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ABSTRACT Enterobacteria, including Escherichia coli, bloom to high levels in the
gut during inflammation and strongly contribute to the pathology of inflammatory
bowel diseases. To survive in the inflamed gut, E. coli must tolerate high levels of
antimicrobial compounds produced by the immune system, including toxic metals like
copper and reactive chlorine oxidants such as hypochlorous acid (HOCl). Here, we show
that extracellular copper is a potent detoxifier of HOCl and that the widely conserved
bacterial HOCl resistance enzyme RclA, which catalyzes the reduction of copper(II) to
copper(I), specifically protects E. coli against damage caused by the combination of HOCl
and intracellular copper. E. coli lacking RclA was highly sensitive to HOCl when grown in
the presence of copper and was defective in colonizing an animal host. Our results indi-
cate that there is unexpected complexity in the interactions between antimicrobial tox-
ins produced by innate immune cells and that bacterial copper status is a key determi-
nant of HOCl resistance and suggest an important and previously unsuspected role for
copper redox reactions during inflammation.

IMPORTANCE During infection and inflammation, the innate immune system uses
antimicrobial compounds to control bacterial populations. These include toxic met-
als, like copper, and reactive oxidants, including hypochlorous acid (HOCl). We have
now found that RclA, a copper(II) reductase strongly induced by HOCl in proinflam-
matory Escherichia coli and found in many bacteria inhabiting epithelial surfaces, is
required for bacteria to resist killing by the combination of intracellular copper and
HOCl and plays an important role in colonization of an animal host. This finding in-
dicates that copper redox chemistry plays a critical and previously underappreciated
role in bacterial interactions with the innate immune system.
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Inflammatory bowel diseases (IBDs), such as Crohn’s disease and ulcerative colitis, are
a growing health problem (1) and are associated with dramatic changes in the

composition of the gut microbiome (2–6). Patients with IBDs have increased propor-
tions of proteobacteria, especially Escherichia coli and other Enterobacteriaceae, in their
gut microbiomes, which is thought to contribute to the progression of disease (7–10).
The bloom of enterobacteria in the inflamed gut is driven by increased availability
of respiratory terminal electron acceptors (e.g., oxygen, nitrate, and trimethylamine
N-oxide) and carbon sources (e.g., ethanolamine and mucin), which E. coli and other
facultative anaerobes can use to outcompete the obligate anaerobes (Bacteroides and
Clostridia) that dominate a healthy gut microbiome (2, 3). In addition to these nutri-
tional changes in the gut environment, inflammation also leads to infiltration of innate
immune cells (e.g., neutrophils) into the lumen of the gut (11) and an associated
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increased production of antimicrobial compounds by the innate immune system (9, 10,
12), which also impact the bacterial community in the gut. These include antimicrobial
peptides, toxic metals (e.g., copper), reactive oxygen species (ROS), reactive nitrogen
species, and reactive chlorine species (RCS) (3, 13, 14). Since bacteria living in an
inflamed gut are likely to be exposed to substantially increased levels of these toxins,
the differential survival of proteobacteria during long-term inflammation suggests that
E. coli may have evolved better mechanisms to resist these stresses than other types of
commensal bacteria.

Macrophages use copper as an antimicrobial agent and copper levels rise in
inflamed tissues, although the exact mechanism(s) by which copper kills bacteria are
not yet fully understood (15–17). RCS are highly reactive oxidants produced by neu-
trophils and are potent antibacterial compounds (18, 19) that have been reported to
play a role in controlling intestinal bacterial populations (20–22). E. coli does not
efficiently survive being phagocytosed by neutrophils (23, 24), but the release of
RCS-generating myeloperoxidase from neutrophils in the inflamed gut (11) means that
E. coli is exposed to increased levels of RCS in that environment. The RCS response of
E. coli is complex and incompletely understood (19, 25–28) but characteristically
involves repair of damaged cellular components, often proteins (19). Protein-stabilizing
chaperones are upregulated during RCS stress, including Hsp33 (29, 30) and inorganic
polyphosphate (28, 31, 32), and enzymes are expressed that repair oxidized proteins,
including periplasmic methionine sulfoxide reductase (MsrPQ) (33) and the chapere-
doxin CnoX (34). E. coli has multiple HOCl-sensing regulators, including YedVW (which
regulates MsrPQ) (33), NemR (a regulator of NemA and GloA, which detoxify reactive
aldehydes) (25), HypT (which regulates cysteine, methionine, and iron metabolism) (27),
and RclR, the RCS-specific activator of the rclABC operon (26).

The rclA gene of E. coli encodes a predicted cytoplasmic flavin-dependent oxi-
doreductase, is upregulated �100-fold in the presence of RCS (26, 35), and protects
against killing by HOCl via a previously unknown mechanism (26). RclA is the most
phylogenetically conserved protein of the Rcl system (Fig. 1) and is found almost
exclusively in bacteria known to colonize epithelial surfaces (see Data Set S1 in the
supplemental material), suggesting that it may play an important role in host-microbe
interactions in many species. Bacteria encoding RclA homologs include Gram-negative
species (e.g., Salmonella enterica), Gram-positive species (e.g., Streptococcus sanguinis),
obligate anaerobes (e.g., Clostridium perfringens), facultative anaerobes (e.g., Staphylo-
coccus aureus), pathogens (e.g., Enterococcus faecalis), commensals (e.g., Bacteroides

FIG 1 RclA is widely conserved among bacteria that colonize epithelial surfaces. A phylogenetic tree
constructed from amino acid sequence alignments of RclA (pink, 284 species), RclB (blue, 61 species),
RclC, (yellow, 49 species), and RclR (gray, 43 species), relative to the respective proteins in E. coli MG1655.
Phyla are indicated by color: Actinobacteria (brown), Bacteroidetes (purple), Firmicutes (green), Fusobac-
teria (mauve), and Proteobacteria (blue). See Data Set S1 in the supplemental material for lists of each hit
used in the phylogenetic tree. A tree graphic was made using the interactive tree of life (108).
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thetaiotaomicron), and probiotics (e.g., Lactobacillus reuteri) (36), suggesting that RclA’s
function may be broadly conserved and not specific to a single niche or type of
host-microbe interaction. RclR, RclB, and RclC are much less widely conserved and are
found only in certain species of proteobacteria, primarily members of the Enterobac-
teriaceae (Fig. 1; see Data Set S1 in the supplemental material). RclB and RclC both
contribute to HOCl resistance, but their mechanistic roles have yet to be determined
(26). RclB is predicted to be located in the periplasm, and RclC is predicted to be an
integral inner membrane protein.

