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Abstract

Oligonucleotide-based aptamers, which have a three-dimensional structure with a single-

stranded fragment, feature various characteristics with respect to size, toxicity, and perme-

ability. Accordingly, aptamers are advantageous in terms of diagnosis and treatment and

are materials that can be produced through relatively simple experiments. Systematic evolu-

tion of ligands by exponential enrichment (SELEX) is one of the most widely used experi-

mental methods for generating aptamers; however, it is highly expensive and time-

consuming. To reduce the related costs, recent studies have used in silico approaches,

such as aptamer-protein interaction (API) classifiers that use sequence patterns to deter-

mine the binding affinity between RNA aptamers and proteins. Some of these methods gen-

erate candidate RNA aptamer sequences that bind to a target protein, but they are limited to

producing candidates of a specific size. In this study, we present a machine learning

approach for selecting candidate sequences of various sizes that have a high binding affinity

for a specific sequence of a target protein. We applied the Monte Carlo tree search (MCTS)

algorithm for generating the candidate sequences using a score function based on an API

classifier. The tree structure that we designed with MCTS enables nucleotide sequence

sampling, and the obtained sequences are potential aptamer candidates. We performed a

quality assessment using the scores of docking simulations. Our validation datasets

revealed that our model showed similar or better docking scores in ZDOCK docking simula-

tions than the known aptamers. We expect that our method, which is size-independent and

easy to use, can provide insights into searching for an appropriate aptamer sequence for a

target protein during the simulation step of SELEX.

Introduction

Aptamers are tertiary structures composed of relatively short, single-stranded oligonucleotides

or peptide fragments [1–3]. Aptamers possess various properties, such as small size,
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tissue/cell-penetrating capacity, low toxicity, low immunogenicity, and simplicity with respect

to chemical modification [4]. Owing to the cost of components and complexity of the experi-

mental steps, oligonucleotide-based aptamers are mainly used rather than peptide-based apta-

mers, and selective diagnosis or treatment of tumors is possible because of target specificity

[5–7].

For many therapeutic applications, aptamers are typically generated from random combi-

nation libraries (approximately 1016 random RNA or DNA sequences) using systematic evolu-

tion of ligands by exponential enrichment (SELEX) [1, 2]. The SELEX process requires

multiple rounds of incubation, binding, washing, target-bound elution, and amplification.

Thus, it takes a few days to several months to generate an aptamer library [8].

To decrease the time and expense involved in in vitro aptamer selection, SELEX is com-

bined with high-throughput sequencers, called HT-SELEX, and multiple computational meth-

ods have been developed for aptamer selection using HT-SELEX data [9]. AptaCluster [10]

and FASTAptamer [11] are examples of such computational methods that are based on clus-

tering of massive sequence pools derived from HT-SELEX. Chushak and Stone [12] introduce

the following three steps for selecting a primary sequence pool for in vitro selection experi-

ments: choosing RNA aptamers based on their secondary structure, three-dimensional struc-

ture modeling, and computational docking. Ahirwar et al. [13] implement an in silico method

for aptamer selection using steps similar to those used by Chushak and Stone [12], including

three-dimensional structure modeling and molecular docking simulation, which are related to

analyzing sequences and aptamer-protein interactions (APIs).

Recently, several machine learning methods have been proposed to assess API pairs. Most

studies have employed the API classifier, which performs a binary classification for determin-

ing the interaction or non-interaction of a given aptamer-protein sequence pair using

sequences and additional sequence-derived features, such as pseudo K-tuple nucleotide com-

position [14, 15], discrete cosine transformation [16], disorder information, and bi-gram posi-

tion-specific scoring matrix derived from PSI-BLAST [17]. Previous studies conducted by Li

et al. [18] and Zhang et al. [19] have used the aforementioned features. Recently, RPITER [20]

has designed a deep learning approach for the API classification using the primary and sec-

ondary structures of input sequences. Since these methods have focused on the API classifica-

tion only, they are unable to generate aptamer sequences. Lee and Han [21] select potential

aptamer candidates among randomly sampled sequences using a heuristic approach with an

API classifier, but their method requires strict constraints (e.g., the length of the aptamer

sequence was fixed at 27 bases). To resolve these issues, we propose a novel generative model

as follows.

