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Abstract: Microtubule-interacting and trafficking domain containing 1 (MITD1) is associated with
abscission during cytokinesis. However, systematic investigation into its role in cancer is lacking.
Therefore, we explored the pan-cancer role of MITD1 using multiple databases. Expression and
clinical survival, immunological, and enrichment analyses were performed using R packages and
online tools. For breast cancer, single-cell level analysis, immunochemistry, and in vitro experiments
were performed to explore the mechanism of MITD1. A nomogram was established to predict the
prognosis of patients with breast cancer and evaluate the immunotherapy biomarker based on two
datasets. In some cancers, high MITD1 expression was associated with a more favorable prognosis.
For instance, it inhibited tumor cell proliferation and migration in breast cancer. MITD1 may regulate
cancer development by altering the tumor microenvironment, and MITD1 expression may predict
the response to immune checkpoint blockade, platinum, and poly ADP-ribose polymerase inhibitor
therapies. Our nomogram was used to determine the prognosis of patients with breast cancer. MITD1
can also predict the response to immunotherapy. Our first pan-cancer study of MITD1 has shown
that it plays different roles in cancer development and therapy. In breast cancer, MITD1 inhibited cell
proliferation and migration and serves as a new biomarker.

Keywords: microtubule-interacting and trafficking domain containing 1 (MITD1); pan-cancer expres-
sion analysis; cancer prognosis; immune infiltration; immunotherapy

1. Introduction

With recent improvements in diagnosis and innovative treatment approaches, cancer
mortality rates have decreased; however, cancer remains a major threat to human health
worldwide. According to a recent report, in 2022, approximately 1,918,030 new cancer
cases and 609,360 cancer-related deaths will occur in the United States [1]. Breast carcinoma
(BRCA) accounts for almost one-third of cancers in women, and its incidence rates have
increased by approximately 0.5% yearly [1]. Although mortality due to BRCA has decreased
in recent years, the likelihood that patients receive appropriate treatment remains low.
Thus, further research on malignant cancers is urgently needed. Pan-cancer analysis is an
effective strategy to expand therapeutic options by identifying oncogenes through multiple
databases. Pan-cancer analyses for identification of biomarkers of cancer prognosis by
Nguyen et al. [2], Li et al. [3], and Saghafinia et al. [4] have shown remarkable results.

Microtubule-interacting and trafficking (MIT) domain containing protein 1 (MITD1)
contains a phospholipase D-like (PLD) domain in its C-terminus and an MIT domain in
its N-terminus, which binds to a subset of ESCRT-III subunits. ESCRT-III recruits MITD1
to the midbodies involved in the abscission phase of cytokinesis [5]. Apart from this,
MITD1 may possess catalytic activity through the PLD domain [6]. MITD1 can control
abscission by increasing midbody stability and through coordination of abscission with
earlier events [7]. The absence of MITD1 leads to instability of the midbody and abscission
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failure, and the depletion of MITD1 leads to increased blebbing and premature abscission
in cells [6]. ESCRT-III plays a critical role in several cancers, such as pancreatic tumors [8],
prostate cancer [9], ovarian cancer [10], kidney renal clear cell carcinoma [11,12], bladder
cancer [13], and liver cancer [14]. Moreover, disorders of abscission in cytokinesis can
cause genomic instability and tumorigenesis [15], implying the existence of a network
of interactions between MITD1 and the tumor microenvironment (TME), microsatellite
instability (MSI), tumor mutational burden (TMB), homologous recombination deficiency
(HRD), and ploidy. Thus, we performed a pan-cancer expression analysis of MITD1 in
33 cancer types using The Cancer Genome Atlas (TCGA), Tumor Immune Estimation
Resource (TIMER), and Human Protein Atlas (HPA), including data on MITD1 expression,
clinical survival prognosis, TME, TMB, MSI, HRD, and ploidy.

Moreover, in BRCA, the correlation between MITD1 and BRCA remains unknown. To
reduce this current knowledge gap, we also conducted an in-depth analysis of BRCA in par-
ticular. The GSE155109 and GSE72056 datasets were used to analyze the MITD1 expression
distribution and cell–cell interaction at the single-cell level [16,17]. Immunohistochemistry
(IHC) was performed to assess MITD1 expression in BRCA relative to that in normal tissues.
In addition, we explored the role of MITD1 in BRCA using in vitro experiments. To better
assess the role of MITD1 in clinical applications, we constructed a nomogram to determine
the prognosis and evaluate the role of MITD1 as a biomarker for immunotherapy using
two datasets. These findings might further help the diagnosis and treatment of BRCA,
providing a reference for studies on the role of MITD1 in other cancers.