Here, we have now determined that RclA is a thermostable, HOCl-resistant copper(II)
reductase that is required for efficient colonization of an animal host and protects E. coli
specifically against the combination of HOCl and intracellular copper, possibly by
preventing the formation of highly reactive Cu(III). We also found that, surprisingly,
extracellular copper effectively protects bacteria against killing by HOCl both in cell
culture and in an animal colonization model. These findings reveal a previously
unappreciated interaction between two key inflammatory antimicrobial compounds
and a novel way in which a commensal bacterium responds to and resists the
combinatorial stress caused by copper and HOCl.

(This article was submitted to an online preprint archive [37].)

RESULTS
RclA contributes to HOCl resistance and host colonization. An rclA mutant of E.

coli is more susceptible to HOCl-mediated killing than is the wild type (26). To expand
on these results, we utilized here a growth curve-based method to measure sensitivity
to sublethal HOCl stress by quantifying changes in the lag-phase extension (LPE) of
cultures grown in the presence of HOCl. Using this method, which we have found to be
considerably more reproducible than other techniques for assessing bacterial HOCl
sensitivity, we observed significant increases in LPE for a ΔrclA mutant strain compared
to the wild type grown in the presence of various concentrations of HOCl (see Fig. S1A,
B, and C in the supplemental material). We observed similar trends when the assay was
performed with stationary- and log-phase cells (see Fig. S1D, E, and G), so stationary-
phase cultures were used for subsequent assays. Furthermore, we determined that
there was no decrease in CFU after treatment with HOCl at these concentrations,
indicating that LPE measures the recovery of cultures from nonlethal stress (see
Fig. S1F). These results confirm previous results and further illustrate the importance of
RclA in resisting HOCl-mediated oxidative stress in E. coli.

To directly test the role of RclA in interactions with an animal host, we examined
the ability of E. coli to colonize the intestine of Drosophila melanogaster, where the
presence of enterobacteria is known to stimulate antimicrobial HOCl production by the
dual oxidase Duox (20, 22). Since an E. coli K-12 strain did not efficiently colonize D.
melanogaster (see Fig. S2A), we used the colonization-proficient E. coli strain Nissle 1917
(EcN) (38, 39) in these experiments. The genome of EcN encodes homologs of all the
known HOCl resistance genes found in E. coli K-12 (40, 41). Unlike K-12, EcN forms
robust biofilms (42–45), preventing the accurate measurement of growth curves and
LPE (Fig. S2B), but EcN was slightly more sensitive to killing by lethal doses of HOCl than
was MG1655 (Fig. S2C and D). EcN ΔrclA mutants had a significant defect in their ability
to colonize NP1-GAL4 D. melanogaster flies compared to wild-type EcN at 3 and 8 h
postinfection (hpi) (Fig. 2, circles). This shows that rclA is important for EcN tolerance of
host responses during early colonization.

To investigate the role of host-produced RCS in the colonization defect of the rclA
EcN mutant, we reduced the gut-specific expression of Duox in the flies using Duox-
RNAi and repeated the colonization experiments. Both strains colonized significantly
better at 3 hpi when Duox was knocked down in the flies (Fig. 2, “�” symbols), which
was expected because rclA is not the only gene that contributes to HOCl resistance in
E. coli (19). Importantly, the colonization defect of �rclA EcN at 3 hpi was abrogated in
the DuoxIR flies, with CFU/fly not being significantly different from wild-type EcN
colonizing flies that are able to express Duox in the gut (Fig. 2). We confirmed that HOCl
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production was reduced in the DuoxIR flies using the HOCl-sensing fluorescent probe
R19-S (see Fig. S3A to C) (46). Taken together, these results show that rclA facilitates
early colonization of an animal host and indicate that rclA relieves stress caused by
host-produced oxidation in early stages of colonization. Duox activation and HOCl
production are rapid host immune responses that occur at early stages (minutes to first
few hours) of bacterial colonization of the gut (20). However, ROS and RCS production
are not the only antimicrobial responses in Drosophila, which may explain why rclA is
only required in early colonization. As the course of infection progresses, additional
antimicrobial effectors, such as antimicrobial peptides regulated by NF-�B signaling,
become more abundant (27). EcN infection induced robust production of antimicrobial
peptide production in our fly model (Fig. S3D, E, and F).

RclA is homologous to mercuric reductase and copper response genes are
upregulated after HOCl stress in EcN. Although the fact that rclA protects E. coli from
RCS was previously known (26), the mechanism by which it does so was not. Based on
its homology to other flavin-dependent disulfide oxidoreductases (47), we hypothe-
sized that RclA catalyzed the reduction of an unknown cellular component oxidized by
RCS. RclA is homologous to mercuric reductase (MerA), an enzyme that reduces Hg(II)
to Hg(0) (48). These sequences are particularly well conserved at the known active site
of MerA, a CXXXXC motif (Fig. 3A). However, MerA has an extra N-terminal domain and
two additional conserved cysteine pairs used in metal binding (48), while RclA only has
one conserved cysteine pair (see Fig. S4). This indicates that if RclA does interact with
metal(s), the interactions must be mediated through mechanisms different from those
of MerA. While the present manuscript was in revision, Baek et al. published a crystal
structure of RclA (49), and alignment of this structure with that of MerA (50) clearly
illustrates the homology between these two proteins as well as the location of the
MerA-specific domains (Fig. 3B).

HOCl-stressed E. coli K-12 downregulates genes encoding iron import systems (e.g.,
fepABCD and fhuACDF) and upregulates genes for zinc and copper resistance (e.g., copA,
cueO, cusC, zntA, and zupT) (25), also suggesting metals may play some role in RCS
resistance. The genome of EcN encodes the same complement of known copper resistance
genes as is found in E. coli K-12 (40, 41). Transcriptomic profiling of EcN after treatment with
a sublethal dose of HOCl confirmed the regulation of metal stress response genes by HOCl,
including the upregulation of several genes encoding proteins involved in response to
copper toxicity (Fig. 4; see also Data Set S2 in the supplemental material), despite the very
small amounts of copper present in the media used in that experiment (9 nM) (51). These
included members of the Cus and Cue export systems, which are factors appreciated for
their role in preventing copper toxicity and importance for E. coli colonization within
mammalian hosts (52–55). The expression of the rcl operon is not regulated by any of the
known Cu-sensing transcription factors of E. coli (56) and is not affected by changes in

FIG 2 EcN lacking rclA colonizes D. melanogaster less effectively, and early colonization with �rclA EcN
is improved in the absence of Duox-mediated oxidation. Flies were fed either wild-type or �rclA EcN
(1 � 1011 CFU/ml), and bacterial loads were measured at the indicated times postinfection (n � 4 to 5, �
the SD). RCS-deficient Duox-RNAi flies were obtained from crosses of UAS-dDuox-RNAi with NP1-GAL4
(enterocyte-specific driver). Statistical analysis was performed using a two-way analysis of variance
(ANOVA) with Tukey’s multiple-comparison test (****, P � 0.0001; ***, P � 0.001; ns, not significant).
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media copper concentrations (57, 58). Our results suggested that copper might play an
important role during HOCl stress for EcN. The homology between RclA and MerA and the
indication that copper and HOCl responses may be connected in E. coli led us to investigate
the role of rclA in resisting HOCl stress under growth conditions containing different
amounts of copper.