Building the generative model is similar to a machine translation problem. For an aptamer-

protein sequence pair, a target protein can be regarded as a pre-translation sentence and an

aptamer as a post-translation sentence within the machine translation. While Google’s neural

machine translation uses a benchmark dataset that contains approximately 2 million sentences

for training the translation model between English and French [22, 23], we have datasets that

include only a few thousand API pairs. To the best of our knowledge, there is no end-to-end

generative model for generating aptamer sequences that interact with a given target protein, in

part because there is no sufficient data to train the generative model. To build the end-to-end

generative model with limited training data, we have designed our generative model architec-

ture using a discriminative model and a sequence sampler. The discriminative model is an API

classifier that uses the sequences (RNA aptamer and protein) as input features. Multiple API

classification models are trained based on the benchmark datasets that have been used in pre-

vious studies [18, 19, 21]. These trained API classifiers are applied to the sequence sampler. A

search space for sampling random nucleotide sequences with fixed length N is 4N. It the
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sequence length is not fixed, the search space becomes even bigger. To permit aptamer

sequences of variable lengths, we design the sequence sampler using an iterative sequence sam-

pling algorithm based on the Monte Carlo tree search (MCTS) [24] and the API classification

models (note that the API classification models are used as a score function for the MCTS

algorithm). This enables our approach to mimic an end-to-end generative model using the fast

and efficient search.

We call this iterative generative model with MCTS as Apta-MCTS. We generate candidate

aptamer sequences for target proteins using Apta-MCTS, combine the aptamer candidates

with target protein structures via a docking simulation tool, and evaluate our Apta-MCTS

using docking scores from the simulation. Our validation shows that Apta-MCTS can generate

potential candidate aptamer sequences in silico efficiently.

Materials and methods

Data preparation

There are several data sources that are commonly used for building an API classification

model [18, 19, 21], including aptamer base [25] and Protein Data Bank (PDB) [26]. We used

these data to train our prediction model and evaluate it. They contain both DNA- and RNA-

binding aptamers that interact with target proteins. These are separated into training and test

datasets. Both Lee and Han [21] and Li et al. [18] used the collection of experimental results

for aptamer-protein complexes. While both methods determined interaction and non-interac-

tion pairs, Lee and Han [21] examined the interaction in narrow resolution in terms of apta-

mer nucleotides and Li et al. [18] evaluated the same in broad resolution. Since these two

datasets have different resolutions, we trained two separate models for identifying the API in

both narrow and broad resolutions.

Table 1 presents a summary of these datasets. The dataset from Li et al. [18] was split into

the training dataset, which contained 580 positive and 1740 negative aptamer-protein

sequence pairs, and the test dataset, which contained 145 positive and 435 negative pairs of

sequence nucleotides and proteins. Since T in DNA is similar to U in RNA, we treated the let-

ter T (thymine) as U (uracil) before encoding as described previously [18]. This benchmark

dataset was used for training and validating our API classifier. The dataset from Lee and Han

[21] was also separated as the training dataset, containing 157 positive and 493 negatives, and

the test dataset, containing 56 positive and 56 negative RNA pairs. While this benchmark data-

set was used for API classification modeling as in the case of the benchmark dataset of [18],

the positive 56 pairs in the test dataset of [21] were used for evaluating candidate aptamers of

our model Apta-MCTS. Notably, 56 pairs in the test dataset were collected from the test dataset

of Li et al. [18] with only RNA aptamers [21].

Table 1. The two benchmark API datasets that are used for building two different classification models.

Source Number of positive pairs Number of negative pairs Description

[18] 580 1740 Training data for API classifiers

145 435 Validation data for API classifiers

[21] 157 493 Training data for API classifiers

56 56 Validation data for API classifiers and Apta-

MCTS

Note that we obtained two pre-trained API classifiers for the aptamer generative model, Apta-MCTS, using the

benchmarks.

https://doi.org/10.1371/journal.pone.0253760.t001
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Data representation

To feed aptamer and protein sequences into our classification model, the sequences were

encoded into a numerical representation. While most machine learning models generally use a

feature vector of a fixed size as an input, aptamer and protein sequences are of variable lengths.

To this end, various encoding methods have been applied to the protein and aptamer(DNA/

RNA) sequences. To choose an optimal encoding function for protein and aptamer sequences,

we applied all 54 combinations of encoding methods for our API classification models: 9

methods for aptamer sequences [Dinucleotide Auto-Covariance (DAC), Dinucleotide Cross-

Covariance (DCC), DACC(DAC+DCC), Trinucleotide Auto-Covariance (TAC), Trinucleo-

tide Cross-Covariance (TCC), TACC(TAC+TCC) [27], Psuedo K-tuple Nucleotide Composi-

tion (PseKNC) [15] where K = 2 and 3, and Improved Conjoint Triad Feature (iCTF) [20]],

and 6 methods for protein sequences [Amino Acid Composition (AAC), DiPeptide Composi-

tion (DPC), TriPeptide Composition (TPC), Pseudo Amino Acid Composition (PseAAC)

[14], Composition-Transition-Distribution (CTD) [28], and iCTF]. All encoding methods

were implemented using the propy [29] and PyBioMed [30] packages except the iCTF which

was downloaded from the RPITER GitHub repository. We compared the performance of all

these encoding methods and chose an optimal encoding method.