2. Materials and Methods
2.1. MITD1 Expression Analysis in Multiple Databases Using R Packages

We constructed an MITD1 mRNA expression plot for diverse cancers and their
corresponding normal tissues. To address the imbalance between cancer and normal
data, we downloaded TCGA Pan-Cancer and GTEx v.7 TPM data from Xena Browser
(https://xenabrowser.net/datapages/ accessed on 4 November 2021) and the GTEx Portal
(https://gtexport.org/home/ accessed on 4 November 2021) [18]. MITD1 mRNA expres-
sion data were analyzed using R-3.6.3 software. The Wilcoxon rank-sum test was used to
identify differences in expression between tumor and normal tissues. To analyze protein
expression, we used the UALCAN portal (http://ualcan.path.uab.edu/analysis-prot.html
accessed on 18 November 2021) [19]. The GSE155109 and GSE72506 datasets were down-
loaded from Gene Expression Omnibus (GEO). The statistical significance threshold for all
tests was set at p < 0.05.

2.2. Tumor Microenvironment and Immune Cell Infiltration Analyses

The TME contains a variety of stromal and immune cells that constitute the envi-
ronment for cancer progression and affect the response to tumor therapy. We used the R
package “ESTIMATE (1.0.13)” to analyze the stromal, immune, and ESTIMATE scores. The
corr.test function of “psych (2.1.6)” was used to calculate Spearman’s correlation coeffi-
cients between MITD1 and the immune, stromal, and ESTIMATE scores. Additionally, we
performed immune cell infiltration analysis using the TIMER module of the R package
“IOBR (0.99.9)” and the corr.test function of “psych” [20,21]. This analysis mainly included
the infiltration scores of CD4+ T cells, CD8+ T cells, B cells, neutrophils, dendritic cells, and
macrophages in multiple cancer types. To further investigate at the single-cell level, we also
downloaded a single-cell breast cancer dataset (GSE155109) and a single-cell melanoma
tumor dataset (GSE72056). Gene expression matrices were re-created using the Seurat R
package (4.2.0) [22]. Cells were represented in a two-dimensional tSNE plane, and clusters
were identified and annotated according to the marker genes published by Geldhof et al.
and Tirosh et al. [16,17]. MITD1 expression levels were also illustrated using the tSNE
plane. Cells were then classified as high MITD1 expressing if their expression level was
above the median value and, otherwise, as low MITD1 expressing. Cell–cell interaction
was analyzed using CellChat (1.5.0) [23].

https://xenabrowser.net/datapages/
https://gtexport.org/home/
http://ualcan.path.uab.edu/analysis-prot.html
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2.3. TMB, Microsatellite Instability, HRD, and Ploidy Analysis

TMB is typically calculated as mutations per megabase (mut/Mb) [24,25]. MSI occurs
when the insertion or absence of repeating units leads to changes in microsatellite length.
MSI status is defined as indel counts (≥6 indels) in simple repeat sequences [26,27]. HRD is
an effective therapeutic biomarker that can induce genomic instability and, ultimately, cell
death [28]. Ploidy changes in tumor genomes are a hallmark of human cancers. Genetic in-
stability may provide a route to aneuploidy, thereby contributing to cancer progression [29].
Thus, we analyzed the relationship between MITD1 expression and TMB, MSI, HRD, and
ploidy using Sangerbox (http://sangerbox.com/ accessed on 2 December 2021).

2.4. MITD1-Related Gene Enrichment Analysis

We used the STRING website (https://string-db.org/ accessed on 5 February 2022) to
obtain 50 MITD1-related proteins. The parameters were set as follows: minimum required
interaction score (“Low confidence [0.150]”), the meaning of network edges (“evidence”),
max number of interactors to show (“no more than 50 interactors” in the first shell), and
active interaction sources (“experiments and text mining”). We obtained the top 100
MITD1-related genes using the “similar gene detection” module of GEPIA2. We used the
“correlation analysis” module of GEPIA2 to analyze the correlations between MITD1 and
the selected genes. Finally, we used an interactive Venn diagram to perform an intersection
analysis of the MITD1-binding and -interacting genes. Additionally, we used the R packages
“clusterProfiler (3.14.3)” and “ggplot2 (3.3.3)” to perform Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Furthermore, we used
the “gene_corr” module of TIMER2 to obtain heatmap data of the selected genes.

2.5. Immunohistochemistry

The human BRCA tissue microarray (IWLT-N-78B94), purchased from Wuhan Service-
bio Technology (Wuhan, China), included BRCA (n = 39) and adjacent tissue (n = 36). A
primary antibody against MITD1 (Cat No. 17264-1-AP, 1:100; Proteintech, Rosemont, IL,
USA) and a goat anti-rabbit IgG H&L (HRP) secondary antibody (Cat No. ab205718, 1:3000;
Abcam, Cambridge, UK) were used to detect protein expression. Images were captured
at 50× and 200× magnification under a microscope (Nikon ECLIPSE 80i, Tokyo, Japan).
Staining intensity (SI) scores were determined by two blinded independent pathologists.
The SI score for negative, weak, moderate, and intense staining was 0, 1, 2, and 3, respec-
tively. Positive cells were scored as follows: no staining, and 1–25%, 26–50%, 51–75%, and
76–100% positive cells; the scores were 0, 1, 2, 3, and 4, respectively.