Extracellular CuCl2 protects both wild-type and �rclA E. coli strains against
HOCl. How the presence of copper influences bacterial sensitivity to RCS has not been
investigated before this study. However, it is important to note that Cu chemically
catalyzes the decomposition of HOCl to nontoxic O2 and Cl– (59–62). We first used
growth curves in the presence of copper and HOCl to identify how combinations of
HOCl and extracellular copper influenced the sensitivity of wild-type and ΔrclA mutant

FIG 3 RclA and mercuric reductase (MerA) share a conserved active site and are structurally homolo-
gous. (A) Active site alignment of E. coli RclA and MerA amino acid sequences from seven bacterial
species (Escherichia coli, Staphylococcus aureus, Salmonella enterica, Listeria monocytogenes, Klebsiella
pneumoniae, and Serratia marcescens). Alignment was made using CLUSTAL O (1.2.4), and a graphic was
made using WEBLOGO. (B) Structural alignment of MerA (orange) and RclA (cyan) with active sites in
purple and nonconserved regions in gray. Polymers represented as ribbons, and ligands (FAD, SO4,
glycerol, and Cl–) are represented in ball-and-stick form. Comparison and graphics made using the
“sequence and structure alignment” tool (jFATCAT_rigid algorithm with input sequences 1ZK7.A and
6KGY. (B) Provided by the RCSB (109).

FIG 4 EcN upregulates copper export proteins during HOCl stress. Log2-fold change in EcN gene expression
at 15 and 30 min after nonlethal HOCl treatment (0.4 mM), relative to a control sample taken directly before
treatment. mRNA counts were measured using RNA sequencing and analyzed with Bowtie2.

RclA Protects against HOCl and Intracellular Copper ®

September/October 2020 Volume 11 Issue 5 e01905-20 mbio.asm.org 5

https://mbio.asm.org


E. coli (Fig. 5A and B). As noted above, the ΔrclA mutant was more sensitive to HOCl in
MOPS, but the sensitivity to HOCl of both strains was greatly increased when Cu was
removed from the media, indicating that the low concentration of Cu present in
morpholinepropanesulfonic acid (MOPS) medium (9 nM) (51) was enough to react with
the added HOCl and change the sensitivity of our strains. Consistent with this, addition
of 10 �M CuCl2 to HOCl-containing media greatly decreased sensitivity of both the wild
type and the rclA-null mutant to sublethal HOCl stress (Fig. 5A and B; see also Fig. S5A,
B, and C in the supplemental material). That copper is uniformly protective for both
strains makes it likely that extracellular copper had reacted with and detoxified the
HOCl before cells were inoculated into the media. To confirm this result, we tested
whether the addition of exogenous copper (0.5 mM CuCl2) could protect E. coli against
killing by a very high concentration of HOCl (1 mM). We found that treatment with
1 mM HOCl resulted in complete killing of both strains (Fig. 5C). Both strains survived
several orders of magnitude better when 0.5 mM CuCl2 was added to the media
immediately before HOCl stress (Fig. 5C). In addition, colonization of flies by EcN was
enhanced when their diet was supplemented with copper (see Fig. S5D), showing that
copper can influence the microbiome in vivo, and consistent with the model that
copper detoxifies HOCl in the gut. Taken together, these results illustrate that the
presence of exogenous copper strongly protects E. coli against HOCl.

RclA protects E. coli against the combination of HOCl and intracellular copper.
Next, we sought to investigate how intracellular copper affects the HOCl resistance of
E. coli. To address this, we grew wild-type and ΔrclA mutant E. coli strains overnight in
minimal media with or without copper before inoculating the strains into copper-free
media to perform HOCl-stress growth curves. Growing overnight cultures in media
lacking copper was expected to starve the cells for this metal, thereby reducing the
concentration of intracellular copper in those cultures. A broad range of HOCl concen-
trations were assayed to account for quenching of the oxidant by media components.

Consistent with the results shown in Fig. 5, E. coli was more sensitive to inhibition
by HOCl in media without copper. The ΔrclA mutant was more sensitive to HOCl than

FIG 5 Extracellular CuCl2 protects both wild-type and ΔrclA E. coli strains against HOCl. Growth curves of E.
coli K-12 wild-type (A) and ΔrclA (B) strains in MOPS with the addition of various combinations of HOCl
(132 �M) and CuCl2 (10 �M) (n � 3, � the SD for each treatment). Time (means � the SD) for each sample
to reach an A600 of 0.15 is indicated by vertical dashed lines. Only one of several HOCl concentrations tested
is shown for simplicity (see Fig. S5A to C in the supplemental material for lag-phase extension calculations, a
summary of all the conditions tested using the growth curve method, and statistics comparing LPE values
shown in this figure). (C) Exogenous copper protects both wild-type and ΔrclA E. coli strains from lethal HOCl
stress (10 min at 1 mM). Cells were treated as described in Fig. S2C and D.
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the wild type when grown overnight in copper-containing media, but this phenotype
was lost when cells were starved for copper before stress (Fig. 6). The wild-type strain
was also slightly more sensitive to some concentrations of HOCl in the presence of
intracellular copper (see Fig. S6B and C), but this difference was much more subtle than
in the ΔrclA mutant. These results suggest that the physiological role of RclA is to resist
the stress resulting from the combination of HOCl and copper in the cytoplasm. They
are not consistent, however, with a model where RclA uses Cu to detoxify RCS or other
oxidants in the cytoplasm (49), since in that case we would expect the sensitivity of the
wild type to decrease to match that of the ΔrclA mutant in the absence of Cu, the
opposite of what we actually observed (Fig. 6B).

RclA reduces copper(II) to copper(I). Based on the effect of copper starvation on
the HOCl sensitivity of the ΔrclA mutant, the sequence homology between RclA and
MerA, and the predicted oxidoreductase activity of RclA (47), we hypothesized that the
substrate of RclA might be copper. The reaction between copper and HOCl is known to
generate strong oxidizing intermediates, most likely highly reactive Cu(III) (59–63). HOCl
is also capable of oxidizing other transition metals, including iron (64, 65) and manga-
nese (66, 67). We therefore measured the specific activity (SA) of purified RclA in the
presence of a panel of biologically relevant metals. We also included mercury in the
panel of metals because of RclA’s homology to MerA, although it is unlikely to be
physiologically relevant since we do not expect E. coli to encounter this metal in its
environment under normal conditions. We note that the oxidized forms of many
transition metals are insoluble in aqueous solution, which limited the set of substrates
we could test with this experiment.