Training a model for API classification using a random forest approach

We applied a random forest [31] model that has been successfully used for classification and

prediction problems when a small volume of training data is available [32]. We trained the

model with feature vectors using the scikit-learn package [33]. Because our datasets are imbal-

anced in terms of the ratio of positive and negative examples, we used “class_weight” parame-

ter of random forest classifier in the scikit-learn package to resolve this data imbalance issue by

automatically adjusting weights. As Fig 1A depicts, our models are constructed as a set of mul-

tiple random forest models that consist of decision trees for a given API dataset.

Iterative forward sequence search algorithm based on the Monte-Carlo tree

search for generating aptamer sequences

The API classifier takes the encoded feature vectors for a target protein sequence and an apta-

mer as input. In our original problem, the aptamer sequence (i.e., the aptamer) was unknown.

We approached this problem by searching for an aptamer sequence that maximizes the output

of the API classifier for a given target protein sequence. The unknown part (i.e., the aptamer

sequence) in the encoded feature vectors for the API classifier can be determined by random

sequence sampling. This requires exponential time complexity for searching all combinations

of aptamer sequences.

To reduce the time necessary for search time, we designed our own sequence generation

model that recommends candidate sequences without full search. We let the API classifier be

denoted as f(�), the sample sequence length as N, and the target protein sequence as P. The clas-

sifier, f(�), helps reduce the entropy (uncertainty). The entire process requires N iterations, as

described in Fig 1B. In the ith iteration, our model generates a set of candidate aptamer

sequences with their own binding affinity scores that are calculated by the API classifier. In

addition, our model narrows down the search space by adding one base into the blanks of the

candidate sequences in each iteration, that is, the bases that have been added to the aptamer

candidates are fixed and the rest of the sequences are predicted using MCTS. The prediction

steps based on the MCTS are illustrated in Fig 2. The MCTS generates the undetermined bases
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of the candidate sequences using a path search through a given tree structure that represents

the whole sequence search space, as illustrated in Fig 2.

The depth of the tree is N when the length of the RNA aptamer sequence is N. A path from

the root to a leaf determines an aptamer sequence. Each node contains an aptamer base that

consists of eight types: A_, C_, G_, U_, _A, _C, _G, and _U. ‘_’ specifies a position where the

next sequence base of the child node is placed on the basis of the sequence bases determined

by a path from the root to current node. Suppose N = 7 and the previously determined bases

are “GAU”. If the sampled bases via the MCTS are [_U, _C, A_, G_], the output sequence of

this case is generated as follows: GAU! GAUU! GAUUC! AGAUUC! GAGAUUC. If

we do not use ‘_’, the bases added to child nodes, which are generated via the MCTS, are placed

only either ahead of the previously determined bases or after them. To permit more diverse

candidate sequences, we used ‘_’.

Our sampling algorithm that produces the undermined bases in the tree structure consists

of five steps during the MCTS: selection, expansion, simulation, scoring and collection, and

backpropagation, as portrayed in Fig 2. In the selection step (Fig 2A), a searching path from

the root to a leaf is selected based on UCT (Upper Confidence bounds applied to Trees) scores

Fig 1. Overview of our study for sampling candidate aptamer sequences using the API classifiers and MCTS. (A) shows the process of choosing the best model

from the random forest classifier trained by the API classification benchmark dataset. (B) illustrates our iterative forward sampling algorithm to obtain the candidate

aptamer sequences that bind to the given target protein. The sampling algorithm repeats N times, where N is a user-specified aptamer sequence length. The algorithm

takes inputs as the previously selected bases, specifically a target protein sequence and score function that is the best model from (A) before iteration.

https://doi.org/10.1371/journal.pone.0253760.g001
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Fig 2. Details underlying our iterative forward sampling algorithm using MCTS. The process (third iteration in terms of total N) illustrates the internal

process of our sampling algorithm. (A) Selection stage of the MCTS: our method uses previously selected bases in the current sampling iteration. It searches

based on the UCT score recursively and finishes after arriving at an unknown position. (B) Expansion stage: a new child node is added in the arrived node

randomly from the eight child nodes. (C) Simulation stage: the algorithm attempts a random walk until tree depth N and pursues the path from root node to

the leaf node. (D) The previous bases (1, 2, 3) and bases of the path (4, 5, 6, 7) are reconstructed as a candidate aptamer sequence. The sequences and

interaction scores are added into a set of candidate aptamers. (E) MCTS updates the parameters of the tree using the score calculated in (D). (F) MCTS

algorithm repeats the process of (A) to (E) M times. (G) The optimal base is selected from the child nodes of a root node for the next sampling iteration.

https://doi.org/10.1371/journal.pone.0253760.g002
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[34], which are formulated as follows:

UTCi;si ;ni ;Ni
¼
def si

ni
þ C �

ffiffiffiffiffiffiffiffiffiffiffiffi
lnðNiÞ

ni

s

ð1Þ

where i is a node identifier; si is a cumulated exploitation score for the i-th node, which is

calculated in the backpropagation step; ni is the number of visits for the i-th node; Ni

is the number of visits for the parent node of the i-th node; and C is an exploration

parameter.