2.6. Gene Function Analysis

We first explored the function of MITD1 using the CancerSEA database, which was
the first database to analyze the distinct function of cancer cells at the single-cell level [30].
Next, we selected the human breast cancer cell line MCF-7 to analyze the function of
MITD1. Cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium (DMEM;
VivaCell, Shanghai, China) supplemented with 10% fetal bovine serum (FBS; VivaCell)
at 37 ◦C in a humidified atmosphere with 5% CO2. MITD1-overexpressing and negative
control lentiviruses (GENECHEM, Shanghai, China) were transduced into cells and named
MITD1 and NC, respectively. After 72 h, the stably overexpressing cell lines were selected
using 2 µg/mL puromycin.

2.7. Cell Proliferation Assay

Cell proliferation was measured using a colorimetric assay with a Cell Counting
Kit-8 (CCK-8) (ApexBio Technology LLC, Houston, TX, USA). We plated 1000 cells/well
in 96-well plates, added 10 µL of CCK-8 to each well at the same time each day, and
incubated them at 37 ◦C for 2 h. Then, we used a microplate reader (SpectraMax Plus
384, Molecular Devices, LLC, San Jose, CA, USA) to measure the absorbance at 450 nm
wavelength. The proliferation was confirmed via the EdU incorporation assay. Next, we

http://sangerbox.com/
https://string-db.org/
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plated 5 × 104 cells in 35 mm dishes and incubated them at 37 ◦C for 24 h. Subsequently, the
cells were assessed using an EdU imaging kit (Cy3) (ApexBio Technology LLC) following
the manufacturer’s instructions. The final concentration of EdU was 50 µM. After 4 h
of incubation, images were obtained under a fluorescence microscope (Nikon ECLIPSE
80i), and cells were counted using ImageJ (1.52a, National Institutes of Health, Bethesda,
MD, USA).

2.8. Wound Healing and Transwell Assays

Cells were seeded in 6-well plates, supplemented with complete DMEM, and cultured
to confluence. A 200 µL pipette tip was used to generate a scratch along the diameter of
each plate. Subsequently, cells were washed with phosphate-buffered saline (PBS), serum-
free medium was added, and the plates were cultured at 37 ◦C for 48 h. Representative
images of the scrape lines at 0 h and 48 h in the same field were captured. For in vitro cell
migration assays, cells were seeded in the upper chamber of the Transwell (8 µm pores)
(Corning, Corning, NY, USA) and cultured with 250 µL of serum-free DMEM. Each well
of a 24-well plate contained 500 µL of medium supplemented with 20% FBS. After being
incubated for 48 h at 37 ◦C, cells were removed from the upper chamber, and those in the
lower chamber were washed, fixed, stained, and imaged (Canon EOS 800D, Tokyo, Japan).
The number of migrating cells in the selected fields was counted using ImageJ.

2.9. Survival Prognosis Analysis

We downloaded the HTSeq-FPKM expression data for all cancers from the UCSC Xena
platform. Survival analyses were performed using R 3.6.3 and the R packages “survival (3.2-
10)” and “survminer (0.4.9)”. The threshold dividing high and low MITD1 expression was
set at 50%. Cox regression analyses were used to determine statistical significance. Then,
we used the Kaplan–Meier plotter (http://kmplot.com/analysis/ accessed on 5 December
2021) to verify the results [31].

2.10. Survival Prediction

To predict the overall survival (OS) in BRCA, we performed the univariate and multi-
variate Cox regression analysis and constructed a nomogram via the R packages “survival
(3.2-10)” and “rms (6.2).” The selected variables were based on multivariate Cox analysis
and clinical practice. To validate the calibration power of the nomogram, we created a
calibration curve (200 bootstrap resamples) using the R packages “survival” and “rms”. The
survival probability was predicted for 1, 3, and 5 years. The concordance index (C-Index)
was calculated to assess the accuracy of the nomogram. Additionally, we explored the role
of MITD1 in predicting immunotherapy efficiency using the Tumor Immune Dysfunction
and Exclusion (TIDE) (http://tide.dfci.harvard.edu/ accessed on 11 April 2022) database
and used the R package “pROC (1.18.0)” to analyze the “PRJEB23709,” “PRJEB25780”
and “GSE100797” datasets to evaluate the predictive power in comparison with that of
traditional biomarkers, including PD-1, PD-L1, CTLA-4, and IFN-γ [32–37]. The area under
the receiver operator characteristic curve was used to measure the predictive accuracy of
these biomarkers.

2.11. Statistical Analysis

Statistical analysis and graphing were performed using Prism 7 (GraphPad). An un-
paired t-test was used for intergroup comparison in the in vivo experiments. All in vivo ex-
periments were repeated at least three times, and the data are presented as mean ± standard
error of the mean. A value of p < 0.05 was considered to indicate significance.