FIG 6 rclA is required to resist the combination of HOCl and intracellular Cu. HOCl (132 �M) growth curves
(n � 3, � the SD) in copper-free MOPS of wild-type and ΔrclA E. coli after being grown overnight in MOPS with
(A) or without (B) copper. The time for each sample to reach an average A600 of 0.15 is indicated by vertical
dashed lines. Copper-free MOPS was prepared by treating the media with Chelex-100 chelating resin (Bio-Rad
1421253) and adding back all the metals (metal stock solutions prepared in metal-free water, Optima LC/MS
Grade, Fisher Chemical W6-1), except for copper, to the published concentrations (51). In cells containing
intracellular copper (A), the ΔrclA mutant has delayed growth relative to the wild type; there is no difference
between the strains when the cells were starved for intracellular copper (B). One HOCl concentration is shown
for simplicity (see Fig. S6 in the supplemental material for growth curves showing more HOCl concentrations
and the statistical analysis comparing LPE values between the strains at each condition). (C) Average LPE
values for growth curves shown in panels A and B and statistics comparing wild-type and ΔrclA strains under
all conditions. Differences in average LPE values between the strains were analyzed using two-way ANOVA
with Tukey’s multiple-comparison test.
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In the absence of any metal, RclA slowly oxidized NADH (0.0303 �mole NAD� min	1

mg	1 RclA), consistent with the background activity of other flavin-dependent oxi-
doreductases in the absence of their specific substrates (68, 69). Three of the metals we
tested significantly affected RclA SA, as measured by NADH oxidation. Copper and
mercury both significantly increased the SA of RclA, whereas zinc caused a decrease in
SA (Fig. 7A). As mentioned above, while the present manuscript was in revision, Baek
et al. (49) reported crystal structures of E. coli RclA in the presence or absence of bound
copper, along with testing a similar panel of metals as the substrates. The results from
that study are consistent with ours, supporting our identification of RclA as Cu(II)
reductase. Copper is a potent inhibitor of MerA activity (70), further emphasizing the
distinct nature of these two enzymes. RclA oxidized NADPH at similar rates to NADH in
the absence of metals, but there was no significant increase to SA when copper
was added to the reactions. The addition of exogenous thiols, commonly added as
�-mercaptoethanol (BME), is required for MerA activity (71). To determine whether
exogenous thiols increase the reaction rate of RclA, we added 1 mM BME to the RclA
reactions. BME rapidly reduced Cu(II) to Cu(I) in the absence of RclA but had no effect
on the SA of NADH reduction by RclA with or without the addition of copper (see
Fig. S7A and B).

Since RclA is an NADH oxidase, the results shown in Fig. 7A strongly suggested that
this enzyme was concurrently reducing copper. Copper exists in four possible oxidation
states, Cu(I), Cu(II), and the less common and highly reactive Cu(III) and Cu(IV) states

FIG 7 RclA reduces Cu(II) to Cu(I). (A) RclA specific activity (SA) increases in the presence of Cu(II) and
Hg(II). SA [�mol of NAD(P)� min	1 mg	1 RclA] of RclA was assayed by measuring NAD(P)H oxidation over
time spectrophotometrically (n � 6 for each reaction type, � the SD). Reactions were started by adding
100 �l of NAD(P)H or NADH and each indicated metal (both to 200 �M final) to 100 �l of RclA (3 �M final)
at 37°C using the injector system of a Tecan Infinite M1000 plate reader. All reactions were carried out
in 20 mM HEPES–100 mM NaCl (pH 7). NADH absorbance at 340 nm was measured each minute for 5 min.
“Buffer only” denotes NAD(P)H oxidation in the presence of the indicated metals, and the “FAD” reactions
were performed with 3 �M FAD to control for any possible free cofactor that may contribute to metal
reduction in the RclA positive reactions. Differences in SA in the presence of each metal were analyzed
using a two-way ANOVA with Dunnett’s multiple-comparison test using the no metal reaction as the
control (****, P � 0.0001; **, P � 0.01). (B) Cu(I) accumulates after the RclA and NADH/copper (II) reaction,
as measured by BCS/Cu(I)-complex absorption. Each reaction described in panel A was then stopped at
5 min with 10 �l of a BCS (400 �M final) and EDTA (1 mM final) solution using the injector system of the
plate reader. The stopped reaction mixtures were incubated at 37°C for 5 min, with the absorbance of
BCS/Cu(I) complex being measured at 483 nm each minute to ensure saturation of BCS. Differences in the
amount of BCS/Cu(I) complex between the buffer-only and RclA reactions were analyzed using a two-way
ANOVA with Dunnett’s multiple-comparison test using the buffer-only sample as the control for each
reaction start solution (****, P � 0.0001; ns, not significant).

Derke et al. ®

September/October 2020 Volume 11 Issue 5 e01905-20 mbio.asm.org 8

https://mbio.asm.org


(72). The copper salt used in our RclA SA determinations was CuCl2, suggesting that
RclA was reducing this Cu(II) species to Cu(I). This was initially surprising to us, since
Cu(I) is often thought of as a toxic species that causes oxidative stress (54, 73). We
therefore first sought to validate that RclA was in fact reducing Cu(II) to Cu(I) while
oxidizing NADH to NAD�. We measured Cu(I) accumulation in RclA reactions directly
using the Cu(I)-specific chelator bathocuproinedisulfonic acid (BCS) (74). NADH spon-
taneously reduces Cu(II) (75) at rates too slow to impact the measurements made here,
but BCS increases the rate of this nonenzymatic copper reduction by shifting the
equilibrium of the reaction toward Cu(I) (76). Stopping RclA reactions with a mixture of
BCS and EDTA, to chelate any remaining Cu(II), allowed us to observe RclA-dependent
Cu(I) accumulation (see Fig. S7C and D). We observed a significant increase in BCS/Cu(I)
complex formation only in reaction mixtures containing RclA, NADH, and Cu(II) and not
in reaction mixtures lacking any single component (Fig. 7B; see also Fig. S7C and D in
the supplemental material). Furthermore, we validated that the copper reductase
activity of RclA was maintained when the reactions were performed in an anaerobic
chamber (see Fig. S7E) and that FAD alone did not catalyze Cu(II) reduction (see Fig. S7A
and B). Taken together, our results show that RclA has Cu(II) reductase activity and
directly demonstrate that RclA generates Cu(I) as a product. This is consistent with the
findings of Baek et al. (49), who also used site-directed mutagenesis to clarify the roles
of the active site cysteines of RclA in Cu(II) reductase activity and binding sensitivity.