We set parameter C as 1ffiffi
2
p , as suggested by Chaslot et al. [24]. In the expansion step (Fig

2B), a random new child node is added to the end node of the selected path. In the simulation

step (Fig 2C), a random playout is performed from the new child node until the path reaches

a depth limit. An aptamer sequence candidate that corresponds to the path determined in the

simulation step is reconstructed, as illustrated in Fig 2D. This aptamer sequence and the tar-

get protein are fed into the API classifier model, and their interaction score is computed

using the API classifier. In the backpropagation step (Fig 2E), the parameters of the UCT

score at each tree node are updated using the interaction score. These five steps are repeated

M times, as illustrated in Fig 2F (note that M is set to 5000 by default, and this can be adjusted

by users). After this iteration, a node that shows the highest score in the child nodes of the

root is added to the pre-selected bases, that is, a blank in unknown bases of the aptamer

sequences is eliminated (Fig 2G). These updated bases become pre-selected bases for the next

round.

After finishing all N rounds, our model generates N �M candidate RNA aptamer sequences

with their own scores. To reduce redundant candidates that exhibit identical RNA secondary

structures, we predicted the secondary structures of all our candidate aptamer sequences using

ViennaRNA Package 2.0 [35] (note that we determined that two structures were identical

when their secondary structures were represented in exactly the same way in terms of the dot-

bracket notation). When certain candidates had the same structure, we chose one with the

highest score among them. After this post-processing step, we obtained a final list of aptamer

candidate sequences as a result of our aptamer generation model. These candidates are sorted

by the interaction scores.

Selecting an API score function among multiple classifiers

Matthew’s correlation coefficient (MCC) is widely used in biomedical applications when data-

sets are imbalanced [36]. We trained classification models multiple times (2,000 by default)

and chose one with the best performance based on MCC for an API score function (note that

this classifier selection includes the choice of an optimal encoding method for input

sequences). In this procedure, the number of decision trees in the random forest algorithm

was set as a random number between 30 and 200. When multiple models were tied in terms of

MCC, we selected one that had the fewest number of decision trees. As the score function is

repeatedly used with our method, a slim model that has the fewest decision trees reduces com-

putation time during the MCTS.

Performance evaluation of our classification model

The API classifiers were trained using the random forest algorithm with the binary classifica-

tion dataset of Li et al. [18] and Lee and Han [21]. We validated our trained model by measur-

ing the prediction sensitivity (Sen), specificity (Spe), accuracy (Acc), Youden’s index (J), and
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MCC as follows:

Sn ¼ TP=ðTP þ FNÞ ð2Þ

Sp ¼ TN=ðFP þ TNÞ ð3Þ

Acc ¼ ðTP þ TNÞ=ðTN þ FPþ FN þ TPÞ ð4Þ

J ¼ Snþ Sp � 1 ð5Þ

MCC ¼
ðTP � TN � FP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð6Þ

where TP, TN, FP, and FN represent true positives (number of pairs predicted as true for real

aptamer-protein pairs), false positives (number of pairs predicted as true for wrong aptamer-

protein pairs), true negatives (number of pairs predicted as false for wrong aptamer-protein

pairs), and false negatives (number of pairs predicted as false for true aptamer-protein pairs),

respectively.

Validation of our generative model using a docking simulation

We obtained top-k candidate aptamer sequences that bind a given target protein using our

generative model. To validate the molecular binding affinity of the candidate sequences and

protein, we used ZDOCK, which is a computational simulation tool for measuring molecular

interactions (note that the docking simulation was not used in the generation of candidate

sequences in Apta-MCTS). ZDOCK is commonly used in many molecular interaction studies,

such as the theoretical molecular interactions between aptamers and HMG-box Pf [37].

To implement the docking simulation, the three-dimensional structural information of

both the input aptamer sequence and target protein is required. Specifically, we converted the

sequences into three-dimensional structures. The three-dimensional structures of the RNA

aptamers were predicted using SimRNA [38] and the RNAComposer webserver [39]. For

some target proteins, their structures were collected from the PDB. When the structure of a

certain target protein was unknown, its three-dimensional structures were rendered using the

Swiss-Model pipeline, which is a homology modeling method [40]. When several structures

were suggested for the target protein, we selected the best structure based on the QMEAN

score (> −4.0) [41]. When QMEAN scores were tied, the sequence identity (> 80%) was used

as a tie-breaker [40]. More information of target proteins used for this validation are available

in S1 Table.