3. Results
3.1. MITD1 Expression across Cancer Types

A summary of this study is shown in Figure 1. We analyzed MITD1 expression in
normal tissues and diverse cell types. Based on datasets from HPA, GTEx, and FAN-

http://kmplot.com/analysis/
http://tide.dfci.harvard.edu/
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TOM5 (Functional Annotation of the Mouse/Mammalian Genome), the basal ganglia,
lymph nodes, and thalamus were the top three tissues with the highest MITD1 expression
(Figure S1A). In addition, MITD1 RNA showed low tissue specificity because all consensus-
normalized expression values were >1 in all detected tissues. MITD1 also displayed low
specificity for all blood cell types, according to the HPA/Monaco/Schmiedel datasets
(Figure S1B).
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Figure 1. Summary of this study design.

MITD1 mRNA expression data were analyzed against TCGA Pan-Cancer TOIL RSEM
TPM and GTEx v.7 TPM data. As displayed in Figure 2A, MITD1 expression was higher in
the tumor tissues of bladder urothelial carcinoma (BLCA), cholangiocarcinoma (CHOL),
colon adenocarcinoma (COAD), diffuse large B-cell lymphoma (DLBCL), glioblastoma
multiforme (GBM), head and neck squamous cell carcinoma (HNSCC), kidney renal clear
cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), low-grade glioma
(LGG), liver hepatocellular carcinoma (LIHC), pancreatic adenocarcinoma (PAAD), rec-
tal adenocarcinoma (READ), stomach adenocarcinoma (STAD), thymoma (THYM), and
acute myeloid leukemia (LAML) than in corresponding control tissues. However, MITD1
expression was lower in the tumor tissues of BRCA, esophageal carcinoma, kidney chromo-
phobe (KICH), lung adenocarcinoma (LUAD), ovarian serous cystadenocarcinoma (OV),
prostate adenocarcinoma (PRAD), skin cutaneous melanoma (SKCM), thyroid carcinoma
(THCA), uterine corpus endometrial carcinoma (UCEC), uterine carcinosarcoma, adreno-
cortical carcinoma (ACC), and lung squamous cell carcinoma (LUSC) than in corresponding
control tissues.

Moreover, we investigated MITD1 protein levels using the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) dataset. The results indicated that the MITD1 protein
was expressed at lower levels in BRCA, LUAD, and UCEC tissues (Figure 2B) than in
normal tissues.
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3.2. Correlation between MITD1 and Tumor Microenvironment and Immune Cell
Infiltration Analysis

First, we explored the correlations between MITD1 and immune, stromal, and ESTI-
MATE scores. As shown in Figure 3A and Table S1, in GBMLGG, LGG, BRCA, KIPAN,
PRAD, KIRC, SKCM, BLCA, SKCM-M, and DLBCL, the immune score was positively
correlated with MITD1 expression. Immune scores were negatively associated with MITD1
expression in the COAD, READ, LUSC, WT, and OV groups. Stromal scores were inversely
correlated with MITD1 expression in 13 cancers and positively correlated in five cancers,
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as shown in Figure S2A and Table S2. For ESTIMATE scores, eight and nine cancers were
positively and negatively correlated with MITD1 expression, respectively (Figure S2B,
Table S3). We then analyzed the correlation between MITD1 expression and infiltrating
immune cells. As shown in Figure 3B, MITD1 expression was associated with immune cells
in 31 cancer types. In PRAD and BRCA, MITD1 positively correlated with all six immune
cell types (CD4+ T cells, B cells, CD8+ T cells, neutrophils, dendritic cells, and macrophages).
At the single-cell level, MITD1 was most highly expressed in T cells (Figure 3C). Figure 3D
indicates the relative percentage of cells with high MITD1 expression. The highest MITD1
expression was observed in T cells (87.7%) (Figure 3E). To simplify the results, we classified
myoepithelial, perivascular, vascular, plasma, plasmacytoid dendritic, mast, lymphatically
non-enriched, and other stromal cells as stromal cells. CellChat analysis of the communica-
tion between high and low MITD1 expressing cells revealed that low MITD1 expression
stromal cells were a major source of ligands of the laminin pathway, which may alter cellu-
lar activities such as adhesion, migration, and proliferation (KEGG: hsa04512). Low MITD1
expression luminal cells were a major source of ligands of the midkine (MK) pathway,
which may regulate the immune system through cytokines (Figure 3F,G) [38].

3.3. Correlation between MITD1 and TMB, Microsatellite Instability, HRD, and Ploidy Analyses

Figure 4A illustrates that MITD1 expression was positively correlated with TMB in
LUAD, STES, KIPAN, STAD, BLCA, and ACC and inversely correlated with TMB in CHOL.
ACC had the highest correlation coefficient. These results indicated that MITD1 expression
was negatively correlated with low mutation status in CHOL but with a high mutational
burden in the other six cancer types. As shown in Figure 4B, MITD1 expression was
positively correlated with MSI in LGG, LUAD, STES, SARC, STAD, HNSCC, LUSC, THCA,
and BLCA. Conversely, MITD1 was negatively correlated with COAD, READ, KIPAN, and
DLBCL. THCA had the highest correlation coefficient with MITD1, and DLBCL correlated
the least with MITD1. In LUAD, STES, STAD, and BLCA, MITD1 expression was positively
correlated with both TMB and MSI, demonstrating that the higher the expression of MITD1,
the higher the mutational burden.