RclA is thermostable and resistant to denaturation by HOCl and urea. We
hypothesized that the copper reductase activity of RclA was likely to be relatively stable
under denaturing conditions because it must remain active during exposure to HOCl
stress, which is known to cause extensive protein misfolding and aggregation in vivo
(19, 27, 28, 32–34). To test this hypothesis, we first measured RclA activity after
treatment with protein denaturing agents (HOCl and urea) in vitro. HOCl treatment
(with 0-, 5-, 10-, and 20-fold molar ratios of HOCl to RclA) was performed on ice for 30
min, and urea treatment (0, 2, 4, and 6 M) was carried out at room temperature for 24 h.
RclA retained full copper reductase activity at all HOCl levels tested, indicating that it
is highly resistant to treatment with HOCl (Fig. 8A). By comparison, the NADH oxidase
activity of lactate dehydrogenase was significantly decreased after treatment with a
5-fold excess of HOCl (Fig. 8B). RclA also retained a remarkable 35.8% of full activity
after being equilibrated in 6 M urea (Fig. 8C). Finally, we used circular dichroism (CD)
spectroscopy to measure the melting temperature (Tm) of RclA, which was 65°C (Fig. 8D;
see also Fig. S7F), indicating that RclA is thermostable relative to the rest of the E. coli
proteome, which has an average Tm of 55°C (standard deviation [SD] � 5.4°C) (60, 77).

RclA influences copper homeostasis, but HOCl stress does not lead to copper
export in wild-type E. coli. Since the copper exporters of E. coli (copA and cusCFBA) are
upregulated by HOCl treatment (Fig. 4; see also Data Set S2 in the supplemental
material) (25) and only transport Cu(I) (54, 55, 78, 79), one possible model for how RclA
protects against HOCl is that RclA might facilitate the rapid export of cytoplasmic
copper, allowing it to react with and eliminate HOCl outside the cell. To test whether
the Cu(II) reductase activity of RclA is important for exporting copper during HOCl
stress, we measured intracellular copper concentrations in E. coli MG1655 before and
after HOCl stress with ICP mass spectrometry (see Fig. S8A). The copper content of the
wild type did not change upon HOCl stress, indicating that copper export is not
dramatically upregulated under these conditions. We did find that the ΔrclA mutant
contained, on average, more intracellular copper before HOCl stress than did the wild
type but that both strains contained similar amounts of copper after HOCl stress. This
suggested that RclA has a role in copper homeostasis under nonstress conditions but
that any copper export stimulated by HOCl was RclA independent and, in fact, only
occurred in the absence of RclA. To attempt to further probe the effect of intracellular
copper on HOCl survival, we constructed mutants lacking copA, which is reported to
result in increased intracellular copper (55), but unexpectedly found that the copA rclA
double mutant had a substantial growth defect in copper-free media, even in the
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absence of HOCl (see Fig. S8B and C). We do not yet know the explanation for this
intriguing result, since there are no known essential copper-containing proteins in E.
coli (80), although perhaps the most likely candidate under our growth conditions is the
Cu-containing cytochrome bo3 ubiquinol oxidase CyoB, which is involved in aerobic
respiration at high O2 concentrations (81, 82). Our results suggest that there is consid-
erable complexity in the interactions between Cu homeostasis and RclA under different
growth conditions, and future work in our laboratory is focused on exploring these
interactions in more detail. However, our current results clearly indicate that Cu is
important to understanding bacterial HOCl sensitivity and that the Cu(II) reductase RclA
is involved in modulating that process.

DISCUSSION

The antimicrobial function of copper in host-microbe interactions is well established
(15, 17, 52, 83), although the exact mechanism(s) by which copper kills bacteria remain
incompletely known (84, 85). In the present study, we identified a new way in which
copper toxicity contributes to host-bacterium interactions via its reactions with RCS. We
identified RclA as a highly stable Cu(II) reductase (Fig. 7). This is consistent with the
simultaneous report by Baek et al. (49), who also found that both Cu(II) and Hg(II)
increase the rate of NADH oxidation by RclA. Importantly, we have now shown that RclA
is required in vivo for resisting killing by the combination of HOCl and intracellular
copper in E. coli (Fig. 6). In the absence of rclA, E. coli had a significant defect in initial
colonization that was partially eliminated when production of HOCl by the host was
reduced (Fig. 2). The amount of copper in bacterial cells is low (15, 16), but how much
is unbound by protein and its redox state under different conditions are unknown (15).
Given the broad conservation of RclA among host-associated microbes, we propose
that there is likely to be a common and previously unsuspected role for copper redox
reactions in interactions between bacteria and the innate immune system.

Copper accumulates in host tissues during inflammation (86, 87), as do RCS (88, 89).
Our discovery that even very low concentrations of extracellular copper can protect

FIG 8 RclA is resistant to denaturation. (A) SA of RclA (�mol NAD� min	1 mg RclA	1), with or without
CuCl2, after being treated with the indicated molar ratios of HOCl to RclA. (B) SA of lactate dehydrogenase
(LDH) (�mol of NAD� min	1 U LDH	1) used as control reactions for HOCl degradation of enzymatic
activity. (C) RclA with or without CuCl2 (200 �M final) after being treated with the indicated concentra-
tions of urea. (D) CD signals at 222 nm (mdeg) (raw data are shown in Fig. S7F in the supplemental
material) at each temperature used to determine the Tm of RclA (65°C). Differences in SA (n � 6, � the
SD) after treatment were analyzed using two-way ANOVA with Sidak’s multiple-comparison test for HOCl
treatment (A and B) and Dunnett’s test using the buffer-only reaction as the control for the urea-treated
samples (C) (****, P � 0.0001; *, P � 0.05; ns, not significant).
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bacteria against RCS both in vitro and in vivo adds a new and important facet to
understanding copper’s role in innate immunity. Since a large proportion of host tissue
damage during inflammation is due to HOCl (90, 91), the presence of copper in
inflamed tissues may play an important role not only in killing bacteria but potentially
also in protecting host cells, although this hypothesis will require further testing. Our
results also show that media copper concentrations are a key variable in experiments
testing the sensitivity of cells to HOCl and that care must be taken to account for media
copper content and use metal-free culture vessels in such experiments.