Results and discussion

Constructing our aptamer generation models using two training datasets

We constructed our model using two different datasets (listed in Table 1). Our model Apta-

MCTS has a score function for the MCTS algorithm, and the score function is replaced by the

API classifier. Owing to their varying negative samplings, we had two different API classifiers.

Consequently, our model, Apta-MCTS, generates candidate aptamers for a given target pro-

tein using the two score functions (API classifiers). For instance, when generating the top five

candidate aptamers from Apta-MCTS, 10 candidates are predicted (top five from score func-

tions), and when obtaining candidate sequences according to the sampling method used by

Lee and Han [21], the two score functions were applied identically.
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Evaluation of RNA aptamer sequences predicted by our model using six

known aptamer-protein pairs using ZDOCK docking simulation

We designed a generative model, Apta-MCTS, that predicts candidate RNA aptamer

sequences for a given target protein using the API classifier and MCTS. We generated the top

five aptamer candidates using Apta-MCTS with each trained model, that is, 10 aptamer candi-

dates in total using two trained models for a given target protein. To examine the quality of the

candidate sequences, we applied the ZDOCK docking simulation [42] and visualized the bind-

ing sites of our candidate aptamers for the target protein molecular structure.

For this validation, we downloaded six target proteins, with known aptamers, from the

PDB. We also obtained the structures of these six target proteins using the Swiss-Model server.

The aptamer sequence for 5VOE (chain H and L) is available in PDB [43]. For the rest, their

aptamer sequences were obtained via SELEX experiments (conventional SELEX) or previous

studies [44, 45]. The list of these six proteins and their aptamers is presented in Table 2 and S1

Appendix. For these six target proteins, we predicted their candidate aptamer sequences using

our Apta-MCTS pipeline. We compared our predicted aptamer sequences with the known

aptamers in terms of their docking scores, as shown in Fig 3. For this comparison, we chose an

aptamer that yielded the highest docking score with the given target protein structure. We set

the length of the aptamer sequence in our prediction model to be equal to that of the known

aptamers such that we could easily examine their binding affinity through the docking simula-

tion. In addition to the known aptamers, we also compared our candidate sequences with

those obtained by Lee and Han [21] (notably, we applied our API classification score to sort

the candidate aptamers generated by Lee and Han [21]). For protein 1ERK, there are two

known aptamers, C3 and C3.59, with 90 and 59 bases, respectively. We generated two different

sets of aptamers using our Apta-MCTS model with 90 and 59 bases, respectively. As a result,

our candidate aptamers showed higher docking scores with their target proteins compared to

the candidates generated by Lee and Han [21] and the knwon aptamers for five cases (3V79_1,

5VOE_HL, 2RH1, 1ERK(C3) and 1ERK(C3.59)), as illustrated in Fig 3. Fig 3A shows our vali-

dation results using protein structures from the PDB and Fig 3B from the Swiss-Model server.

There is no significant difference between these two kinds of structures. This shows that our

model can generate aptamers that are potentially more suitable for target proteins than the

known aptamers.

In addition, we examined whether there is any difference of our generation model working

with globular or membrane proteins. Our generative model showed the highest ZDOCK

scores in both protein types on average (S1 Fig). Interestingly, ZDOCK docking scores tend to

be higher with membrane proteins than with golbular proteins.

For protein 5VOE (chain H and L), the structure of the known aptamer (5VOE:A) is avail-

able from PDB. We compared the structures of our candidate aptamers with the known

Table 2. Target proteins and aptamers obtained from PDB database, which were applied for our model.

Protein name Protein PDB-ID Aptamer ID Proteins Aptamers

GTPase KRas 6GOF V1,V2,V9,D1 [48] Our own experiments

Neurogenic locus notch homolog protein 1 3V79_1 CS1,. . .,CS7 [49] Our own experiments

Coagulation factor X 5VOE(chain H and L) 5VOE:A [43] [43]

Endolysin, Beta-2 adrenergic receptor 3SN6_4 A1,A2,A13 [50] [44]

Beta-2-adrenergic receptor/T4-lysozyme chimera 2RH1_1 A16 [51] [44]

Extracellular regulated kinase 2 1ERK_1 C3,C3.59 [52] [45]

Note that the information of aptamer-IDs is available in S1 Appendix.