As shown in Figure 4C, MITD1 was positively correlated with HRD in GBM, GBMLGG,
LGG, LUAD, KIPAN, PRAD, HNSCC, LUSC, LIHC, PAAD, BLCA, and KICH. THYM was
inversely correlated with HRD. In addition, we explored the correlation between MITD1
expression and ploidy. Figure 4D shows that MITD1 expression was positively associated
with ploidy in READ, STES, KIPAN, STAD, and LIHC. In BRCA, THCA, OV, and TGCT,
MITD1 expression and ploidy were inversely correlated.

3.4. Enrichment of MITD1-Related Partners

To further explore the molecular role of MITD1, we filtered 41 MITD1-binding proteins
and MITD1-related genes for the enrichment analysis. Based on a few earlier studies on
MITD1, these 41 proteins reportedly bind to MITD1, as evidenced either experimentally
or through text mining. The connected network of these 41 proteins was illustrated using
STRING (Figure 5A). The top 100 genes most related to MITD1 expression were obtained
using the GEPIA2 tool. As shown in Figure 5B, MITD1 expression was positively correlated
with splicing factor 3b subunit 1 (SF3B1), THUMP domain containing 2 (THUMPD2),
TP53RK binding protein (TPRKB), integrin subunit beta 3 binding protein (ITGB3BP),
serine/arginine-rich splicing factor 7 (SRSF7), and mitochondrial ribosomal protein L30
(MRPL30) levels. Using an interactive Venn diagram of the two groups, we identified
only MRPL30 (Figure 5C). Figure 5E shows that in most cancer types, these six genes
were positively related to MITD1. We performed KEGG and GO enrichment analyses
by combining the results from the two datasets. Figure 5D suggests that MITD1 may be
involved in RNA metabolism and endocytosis in cancer development.
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3.5. Reduction of MITD1 Expression in BRCA Tissues

To verify the conclusion suggested above, we used BRCA (n = 39) and adjacent tissue
(n = 36) microarrays for experimental validation at the protein level (Figure 2C). The IHC
results illustrated that the MITD1 protein level was considerably reduced in BRCA tissues
compared with that in adjacent tissues. According to the immunoreactivity scoring system,
BRCA tissues from 31 patients (79%) were negative for MITD1, and adjacent tissues of
19 patients (53%) were positive. The clinical characteristics of the pathology stage, estrogen
receptor (ER) status, progesterone receptor (PR) status, human epidermal growth factor
receptor 2 (HER-2) status, and others are shown in Table S4.

3.6. Functions of MITD1

Using the CancerSEA database, we found that MITD1 was considerably negatively
related to nine functional states in BRCA, including quiescence, metastasis, differentia-
tion, cell cycle, inflammation, invasion, apoptosis, hypoxia, and epithelial–mesenchymal
transition (Figure 6A). Among them, the relationships with the cell cycle and epithelial–
mesenchymal transition are shown in Figure 6B. To further explore these results, we
conducted in vitro experiments. MITD1 was detected by western blotting following its
overexpression (Figure S1C). To verify MITD1 function in BRCA, we performed cell pro-
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liferation and colony formation assays. As shown in Figure 6C, MITD1 overexpression
reduced BRCA cell proliferation in the CCK-8 assay. EdU incorporation assay (Figure 6D)
confirmed these results. In addition, Transwell (Figure 6E) and wound healing (Figure 6F)
assays revealed that MITD1 could inhibit cancer cell migration. These results demonstrated
that MITD1 inhibits BRCA cell proliferation and migration.

Cells 2022, 11, x FOR PEER REVIEW 11 of 22 
 

 

Figure 4. Correlation of MITD1 expression with Tumor mutational burden, microsatellite instabil-

ity, homologous recombination deficiency, and ploidy. (A) the correlation between MITD1 and Tu-

mor mutational burden. (B) The correlation between MITD1 and microsatellite instability. (C) The 

correlation between MITD1 and homologous recombination deficiency. (D) The correlation be-

tween MITD1 and ploidy. 

As shown in Figure 4C, MITD1 was positively correlated with HRD in GBM, 

GBMLGG, LGG, LUAD, KIPAN, PRAD, HNSCC, LUSC, LIHC, PAAD, BLCA, and KICH. 

THYM was inversely correlated with HRD. In addition, we explored the correlation be-

tween MITD1 expression and ploidy. Figure 4D shows that MITD1 expression was posi-

tively associated with ploidy in READ, STES, KIPAN, STAD, and LIHC. In BRCA, THCA, 

OV, and TGCT, MITD1 expression and ploidy were inversely correlated. 