Both HOCl and copper can cause oxidative stress in bacteria and Cu(I) is generally
considered more toxic than Cu(II) (15, 19, 52, 83, 84, 92), so we were initially surprised
that a Cu(II) reductase protected E. coli against HOCl. Copper reacts with the ROS
hydrogen peroxide (H2O2) to form highly reactive hydroxyl radicals in vitro (17, 53, 73,
85), but there is also strong evidence that oxidation is not the major cause of Cu toxicity
in E. coli (85, 93). CusRS and CueR are exceptionally sensitive to changes in Cu
concentrations in the periplasm and cytoplasm, respectively (94, 95). CueR, for example,
has zeptomolar Cu binding affinity (95). The upregulation of the CusRS and CueR
regulons under HOCl stress (Fig. 4) indicates that free Cu is increasing in both the
cytoplasm and the periplasm, which could plausibly result from the oxidation of
cysteine and histidine residues in Cu-binding proteins by HOCl (96, 97). Redox pro-
teomics of RCS-stressed E. coli (98, 99) have not identified oxidized Cu-binding proteins,
but the methods used in those studies to date are limited to detection of the most
common proteins in the cell. Detection of oxidation in less abundant proteins will
require more specialized methods (30).

How the presence of copper influences bacterial sensitivity to RCS has not been
investigated before this study, but the chemistry of reactions between HOCl and
copper is complicated and different from that of reactions between ROS and Cu. HOCl
can oxidize Cu(II) to highly reactive Cu(III) (59–63), and both Cu(I) and Cu(II) are known
to catalyze the breakdown of HOCl (59–62). At nearly neutral pH, similar to that in the
large intestine or bacterial cytoplasm, Cu(I) accelerates the rate of decomposition of
HOCl to O2 and chloride ions by as much as 108-fold (60). One possibility to explain the
protective effect of RclA is that it might facilitate an HOCl-degrading Cu(I)/Cu(II) redox
cycle in the cytoplasm. Alternatively, Baek et al. (49) note the increased O2 consumption
by RclA in the presence of Cu(II), and propose that RclA protects against oxidative stress
by lowering O2 levels. If either of these were the case, however, RclA would require
copper to drive HOCl resistance and the ΔrclA mutant would become more sensitive to
HOCl in the absence of copper, the opposite of what we actually observed (Fig. 6). We
therefore propose that RclA-catalyzed reduction of Cu(II) to Cu(I) may act to limit the
production of Cu(III) in the cytoplasm (Fig. 9). Uncontrolled production of Cu(III) could
greatly potentiate the ability of HOCl to kill bacterial cells Alternatively, RclA may also
ensure that intracellular copper remains in the Cu(I) state, where it can be bound by Cu
chaperones like CopA(Z) (100). All of the known proteins involved in Cu homeostasis
and export in the E. coli cytoplasm are specific to Cu(I) (52, 54, 55). Although our data
(see Fig. S8A in the supplemental material) indicate that Cu export is not detectably
upregulated in HOCl-stressed wild-type cells, we cannot rule out a role for RclA in

FIG 9 Proposed model for RclA activity in reducing the toxicity of HOCl. Oxidation of Cu by HOCl can
result in the production of the highly-reactive and unstable Cu(III) (72, 110). Limiting the amount of
cytoplasmic Cu(II) available would prevent the accumulation of Cu(III) during HOCl stress, thereby
reducing the toxicity. Converting intracellular Cu(II) to Cu(I) may also facilitate Cu export via CopA(Z)
mediated export systems (55).
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maintaining Cu homeostasis under nonstress conditions, especially given the unex-
pected phenotype of a copA rclA double mutant (see Fig. S8B and C). This is an active
area of research in our lab, and we are currently exploring how RclA and the various Cu
homeostasis mechanisms of E. coli interact both under nonstress conditions and in the
presence of HOCl.

The rate at which RclA oxidized NADH in the presence of copper in vitro was slow
(approximately 4.4 min	1) (Fig. 7) (49), suggesting that we have not yet identified
optimal reaction conditions for this enzyme. However, expression of rclA is rapidly
induced �100-fold after sublethal doses of HOCl in E. coli (Fig. 4; see Data Set S2 in the
supplemental material) (26), which could compensate in vivo for the low rate of NADH
turnover we observed in vitro.

While RclA itself is widely conserved, the rclABCR locus as a whole is restricted to
certain enteric proteobacteria, including E. coli, Salmonella, Citrobacter, Raoultella,
Serratia, and Shigella. These genera are notable for their close association with gut
inflammation and the ability of pathogenic strains to bloom to very high levels in the
gut in disease states (2, 3, 7–10, 101, 102). We hypothesize that the ability to survive
increased levels of antimicrobial compounds (including RCS) in the inflamed gut is
important for the ability of enterobacteria to exploit this niche, and our in vivo results
with the ΔrclA mutant generally support this idea (Fig. 2). Many noninflammatory
commensal bacteria do encode rclA homologs (Fig. 1; see Data Set S1 in the supple-
mental material), including members of the Bacteroidetes, Clostridiaceae, and Lactoba-
cillaceae, where their physiological roles are unknown. Expression of the rclA homolog
of the probiotic Lactobacillus reuteri is induced modestly by HOCl, but an L. reuteri rclA
mutant is not sensitive to HOCl stress (36). It is unclear, however, whether this is
because RclA has a different physiological function in L. reuteri (possibly related to Cu
homeostasis) or because RclA requires either strong induction or the presence of RclB
and RclC to protect against HOCl under laboratory growth conditions. We do not
currently know the physiological roles of RclB, which is a small predicted periplasmic
protein, or RclC, which is a predicted inner membrane protein, although deletion of
either of these genes results in increased HOCl sensitivity in E. coli (26). We hypothesize
that they may form a complex with RclA in vivo and enhance its copper-dependent
protective activity and are currently pursuing experiments to test this idea.

MATERIALS AND METHODS
Strain and plasmid construction. E. coli strain MJG0586 [F– �– rph-1 ΔilvG rfb-50 ΔrclA �(DE3 [lacI

lacUV5-T7 gene 1 ind1 sam7 nin5)] was generated from MJG0046 (F– �– rph-1 ΔilvG rfb-50 ΔrclA) (26) using
the Novagen DE3 lysogenization kit, according to the manufacturer’s instructions. The ΔcopA767::kan�

allele from the Keio collection (103) was transduced into E. coli strains MG1655 and MJG0046 by P1
transduction (104), yielding strains MJG1759 (F– �– rph-1 ΔilvG rfb-50 ΔcopA767::kan�) and MJG1760 (F–

�– rph-1 ΔilvG rfb-50 ΔrclA ΔcopA767::kan�) The RclA coding sequence (1374 bp) was amplified from E.
coli MG1655 genomic DNA with the primers 5= CTC GGT CTC CAA TGA ATA AAT ATC AGG CAG TGA 3=
and 5= CTC GGT CTC AGC GCT TTA TTT GAC TAA TGA AAA TAG ATC A 3= and cloned into the Eco31I (BsaI)
sites of plasmid pPR-IBA101 (IBA Life Sciences) to yield plasmid pRCLA10. pRCLA11 was generated by
using QuikChange site directed mutagenesis (Agilent), modified to use a single mutagenic primer (5= CTA
TTT TCA TTA GTC AAA AGC GCT TGG AGC CAC CC 3=), to remove the stop codon between the RclA
coding sequence and the twin-strep tag sequence in pRCLA10. E. coli Nissle 1917 ΔrclA::cat� strain
MJG0846 was made by recombineering (105) using primers 5= CGT CTA TAG TCA TGA TGT CAA ATG AAC
GCG TTT CGA CAG GAA ATC ATC ATG GTG TAG GCT GGA GCT GCT TC 3= and 5= CTT TTC TCT GAG ACG
CCA GAA TAT TTG TTC TGG CGT CTG ATT TTG AGT TTA CAT ATG AAT ATC CTC CTT AG 3= to amplify the
chloramphenicol resistance cassette from pKD3. The cat� insertion was resolved using pCP20 resulting
in the E. coli Nissle 1917 ΔrclA strain MJG0860.