https://doi.org/10.1371/journal.pone.0253760.t002
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structure of 5VOE:A in terms of their docking positions, as illustrated in Fig 4. The complexes

of the docking simulation were generated using ZDOCK and rendered by NGL viewer [46], as

shown in Fig 4. Fig 4A shows the structure of the target protein, 5VOE (chain H and L). Fig 4B

displays the crystallized pose of aptamer 5VOE:A and Fig 4C–4F four docked poses of 5VOE:

A, which were obtained by ZDOCK simulation. As shown in Fig 4C–4F, most aptamers tend

to bind to different positions of Fig 4A comparing to the crystallized pose (Fig 4B) except the

docked pose in Fig 4C. Fig 4G–4L depict the structures of our candidate aptamers. Interest-

ingly, the binding positions of three candidate aptamers in Fig 4G–4I matched the upper parts

of the crystrallized and docked poses. The rest candidates in Fig 4J–4L showed quite similar

positions to the docked poses in Fig 4D–4F. In General, the docking process involves two

steps: (1) prediction of conformation, position, and orientation of the ligand and (2) assess-

ment of the binding affinity [47]. Therefore, the highly scored candidate aptamers placed at

similar sites with respect to the known aptamers indicate that our prediction model has strong

potential for suggesting candidate aptamers that interact with the given target proteins.

Evaluation using benchmark datasets of API pairs

We evaluated our Apta-MCTS model using 56 positive RNA aptamer-protein sequence pairs

in the test dataset of Lee and Han [21]. We generated candidate aptamers that had the same

length as the 56 aptamers in the dataset. For each case, we chose the top 10 aptamer candidates

according to API classification scores and compared them with the outcomes reported by Lee

and Han [21] and known aptamers in the test dataset in terms of docking scores for each pair

of a target protein structure and an aptamer candidate sequence. Fig 5A illustrates the compar-

ison of ZDOCK scores between our model and that of Lee and Han [21]. Compared to the

model of Lee and Han [21], our model showed better ZDOCK scores for 77% of the total

Fig 3. Evaluation of aptamer sequence generation in terms of binding affinity with six target proteins using ZDOCK docking simulation. (A) ZDOCK scores of

aptamers using protein structures from the PDB and (B) ZDOCK scores using structures built via the Swiss-Model server. For protein 1ERK, there are two known

aptamers, C3 and C3.59, with 90 and 59 bases, respectively. We compared the docking scores of aptamer sequences generated by our model (in green bar) and Lee

et al. [21] (in blue); the known aptamers (in gray) are listed in Table 2. The candidates of our Apta-MCTS (in green bar) yielded higher docking scores than the

results reported by Lee et al. [21] (in blue) and the known aptamers (in gray) for five cases: 3V79_1, 5VOE (chain H and L), 2RH1, 1ERK(C3) and 1ERK(C3.59).

Additional details are available in S2 Table for (A) and S3 Table for (B).

https://doi.org/10.1371/journal.pone.0253760.g003
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Fig 4. Comparison of binding positions between known aptamer 5VOE(chain A) depicted as a red structure in (B-F) and our candidate aptamers (green) in (G-L)

for target protein 5VOE (gray) in (A-L). The structures of aptamers were predicted by SimRNA and RNAComposer and rendered using NGL viewer after the

ZDOCK docking simulation was applied. (A) Target protein 5VOE and the angle is always fixed in other figures. (B) Crystallized pose of aptamer 5VOE:A. (C-F)

Docked poses of aptamer 5VOE:A with RMSD 5.27Å, 34.31Å, 34.5Å, and 42.33Årespectively compared to the crytallized pose in (B). Our candidates (G-L) show

similar binding positions compared to the upper binding sites of (B-F). Especially binding positions in (J-L) are quite similar to ones in (D-F).

https://doi.org/10.1371/journal.pone.0253760.g004

Fig 5. Binding affinity of aptamer samples that have same length with the known aptamers using the docking simulation score by ZDOCK. (A) Comparison of

docking scores between our Apta-MCTS and the method employed by Lee and Han [21]. The diagonal dashed line indicates that the docking scores of both models

are tied. Green dots above the diagonal line refer to how Apta-MCTS generated better aptamers with higher docking scores than the method used by Lee and Han

[21]. (B) Comparison with known aptamers. Apta-MCTS showed the highest docking scores for this comparison.

https://doi.org/10.1371/journal.pone.0253760.g005
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aptamer-protein pairs, as shown in Fig 5A (notably, 77% of the total points in the scatter plot

appear above the diagonal line). We summarized all these docking scores as a bar plot and

compared them with the known aptamers in the test dataset in Fig 5B. Interestingly, our results

showed slightly higher docking scores than the known aptamer-protein pairs. All the scores

according to the ranks are available in S4 Table.