3.4. Enrichment of MITD1-Related Partners 

To further explore the molecular role of MITD1, we filtered 41 MITD1-binding pro-

teins and MITD1-related genes for the enrichment analysis. Based on a few earlier studies 

on MITD1, these 41 proteins reportedly bind to MITD1, as evidenced either experimen-

tally or through text mining. The connected network of these 41 proteins was illustrated 

using STRING (Figure 5A). The top 100 genes most related to MITD1 expression were 

obtained using the GEPIA2 tool. As shown in Figure 5B, MITD1 expression was positively 

correlated with splicing factor 3b subunit 1 (SF3B1), THUMP domain containing 2 

(THUMPD2), TP53RK binding protein (TPRKB), integrin subunit beta 3 binding protein 

(ITGB3BP), serine/arginine-rich splicing factor 7 (SRSF7), and mitochondrial ribosomal 

protein L30 (MRPL30) levels. Using an interactive Venn diagram of the two groups, we 

identified only MRPL30 (Figure 5C). Figure 5E shows that in most cancer types, these six 

genes were positively related to MITD1. We performed KEGG and GO enrichment anal-

yses by combining the results from the two datasets. Figure 5D suggests that MITD1 may 

be involved in RNA metabolism and endocytosis in cancer development. 
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proteins. (B) The correlation between MITD1 and selected genes from GEPIA2 tool. (C) Venn diagram
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3.7. Prognostic Value of MITD1 in Cancers

All cases were divided into high- and low-expression groups according to MITD1
expression levels. In addition, we used TCGA and GEO datasets to analyze the relationship
between MITD1 and the prognosis of patients with different cancers. As illustrated in
Figure 7A, high MITD1 expression was associated with OS in GBMLGG, LIHC, KIRC, and
SKCM. Moreover, low MITD1 expression was linked to a poor OS in BLCA, BRCA, and OV.

As shown in Figure 7B, high MITD1 expression was related to poor progression-free
survival (PFS) in patients with ACC, GBMLGG, LIHC, and PRAD. Low MITD1 expression
was related to poor PFS in BLCA and READ.

We then conducted a survival analysis using the Kaplan–Meier plotter tool and found
that lower MITD1 expression was associated with poor OS, distant metastasis-free survival,
and relapse-free survival (RFS) for BRCA (Figure S3A). Simultaneously, a low MITD1 ex-
pression level was also associated with poor OS, first progression (FP), and post-progression
survival (PPS) in gastric cancer (Figure S3C). In contrast, high MITD1 expression levels
were associated with poor OS and PFS in ovarian cancer (Figure S3B). Similarly, patients
with lung cancer with high MITD1 expression had poorer OS and FP but a better PPS
(Figure S2D). For patients with liver cancer, higher MITD1 expression was correlated with
poor OS, PFS, RFS, and disease-free survival (DSS) (Figure S3E).
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Figure 6. Functional analysis of MITD1. (A) Functional relevance of MITD1 at single-cell level
through CancerSEA database. (B) The function analysis between MITD1 and cell cycle and epithelial–
mesenchymal transition (EMT) at single-cell level. (C) CCK-8 analysis. (D) Representative images
of EdU incorporation assay (magnification: ×100). (E) Representative images of Transwell analysis
(magnification: ×100). (F) Representative images of wound healing analysis (magnification: ×40).
* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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3.8. Correlation between MITD1 and Survival Prediction

To analyze the value of MITD1 in BRCA, we performed Cox regression (Table S5)
and analyzed the prognostic factors, including age, race, TNM stage, histological type, PR,
ER, HER2 status, and MITD1 expression level, based on the data from TCGA. Following
multivariate analysis, age, TNM stage, and ER status were negatively correlated with OS,
whereas MITD1 expression was positively correlated with OS (Figure 8A,B). According to
the multivariate Cox regression analysis and clinical practice, we used MITD1 and other
risk factors to create a nomogram.