Protein expression and purification. Expression of twin-strep-tagged RclA was done in MJG0586
containing pRCLA11 (MJG1338) in M9 minimal media (106) containing 2 g liter	1 glucose and 100 �g
ml	1 ampicillin. Overnight cultures of MJG1338 were diluted 1:100 and grown to an A600 of 0.4 at 37°C
with shaking. When the A600 reached 0.4, expression was induced with IPTG (isopropyl-�-D-thiogalacto-
pyranoside; 1 mM final concentration) and allowed to continue for 12 to 18 h at 20°C. Purification of
recombinant RclA was achieved to high purity using a 1-ml StrepTrap HP column (GE, 28-9136-30 AC)
according to the manufacturer’s instructions. Purified protein was subsequently saturated with FAD
cofactor by incubating the protein preparation with a 10-fold molar excess of FAD at room temperature
for 45 min. Excess FAD and elution buffer were dialyzed away with three exchanges of 1 liter of RclA
storage buffer (50 mM Tris-HCl [pH 7.5], 0.5 M NaCl, 2 mM dithiothreitol, 10% glycerol) at 4°C overnight.
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Colonization of D. melanogaster with E. coli Nissle 1917. (i) D. melanogaster stocks and
husbandry. Canton-S flies were used as a wild-type line. Duox-RNAi flies were obtained from crosses of
UAS-dDuox-RNAi with NP1-GAL4 (gut-specific driver). Unless otherwise noted, the flies were reared on
cornmeal medium (per liter of medium: 50 g yeast, 70 g cornmeal, 6 g agar, 40 g sucrose, 1.25 ml
methyl-Paraben, and 5 ml 95% ethanol).

(ii) Oral infections. Adult female flies were starved for 2 h at 29°C prior to being fed a 1:1 suspension
of bacteria (optical density at 600 nm [OD600] � 200) and 2.5% sucrose applied to a filter paper disk on
the surface of fly food. Suspensions of bacteria at an OD600 of 200 were consistently found to contain
1 � 1011 CFU/ml. A negative control was prepared by substituting Luria-Bertani (LB) medium for the
bacterial suspension. Infections were maintained at 29°C.

(iii) CFU determination. Flies were surface sterilized in 70% ethanol and rinsed in sterile phosphate-
buffered saline (PBS). Individual flies were homogenized in screw-top bead tubes containing 600 �l of
PBS. Dilution series of homogenates were prepared with a range of (100 to 10	5). Spots (3 �l) of each
dilution were applied to LB plates and grown overnight at 30°C. E. coli colonies were identified by
morphology and counted to determine the CFU/fly.

RNA sequencing. E. coli Nissle 1917 was grown anaerobically (90% N2, 5% CO2, and 5% H2,
maintained with a Coy Laboratory Products anaerobic chamber) at 37°C in MOPS minimal media
(Teknova) in sealed Hungate tubes to an A600 of 0.25, then treated anaerobically with 0.4 mM HOCl.
Samples (7 ml) were harvested into 7 ml of ice-cold isopropanol immediately before and 15 or 30 min
after HOCl addition, harvested by centrifugation, and stored at – 80°C until use. RNA was purified using
a RiboPure-Bacteria kit (Ambion), according to the manufacturer’s instructions. mRNA sequencing was
performed at the UAB Heflin Center for Genomic Sciences using an Illumina NextSeq 500 as described
by the manufacturer (Illumina, Inc.). Use of an Agilent SureSelect strand-specific mRNA library kit (Agilent)
and ribosome reduction with the RiboMinus protocol for Gram-negative and Gram-positive bacteria (Life
Technologies) were performed as described by the manufacturers. The resulting mRNA was randomly
fragmented with cations and heat, followed by first-strand synthesis using random primers. Second-
strand cDNA production was done with standard techniques, and cDNA libraries were quantitated using
qPCR in a Roche LightCycler 480 with a Kapa Biosystems kit for Illumina library quantitation prior to
cluster generation, which was performed according to the manufacturers’ recommendations for onboard
clustering (Illumina). We generated approximately 8 million double-stranded 50-bp reads per sample.
Data were analyzed using Bowtie2 and DEseq2. RNA sequencing data have been deposited in NCBI’s
Gene Expression Omnibus (107) and are accessible through GEO series accession number GSE144068.

Growth curves for measuring sensitivity to HOCl. The molar HOCl concentration from concen-
trated sodium hypochlorite (Sigma-Aldrich, catalog no. 425044) was quantified by measuring the A292 of
the stock solution diluted in 10 mM NaOH. Copper-free MOPS was prepared by removing total metals
from MOPS minimal media (Teknova) containing 2 g liter	1 glucose and 1.32 mM K2HPO4 by treating
prepared media with a universal chelator (Chelex 100 chelating resin; Bio-Rad catalog no. 1421253),
filtering sterilizing away the Chelex resin, and adding back the metals normally present in MOPS suspended
in metal-free water, except for copper. Overnight cultures of MG1655 and MJG0046 were grown up overnight
in MOPS with or without copper. The overnight cultures were normalized to an A600 of 0.8 in and diluted to
an A600 of 0.08 in MOPS minimal medium without copper using the indicated combinations and/or
concentrations of HOCl and CuCl2. Cultures were incubated with shaking at 37°C in a Tecan Infinite M1000
plate reader with the A600 being measured every 30 min for 27 h. Sensitivity was subsequently determined by
comparing lag-phase extensions (the difference in hours to reach A600 � 0.15 from the no HOCl treatment
control under the same CuCl2 condition) for each stress condition.