Generating aptamer sequences of various lengths for target proteins

Unlike the Lee and Han model [21], our Apta-MCTS generative model enables the generation

of candidate aptamers of various lengths. For 32 proteins in the benchmark test dataset, we

generated candidate aptamers of various lengths (30, 50, 70, and 90, respectively). Fig 6 illus-

trates how the docking scores change according to aptamer length. For 14 proteins, aptamers

with 90 bases had the highest docking scores. Interestingly, aptamers with 70 bases for 10 pro-

teins had higher docking scores than those with 90 bases. For the five proteins, aptamers with

50 bases had the highest docking scores. In general, the docking scores of aptamers predicted

by our model were higher than those of the known aptamers in the test dataset. Notably, the

average length of the known aptamers was 51 bases, with a standard deviation of 24.79. This

demonstrates that our model could search for an aptamer length that provides high binding

affinity with a given target protein.

Performance evaluation of various encoding methods for input sequences

We used classification models for a score function required in our generative model. For the

classification models, input aptamer and protein sequences were encoded. There are 54 combi-

nations of encoding methods for aptamer and protein sequences. To select an optimal encod-

ing method for input sequences, we trained 2000 random forest classifiers for each encoding

combination and compared the performance of all the encoding combinations. We summa-

rized this performance comparison in Table 3 for the dataset of Li et al. and Table 4 for the

dataset of Lee and Han [21]. We abbreviated some of the overall results to Tables 3 and 4 for

four protein encoders [CTD, DPC, iCTF, and TPC] and four aptamer encoders [TAC, iCTF,

and PseKNC with k = 2, 3] which performed well on both datasets (note that the all experiment

results are available in S6 and S7 Tables). According to MCC, a combination of TPC for pro-

tein sequences and PseKNC (k = 3) for aptamer sequences showed the best performance for

the dataset of Li et al., and TPC and PseKNC (k = 2) for the dataset of Lee and Han [21].

Our results revealed that our two classifiers have different characteristics. While our first

classifier has high specificity, the second has high sensitivity. Comparing to Li et al. [18],

Zhang et al. [19], and Lee and Han [21], our classifiers with the selected encoding methods

were good enough to apply for our generation model. Since we used both classifiers with dif-

ferent characteristics for our generation model, it enables Apta-MCTS to obtain various candi-

date aptamers from a broad perspective.

Conclusion

In the present study, we developed a generative model, called Apta-MCTS, to determine

potential RNA-aptamer candidates for a target protein of which only the sequence is available.

While recent classification studies on nucleotide sequences that bind to target proteins have

focused on the performance of binary classification, only a few studies have attempted to deter-

mine candidate aptamers. We designed a machine learning approach that generates candidate

RNA-aptamers based on a discriminative classifier of API and MCTS. To feed features from

input data properly to our model, we applied the TPC and PseKNC encoders. The scores

required for MCTS were computed using our API classifiers based on random forest model.
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To evaluate Apta-MCTS, we simulated the binding affinity of our candidate aptamers and tar-

get proteins based on their molecular structures with ZDOCK. In general, Apta-MCTS yielded

higher docking scores than known aptamers as well as compared to results from other genera-

tion methods. Our model can generate aptamer sequences of any length that users wish to

Fig 6. Docking scores for aptamers of various lengths with 32 target proteins in the test dataset. In general, our model generated better aptamers than the known

aptamers in the test dataset. The docking scores of our candidate aptamers are reflected by the grey bars, while the known aptamers by the white bars. For most

proteins, aptamers with 70 bases and 90 bases (the 3rd and 4th bars in each protein) showed the highest docking score (Note that all the results in detail are available in

S5 Table).

https://doi.org/10.1371/journal.pone.0253760.g006
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Table 3. Performance evaluation of various input encoding methods using the dataset of Li et al. [18].

API classifier Protein encoder Aptamer encoder Sensitivity Specificity Accuracy Youden’s Index MCC

Ranfom Forest CTD iCTF 0.245 0.999 0.811 0.244 0.439

CTD PseKNC(k = 2) 0.304 0.988 0.817 0.292 0.453

CTD PseKNC(k = 3) 0.258 0.999 0.814 0.257 0.451

CTD TAC 0.174 0.987 0.784 0.161 0.31

DPC iCTF 0.259 0.999 0.814 0.258 0.453

DPC PseKNC(k = 2) 0.319 0.987 0.82 0.305 0.463

DPC PseKNC(k = 3) 0.272 0.999 0.818 0.272 0.465

DPC TAC 0.195 0.984 0.787 0.179 0.325

iCTF iCTF 0.259 1 0.814 0.259 0.454

iCTF PseKNC(k = 2) 0.319 0.987 0.82 0.306 0.463

iCTF PseKNC(k = 3) 0.271 0.999 0.817 0.271 0.464

iCTF TAC 0.196 0.984 0.787 0.18 0.327

TPC iCTF 0.257 0.998 0.813 0.255 0.447

TPC PseKNC(k = 2) 0.334 0.975 0.815 0.309 0.441

TPC PseKNC(k = 3) 0.287 0.996 0.819 0.283 0.467

TPC TAC 0.216 0.972 0.783 0.187 0.308

[18] 0.483 0.871 0.774 0.354 0.372

[19] 0.738 0.713 0.719 0.451 0.398

The bold font denote the best result in each performance metric. According to MCC (which is commonly used when datasets are imbalanced), TPC+PseKNC(k = 3) was

selected as our final choice of encoders. All the results in detail are available in S6 Table.