We predicted the OS and progression-free interval (PFI) in patients with BRCA at
1, 3, and 5 years using the nomogram (Figure S4 and Figure 8C). For instance, a 70-year-
old (about 1.25 points) patient with BRCA who was PR-positive (0 points), ER-positive
(0 points), and HER2-negative (0 points) and had low MITD1 expression was assigned
approximately 8 points. The clinical stage was T4N3M1 (52.5 points, approximately 6 points,
100 points) and belonged to a normal-like subtype (approximately 0 points). The total
point score was 167.75, and the corresponding probabilities of 3- and 5-year PFI were
approximately 68% and 44%, respectively. Table S6 indicates that when incorporating the
MITD1 expression level, the C-index for nomograms of PFI increased slightly from 0.702
(0.66–0.743) to 0.703 (0.662–0.744). However, the C-index of the model was higher than
that for any indicator alone, indicating that this new biomarker can enhance the prognostic
accuracy in patients with BRCA.
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Figure 8. Diagnostic and predictive value of MITD1. (A) Univariate Cox regression analysis of
MITD1. (B) Multivariate Cox regression analysis of MITD1. (C) A nomogram for predicting the
probability of 1-, 3-, and 5-year PFI for patients with BRCA. (D) Calibration plots of the nomogram
for predicting the probability of 1-, 3-, and 5-year PFI for patients with BRCA. (E–G) The ROC curves
and AUC values of MITD1 and four other biomarkers for predicting immunotherapy response in
PRJEB23709, PRJEB25780 and GSE100797 cohort.
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To validate the efficiency of the nomogram, we created a calibration plot (Figure 8D),
which shows that the bias-corrected line on the calibration plot was close to the ideal
curve, indicating a good agreement between prediction and observation. To assess the
predictive ability of the new biomarker for immunotherapy responses, first we explored
the TIDE database, and the results of MITD1 and PD-L1 are illustrated in Figure S4C. Then,
we used the” PRJEB23709,” “PRJEB25780” and “GSE100797” datasets, corresponding to
patients who received anti-PD1 therapy. As illustrated in Figure 8E, the prediction accuracy
of MITD1 was not as accurate as other predictors in PRJEB23709, regardless of whether
patients received anti-PD-1 monotherapy or an-ti-PD-1/anti-CTLA-4 combined therapy.
However, in PRJEB25780, the predictive power of MITD1 was higher than that of PD-1 and
CTLA-4 (Figure 8F). In GSE100797, the predictive power of MITD1 was similar to that of
CTLA-4 and PD-1 (Figure 8G).

4. Discussion

This study explored the expression, prognostic value, and immune infiltration profile
of MITD1 in different cancers using several databases. We found that MITD1 potentially
predicted the response to platinum, poly ADP-ribose polymerase inhibitor (PARPi), and
especially immune checkpoint blockade (ICB). Then, we conducted further studies focusing
on the role of MITD1 in BRCA through tissue microarray and in vitro experiments. In addi-
tion, we constructed a nomogram to predict the OS and PFI for BRCA by MITD1 expression
level. To the best of our knowledge, research on MITD1 has been limited. Nonetheless, a
few studies have revealed that MITD1 plays multiple roles in the progression of various
cancers. MITD1 may serve as a biomarker for LIHC and KIRC [11,14]. MITD1 might also
inhibit the migration of BLCA cells [13]. Furthermore, a previous study demonstrated that
MITD1 is recruited by the ESCRT-III complex and influences cytokinesis [7]. In synergy
with mitotic stress, altered ESCRT-III regulation of abscission could trigger cancer devel-
opment and genomic instability [15]. The present study investigated MITD1 expression
in different cell types, normal tissues, and cancer tissues. MITD1 is widely expressed in
various tissues without tissue specificity. In 15 cancers, MITD1 expression was higher than
that in the corresponding control tissues. However, MITD1 was expressed at lower levels
in the other 12 cancers than in control tissues. According to the CPTAC dataset, the MITD1
protein was expressed at low levels in BRCA, LUAD, and UCEC.

Immune cells play a crucial role in promoting or inhibiting tumor progression [39–41].
In our study, we found that MITD1 expression was related to infiltrating immune cells in
31 cancer types. PRAD and BRCA showed significant correlations with all six types of
infiltrating immune cells (B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages,
and neutrophils). Previous studies reported that dendritic cells promote tumor metastasis
by decreasing CD8+ T cell activity and increasing Treg counts [42,43]. However, other
studies reported that an autologous dendritic cell vaccine could repress cancer progres-
sion [44,45]. Additionally, in the TME, the immune or stromal scores were positively
correlated with the number of immune or matrix components [46,47]. Our study revealed
that MITD1 expression was positively correlated with the immune score in GBMLGG, LGG,
BRCA, KIPAN, PRAD, KIRC, BLCA, SKCM-M, and DLBCL but negatively correlated with
the immune score in COAD, COADREAD, LUSC, WT, and OV. Based on the GSE155109
and GSE72056 datasets, we further explored the distribution of MITD1 expression at the
single-cell level and the interaction between cells with high and low MITD1 expression.
Higher MITD1 expression is particularly notable In T cells, whereas low MITD1 expression
in stromal cells and luminal cells could regulate the TME through the laminin and MK
pathway, respectively. Although these results indicate that MITD1 may promote or inhibit
the development of tumors by altering the TME status, the underlying mechanism warrants
further investigation.

Simultaneously, we also explored the association between MITD1 and MSI, TMB,
HRD, and ploidy. TMB and MSI have been used as biomarkers to evaluate immunotherapy
in multiple cancers [48–52]. The present study showed that six and nine cancers were
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positively related to TMB and MSI, respectively. In LUAD, STES, and BLCA, MITD1
expression was positively correlated with TMB and MSI. These results indicate that MITD1
may be a biomarker for predicting immunotherapy response in these cancers. According to
previous studies, HRD results in impaired double-strand break repair and could predict the
effects of PARPi and platinum therapies [2]. However, polyploidy causes a poor response to
these therapies. In our study, 13 cancers were positively correlated with HRD, and four were
inversely correlated with ploidy. Therefore, MITD1 may predict the response to platinum
and PARPi in different cancers. Combining the immunological analysis mentioned above,
it is suggested that MITD1 also plays various roles in immunity for different cancers. The
relationship between MITD1 and immune-related factors requires further analysis.

