which
resulted in intensive plastic deformation. This result indicates that the µip of Fe was much
higher than that of Cr. Moreover, the adhesion tendency of Fe to alloy counterpart is much
higher than that of Cr, which caused that the µia of Fe was higher than that of Cr as well.
Hence, Cu-BCs containing Fe showed a higher COF, as shown in Figure 16.

With an increase in BEPUA, the surface temperature of the materials gradually raised,
and the vibration intensified. Under these circumstances, the matrix softened, and more
braking energy transformed into impact energy, leading to a decrease in the COF. Therefore,
under a medium BEPUA, the COFs in the two kinds of Cu–BCs decreased observably.
With a further increase in BEPUAs, the formed friction layer replaced the original friction
surface, the tribology behavior of material is controlled by the structure and properties of
friction layer. According to the fixed adhesion theory [29],

µ =
τf

σs
(9)

where τf is the shear strength of the friction layer. Because the oxidized MML shows better
mechanical properties than the exposed matrix, the composites containing Fe had a higher
COF than that of the composites containing Cr. The vibration in the COF of Cu–BCs with
Cr was related to the worn mechanism under a high BEPUA. The intense variations could
be attributed to the participation of large size hard wear debris in braking process as a
third body, due to peeling of Cr with flake-like wear debris.

Figure 17 shows the wear rates of the Cu–BCs containing Fe and Cr under different
BEPUAs. The wear rate increased with an increase of BEPUA. Under low and medium
BEPUA values, the Cu–BCs containing Fe exhibited a higher wear rate than those contain-
ing Cr. Moreover, the wear rate increased rapidly for Cu–BCs containing Cr with BEPUA.
However, when BEPUA reached a high level, a sharp increase was observed in the wear
rates of the Cu–BCs with Cr, which began to exceed the wear rates of Cu–BCs with Fe. The
wear rates of the counterparts followed a similar change pattern. Notably, the counterparts
of Cu–BCs with Cr always showed a higher wear rate, as presented in Figure 17b.

The friction components were not destroyed under low and medium BEPUAs. In
this situation, the friction components with the highest hardness were able to significantly
improve the wear resistance of Cu–BCs. Consequently, Cu–BCs with Cr showed a lower
wear rate under low and medium BEPUAs. However, under a high BEPUA, wear resistance
was dependent on the subsurface structure. The Fe/Cu interface promoted the formation
of MML with high hardness, thereby controlling the excessive wear of the Cu–BCs. No
protective friction layer was formed on the worn surfaces of the Cu–BCs containing Cr
under a high BEPUA, resulting in severe delamination wear.

The wear rates of the counterparts mainly related to the hardness of the friction
components and the wear mechanism of the friction system. Under all tested conditions,
Cr always showed stronger destruction capabilities than the tested counterparts. Therefore,
the wear rates of the counterparts for the Cu–BCs containing Cr were higher, especially
under a high BEPUA. The wear of the counterparts was further aggravated by delamination
and the increase in tertiary bodies.



Materials 2021, 14, 3417 17 of 19

Materials 2021, 14, x FOR PEER REVIEW 17 of 19 
 

 

BEPUA values, the Cu–BCs containing Fe exhibited a higher wear rate than those contain-
ing Cr. Moreover, the wear rate increased rapidly for Cu–BCs containing Cr with BEPUA. 
However, when BEPUA reached a high level, a sharp increase was observed in the wear 
rates of the Cu–BCs with Cr, which began to exceed the wear rates of Cu–BCs with Fe. 
The wear rates of the counterparts followed a similar change pattern. Notably, the coun-
terparts of Cu–BCs with Cr always showed a higher wear rate, as presented in Figure 17b. 

 
Figure 17. The wear rate of Cu–BCs and its counterpart: (a) wear rate of Cu–BCs and (b) wear rate of counterpart. 

The friction components were not destroyed under low and medium BEPUAs. In this 
situation, the friction components with the highest hardness were able to significantly im-
prove the wear resistance of Cu–BCs. Consequently, Cu–BCs with Cr showed a lower 
wear rate under low and medium BEPUAs. However, under a high BEPUA, wear re-
sistance was dependent on the subsurface structure. The Fe/Cu interface promoted the 
formation of MML with high hardness, thereby controlling the excessive wear of the Cu–
BCs. No protective friction layer was formed on the worn surfaces of the Cu–BCs contain-
ing Cr under a high BEPUA, resulting in severe delamination wear. 

The wear rates of the counterparts mainly related to the hardness of the friction com-
ponents and the wear mechanism of the friction system. Under all tested conditions, Cr 
always showed stronger destruction capabilities than the tested counterparts. Therefore, 
the wear rates of the counterparts for the Cu–BCs containing Cr were higher, especially 
under a high BEPUA. The wear of the counterparts was further aggravated by delamina-
tion and the increase in tertiary bodies. 

4. Conclusions 
The following conclusions of this research can be drawn: 

(1) A diffusion bonding interface was formed between Fe and the copper matrix, as well 
as between Cr and the copper matrix. Owing to the formation of the defect bonding 
layer, the Cr/Cu interface exhibited a lower bonding strength compared with that of 
the Fe/Cu interface. Therefore, Fe presents a better particle strengthening than Cr, 
which enhanced the strength of Cu–BCs more effectively. 

(2) The COF of the Fe/Cu interface showed a slow growth trend owing to interface de-
formation. However, the COF of the Cr/Cu interface first indicated a decrease fol-
lowed by a sharp increase in the interface area owing to local interface debonding, 
especially at a pressure of 0.5 N. Compared with Cr, Fe can reduced the rapidly var-
iation of the COF on interface bonding area during the micro friction test. 

(3) Fe is conducive to the improvement of COF, the Cu–BCs containing Fe showed 
higher COF values than that of Cu–BCs with Cr under all test conditions owing to its 

Figure 17. The wear rate of Cu–BCs and its counterpart: (a) wear rate of Cu–BCs and (b) wear rate of counterpart.

4. Conclusions

The following conclusions of this research can be drawn:

(1) A diffusion bonding interface was formed between Fe and the copper matrix, as well
as between Cr and the copper matrix. Owing to the formation of the defect bonding
layer, the Cr/Cu interface exhibited a lower bonding strength compared with that of
the Fe/Cu interface. Therefore, Fe presents a better particle strengthening than Cr,
which enhanced the strength of Cu–BCs more effectively.

(2) The COF of the Fe/Cu interface showed a slow growth trend owing to interface
deformation. However, the COF of the Cr/Cu interface first indicated a decrease
followed by a sharp increase in the interface area owing to local interface debonding,
especially at a pressure of 0.5 N. Compared with Cr, Fe can reduced the rapidly
variation of the COF on interface bonding area during the micro friction test.

(3) Fe is conducive to the improvement of COF, the Cu–BCs containing Fe showed higher
COF values than that of Cu–BCs with Cr under all test conditions owing to its higher
COF component. Cr is beneficial to an improvement of wear resistance because of its
higher hardness, The Cu–BCs containing Cr presented a lower wear rate than that of
Cu–BCs containing Fe.

(4) Under low and medium BEPUAs, ploughing was the main wear mechanism for
all tested composites. However, under high BEPUAs, Fe promoted the formation
of MML, meaning that the delamination induced by destruction of MML became
the main wear mechanism. However, the addition of Cr increased the quantity of
interface defects in Cu–BCs, promoting the nucleation and propagation of cracks in
composites during braking, meaning that the delamination induced by peeling of
matrix near friction surface became the main wear mechanism.
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