https://doi.org/10.1371/journal.pone.0253760.t003

Table 4. Performance evaluation of various input encoding methods using the dataset of Lee and Han [21].

API classifier Protein encoder Aptamer encoder Sensitivity Specificity Accuracy Youden’s Index MCC

Ranfom Forest CTD iCTF 0.862 0.516 0.689 0.379 0.405

CTD PseKNC(k = 2) 0.842 0.537 0.69 0.379 0.399

CTD PseKNC(k = 3) 0.855 0.52 0.687 0.375 0.399

CTD TAC 0.715 0.6 0.658 0.315 0.319

DPC iCTF 0.933 0.454 0.693 0.387 0.442

DPC PseKNC(k = 2) 0.928 0.474 0.701 0.402 0.452

DPC PseKNC(k = 3) 0.932 0.462 0.697 0.394 0.448

DPC TAC 0.881 0.561 0.721 0.442 0.469

iCTF iCTF 0.931 0.493 0.712 0.424 0.473

iCTF PseKNC(k = 2) 0.949 0.499 0.724 0.448 0.502

iCTF PseKNC(k = 3) 0.952 0.498 0.725 0.45 0.506

iCTF TAC 0.887 0.567 0.727 0.454 0.481

TPC iCTF 0.931 0.459 0.695 0.389 0.443

TPC PseKNC(k = 2) 0.997 0.466 0.731 0.463 0.546

TPC PseKNC(k = 3) 0.986 0.466 0.726 0.452 0.53

TPC TAC 0.978 0.492 0.735 0.47 0.538

[21] 0.768 0.661 0.714 0.429 0.431

The bold font denote the best result in each performance metric. According to MCC, TPC+PseKNC(k = 2) was selected as our final choice of encoders. All the results in

detail are available in S7 Table.

https://doi.org/10.1371/journal.pone.0253760.t004
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build. We investigated the effect of aptamer lengths for given target proteins. Aptamers of 70–

90 bases improved docking scores compared to known aptamers. All these results show that

our Apta-MCTS can produce aptamer sequences that are more appropriate for relevant exper-

iments than existing methods. There is still some room to improve our generative model. For

example, its performance can be increased via a rigorous study for optimizing API classifiers

which are used as a score function of the generative model. We believe that our ongoing efforts

in this area can substantially reduce the cost and time required for drug discovery using apta-

mer design.

Supporting information

S1 Appendix. Additional information of known aptamers for six target proteins.

(PDF)

S1 Fig. Evaluation of our generative model working with globular or membrane proteins.

(A) Evaluation of aptamer sequence generation with six target proteins: 6GOF, 3V79 1, 5VOE

HL, 2RH1, 1ERK(C3) and 1ERK(C3.59) which were used in Fig 3, and (B) with 32 target pro-

teins used in Fig 5.

(TIF)

S1 Table. The details about the three-dimensional structures of the target proteins used

for docking simulation. The table includes additional data for the target proteins such as pro-

tein name, description, source, and template Swiss-Model threshold values.

(CSV)

S2 Table. Docking scores between target protein structures from PDB and candidate apta-

mers.

(CSV)

S3 Table. Docking scores between target protein structures from Swiss-Model and candi-

date aptamers.

(CSV)

S4 Table. The docking scores of the candidate aptamers for the 32 target proteins ranked

by Apta-MCTS and Lee et al., [21]. The table contains the ZDOCK docking scores of the top

10 candidate aptamers for each target protein.

(CSV)

S5 Table. Docking scores between the 32 target proteins and candidate aptamers generated

by Apta-MCTS with various lengths (30, 50, 70, and 90bp).

(CSV)

S6 Table. Performance comparison of 54 encoding methods using the dataset of Li et al.,
[18].

(CSV)

S7 Table. Performance comparison of 54 encoding methods using the dataset of Lee and

Han [21].

(CSV)

S8 Table. Summary statistics of RNA secondary structure redundancy removed in the

post-processing step of Apta-MCTS. The table includes information expressed in terms of

parameters of negative binomial distribution for RNA secondary structure redundancy.

(CSV)
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