Determining the effect of copper on lethal HOCl stress. Wild-type and ΔrclA E. coli MG1655 strains
were grown overnight in MOPS minimal media. Next, 500 �l of the overnight culture was pelleted,
resuspended in copper-free MOPS, and subcultured into 9.5 ml of copper-free MOPS, followed by growth
with shaking at 37°C to mid-log phase (A600 � 0.3 to 0.4). Once mid-log phase was reached, 1 ml of cells
was aliquoted into microcentrifuge tubes for each treatment. The cells were treated by adding the
indicated amounts of copper (II) chloride, followed by 1 mM HOCl, and then incubated on a 37°C heat
block for 10 min. After incubation, treatments were serially diluted in PBS, and 5-�l aliquots were spotted
onto LB agar plates. Plates were dried and incubated at room temperature for 2 days.

Measuring intracellular copper after HOCl stress. Wild-type and ΔrclA E. coli strains were grown to
an A600 of 0.6 in MOPS medium and stressed with 400 �M HOCl for 30 min at 37°C with shaking. After 30 min,
the cultures were diluted 2-fold with MOPS medium to quench HOCl and then pelleted. The mass of pellets
was determined after three rinses with PBS. The amount of copper was measured via inductively coupled
plasma mass spectrometry (7700� ICP-MS; Agilent Technologies, Santa Clara, CA) after suspension of the
collected pellets in concentrated nitric acid and dilution of the suspensions to a 2% nitric acid matrix. Samples
were filtered through 0.22-�m polytetrafluoroethylene filters to remove any particulates before running metal
determinations. Copper concentrations were determined by comparison to a standard curve (Agilent, catalog
no. 5188-6525) as calculated by Agilent software (ICP-MS MassHunter v4.3). Values determined by ICP-MS
were normalized to pellet mass and dilution factor.

NADH oxidase activity. Activity of purified RclA was assayed in 20 mM HEPES–100 mM NaCl (pH 7)
by measuring NADH oxidation over time spectrophotometrically. Purified recombinant RclA was pre-
loaded into wells of a 96-well plate (100 �l of 6 �M RclA). Reactions were started by adding 100 �l of
NADH (200 �M final) with the indicated metal salts (200 �M final) to RclA (3 �M final) at 37°C. The
absorbance of NADH (A340) was measured kinetically each minute for 5 min in a Tecan Infinite M1000
plate reader. A340 values were then used to calculate the �mol of NADH (�340 � 6,300 M	1 cm	1) and
NADPH (�340 � 6,220 M	1 cm	1) at each time point. The absolute values of slopes of NAD(P)H (�mol)
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over time (min) were divided by the amount (mg) of RclA used to determine the reported specific
activities [SA; �mol NAD(P)� min	1 mg	1 RclA] for each condition.

Copper(I) quantification. Cu(I) accumulation after the course of the RclA reaction was measured by
using bathocuproinedisulfonic acid disodium salt (BCS; Sigma-Aldrich, B1125). NADH oxidation reactions
were carried out as in the previous section but were started with either NADH (200 �M final), CuCl2
(200 �M final), NADH and CuCl2 (both at 200 �M final), or reaction buffer as a negative control to observe
levels of background copper in the reagents used. Each reaction was stopped at 5 min with a BCS
(400 �M final) and EDTA (1 mM final) solution using the injector system of a Tecan Infinite M1000 plate
reader. The stopped reaction mixtures were incubated at 37°C, with the absorbance of BCS/Cu(I) complex
being measured at 483 nm every minute for 5 min to ensure complete saturation of the BCS. The amount
of the BCS/Cu(I) complex after 5 min was determined using the molar extinction coefficient 13,000
M	1 cm	1 (74).

NADH oxidase activity after treatment with urea and HOCl. The SA of RclA after being treated
with denaturing agents was measured by determining the SA as described above after incubation of RclA
with either urea or HOCl. Urea treatment was done on 3 �M RclA for 24 h at room temperature with
increasing concentrations of urea (0, 2, 4, and 6 M) in reaction buffer (20 mM HEPES, 100 mM NaCl [pH
7]). HOCl treatment was done by mixing increasing molar ratios of HOCl (0, 5, 10, and 20�) with
concentrated RclA or L-lactate dehydrogenase (LDH; Sigma, LLDH-RO 10127230001; 35 �M) in oxidation
buffer (50 mM sodium phosphate [pH 6.8], 150 mM NaCl) and incubating the mixtures on ice for 30 min.
HOCl treatment was quenched after 30 min by diluting the RclA solutions to 6 �M and the LDH solutions
to 1 �M in reaction buffer (20 mM HEPES, 100 mM NaCl [pH 7]). NADH oxidation reactions with LDH were
performed under the same conditions as the RclA reactions but were started with 1.2 mM NADH and
1.2 mM pyruvate.

Melting temperature determination. CD spectra were obtained on a Jasco J815 circular dichroism
spectrometer. CD spectra were collected on purified recombinant RclA exchanged into 20 mM HEPES and
100 mM NaCl (pH 7.5). Room temperature CD spectra in the range of 260 to 190 nm were obtained in
0.1-mm demountable quartz cells. Thermal CD data between 30 and 90°C were obtained in standard
1.0-mm quartz cells. All data were collected with a 1.0-nm step size, an 8-s averaging time per point, and
a 2-nm bandwidth. Data were baseline corrected against the appropriate buffer solution and smoothed
with Jasco software.

Data analysis and bioinformatics. (i) Statistics. All statistical analyses were performed using
GraphPad Prism (v7.0a).

(ii) Phylogenetic tree. An RclA conservation tree was made from amino acid sequence alignments
of RclA (BLAST E-value � 1 � 10	90 in 284 species), RclB (BLAST E-value � 1 � 10	1 in 61 species), RclC,
(BLAST E-value � 1 � 10	80 in 49 species), and RclR (BLAST E-value � 1 � 10	40 in 43 species). BLAST
searches were done by comparing to each respective protein in E. coli MG1655. A tree graphic was made
using the Interactive Tree of Life (108) (https://itol.embl.de/).

(iii) Amino acid sequence alignments. Active site alignment of E. coli RclA (ADC80840.1) and
MerA amino acid sequences was done for seven bacterial species (Escherichia coli, ADC80840.1; Staph-
ylococcus aureus, AKA87329.1; Salmonella enterica, ABQ57371.1; Listeria monocytogenes, PDA94520.1;
Klebsiella pneumoniae, ABY75610.1; and Serratia marcescens, ADM52740.1). Alignment was done using
CLUSTAL O (1.2.4; www.ebi.ac.uk/Tools/msa/clustalo/), and a graphic was prepared using WEBLOGO
(weblogo.berkeley.edu/logo.cgi). A full-length alignment of E. coli RclA (ADC80840.1) and MerA (ADC80840.1)
was also prepared. Alignment, conservation scoring, and graphic were done using PRALINE (www.ibi.vu
.nl/programs/pralinewww/).

Data accessibility. All strains generated in the course of this study are available from the authors
upon request.
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