We also identified several genes associated with MITD1 using STRING and GEPIA2.
Enrichment analyses showed that these genes might be involved in RNA metabolism and
endocytosis. We found that MRPL30 expression was strongly correlated with MITD1.
These findings provide ideas for further exploration of the mechanism of action of MITD1
in tumor development and the TME.

Through the single-cell database, we found a significant inverse correlation between
MITD1 and nine functional states in BRCA. To further explore the function of MITD1 in
BRCA, we performed IHC on BRCA tissue microarrays. These results were consistent with
those of the CPTAC dataset. The in vitro experiment results indicated that MITD1 over-
expression reduced cell proliferation, as validated by EdU incorporation assay. Moreover,
wound healing and Transwell experiments revealed that MITD1 overexpression reduced
MCF-7 cell migration. However, the mechanism by which MITD1 inhibits BRCA cell
proliferation and migration requires further investigation. To evaluate the role of MITD1 in
clinical practice, we further analyzed the relationship between MITD1 and clinical progno-
sis. The results revealed that MITD1 overexpression was associated with poor prognosis
in ACC, GBMLGG, LIHC, KIRC, SKCM, and PRAD. However, high MITD1 expression
was associated with a better prognosis in patients with BLCA, BRCA, OV, and READ.
Additionally, we used the Kaplan–Meier plotter approach to verify the results. These data
suggested that MITD1 plays various roles in different cancer types. We also constructed a
nomogram to determine the prognosis of patients with BRCA. Further analysis showed that
MITD1 could predict immunotherapy outcomes as accurately as PD-1, PD-L1, CTLA-4, and
IFN-γ. These results have contributed to bridging the knowledge gap regarding MITD1 in
BRCA, thus guiding doctors in clinical decision-making.

This study has certain limitations. The detailed mechanism of action of MITD1 in
BRCA and its predictive power were not investigated and require further in vivo experi-
ments and clinical studies. Additionally, the role of MITD1 in other types of cancer and the
functional mechanism in BRCA warrant further investigation.

5. Conclusions

This first pan-cancer study of MITD1 showed that MITD1 expression varies in dif-
ferent cancers. Additionally, immunological analysis suggested that MITD1 regulates the
development of various tumors by altering the immune status. We identified MITD1 as a
predictor of responses to ICB, platinum, and PARPi therapies. Moreover, MITD1 inhibited
BRCA cell proliferation and migration and might serve as a new biomarker of prognosis
of patients with BRCA. We also found that similar to traditional biomarkers, MITD1 can
predict the response to immunotherapy. We hypothesize that aberrant expression of MITD1
contributes to genomic instability, leading to the formation of micronuclei. Subsequently,
the DNA or RNA released by micronuclei in the cytoplasm can activate the cGAS-STING
pathway and trigger innate immune responses [53–55]. These findings suggest that patients
with abnormal MITD1 expression may benefit from PARPi or ICB therapies.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11203308/s1, Supplementary File S1: Supplementary Figure S1.
Expression levels of MITD1 in normal tissues and blood cells. (A) MITD1 expression levels in different
normal tissues. (B) MITD1 expression levels in different blood cells. (C) Western blot analysis of
MITD1 in MCF-7 and MITD1-overexpression MCF-7. Supplementary Figure S2. Correlation between
MITD1 expression and stromal score and estimate score in pan-cancer. (A) Correlation between
MITD1 expression and stromal score. (B) Correlation between MITD1 expression and estimate score.
(C) Cells from the GSE72056 dataset were mapped on the tSNE plot. (D) tSNE plot illustrating
MITD1 expression profile at the cell level. Supplementary Figure S3. Correlation between MITD1 and
survival prognosis of cancers using the Kaplan–Meier plotter. (A) Correlation between MITD1 and
survival prognosis in breast cancer, ovarian cancer (B), gastric cancer (C), lung cancer (D), and liver
cancer (E). Supplementary Figure S4. Survival prediction in BRCA. (A) A nomogram for predicting
the probability of 1-, 3-, and 5-year OS for patients with BRCA. (B) Calibration plots of the nomogram
for predicting the probability of 1-, 3-, and 5-year OS for patients with BRCA. (C) The predictive
power of MITD1 and PD-L1 in different cohorts. Supplementary File S2: Supplementary Table
S1. Correlation analysis between MITD1 and immune score. Supplementary Table S2. Correlation
analysis between MITD1 and stromal scores. Supplementary Table S3. Correlation analysis between
MITD1 and estimate scores. Supplementary Table S4. Clinical characteristic of the breast cancer
tissues microarray. Supplementary Table S5. Univariate and multivariate Cox regression analysis of
MITD1. Supplementary Table S6. C-index of nomograms.
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