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Background. Acute coronary syndrome (ACS) has a high incidence and mortality rate. Early detection and intervention would
provide clinical benefits. This study aimed to reveal hub genes, transcription factors (TFs), and microRNAs (miRNAs) that affect
plaque stability and provide the possibility for the early diagnosis and treatment of ACS.Methods. We obtained gene expression
matrix GSE19339 for ACS patients and healthy subjects from public database. The differentially expressed genes (DEGs) were
screened using Limma package in R software. The biological functions of DEGs were shown by Gene Ontology (GO), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Protein-protein interaction (PPI)
network was mapped in Cytoscape, followed by screening of hub genes based on the Molecular Complex Detection (MCODE)
plug-in. Functional Enrichment analysis tool (FunRich) and Database for Annotation, Visualization and Integrated Discovery
(DAVID) were used to predict miRNAs and TFs, respectively. Finally, GSE60993 expression matrix was chosen to plot receiver
operating characteristic (ROC) curves with the aim of further assessing the reliability of our findings. Results. We obtained 176
DEGs and further identified 16 hub genes by MCODE.The results of functional enrichment analysis showed that DEGs mediated
inflammatory response and immune-related pathways. Among the predicted miRNAs, hsa-miR-4770, hsa-miR-5195, and hsa-
miR-6088 all possessed two target genes, which might be closely related to the development of ACS. Moreover, we identified
11 TFs regulating hub gene transcriptional processes. Finally, ROC curves confirmed three genes with high confidence (area under
the curve> 0.9), including VEGFA, SPP1, and VCAM1. Conclusion. This study suggests that three genes (VEGFA, SPP1, and
VCAM1) were involved in the molecular mechanisms of ACS pathogenesis and could serve as biomarkers of disease progression.

1. Introduction

Acute coronary syndrome (ACS) is an acute cardiovascular
event with rupture or invasion of coronary atherosclerotic
plaque as pathological basis, followed by the formation of
complete or incomplete occlusive thrombus, which has high
morbidity and mortality in developed and developing
countries [1, 2]. The fissure of atheromatous plaque causes
thrombotic reaction and coronary artery blood flow ob-
struction, which leads to downstream myocardial ischemic
damage. Abnormalities in function and structure of the
coronary microcirculation also lead to the development of
ACS [3, 4]. Risk factors for ACS include, but are not limited

to, aging, unhealthy lifestyles, obesity, diabetes, and high
blood pressure. Moreover, it is worth noting that ACS occurs
more often in males and those with a family history of the
disease [5]. Maintaining plaque stability and preventing
plaque rupture are paramount measures to prevent ACS.
Percutaneous coronary intervention (PCI) and timely res-
toration of perfusion can reduce irreversible myocardial
injury and improve the prognosis of ACS [6]. Despite ag-
gressive treatment, ACS may still be associated with a
number of potential complications that can reduce a pa-
tient’s quality of life and even affect survival time. Therefore,
seeking reliable biomarkers is particularly important for the
early diagnosis and medical intervention of ACS.
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The main factor of plaque formation is elevated cho-
lesterol levels caused by an imbalance between influx and
efflux, resulting in abnormal accumulation of lipids in the
lining [7]. The pathological change associated with early
atherosclerosis is the formation of macrophage-derived
foam cells [8]. In this process, circulating monocytes enter
the subintima and differentiate into macrophages, which
take up oxidatively modified lipoproteins via scavenger
receptor class A (SRA) and CD36 [9]. On the other hand,
lipoproteins transform macrophages into lipid-rich foam
cells, which is thought to be a key step in the development of
atherosclerosis and a major contributor to chronic in-
flammation [10].

Numerous researches have beenmade to develop clinical
detection indicators. Creatine kinase-MB, cardiac myoglo-
bin, and cardiac troponin I and T have been widely applied
in clinical diagnosis of acute myocardial infarction [11].
With the development of whole genome sequencing and the
boom in bioinformatics research, it is possible to find new
and more sensitive biomarkers for ACS. It is worth noting,
however, that some previous studies yielded controversial or
even contrary results, which may be attributed to different
sample selection, batch effects between groups, and differ-
ences in operational protocols.

In this study, we compared gene expression differences
between patients with ACS and healthy individuals, with the
aim of uncovering clinical biomarkers and analyzing their
biological functions, which could help to elucidate the
pathogenesis of ACS and, consequently, explore potential
therapeutic strategies.

2. Materials and Methods

2.1. Data Acquisition. The microarray expression dataset
GSE19339 and its annotation file GPL570 were retrieved
from Gene Expression Omnibus (GEO) database. A total of
eight samples were analyzed in this study, four of which were
leukocytes from thrombus of ACS patients and the other
four were peripheral blood leukocytes from healthy controls.

2.2. Data Processing. We used RStudio software to process
the raw expression matrix. In short, probe IDs were con-
verted to gene symbols using platform annotation file and
well-annotated probes were retained. For missing values in
the dataset, we used the KNN method of the impute R
package for auto-fill. If one gene was detected by multiple
probes, its average expression value was used for subsequent
analysis.

2.3. Differential Expression Analysis. The differentially
expressed genes (DEGs) between ACS samples and healthy
controls were analyzed by Limma package [12]. The
screening criteria were as follows: |log2 fold change (FC)|> 2
as well as adjusted p value< 0.05. The visualization of DEGs
was presented through volcano plot and heat map using
ggplot2 and pheatmap R packages, respectively.

2.4. Function Enrichment Analysis. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were carried out based on clusterProfiler R
package installed from Bioconductor, which can be used to
explore functional profiles of genes or gene clusters [13]. GO
annotations explain the function of genes from three aspects:
possible molecular functions, cellular environment, and
biological processes. KEGG is a bioinformatics repository
that contains comprehensive information related to bio-
logical pathways. Enrichment analysis results with statistical
significance (p value< 0.05) were screened out and visual-
ized by bar graph and bubble map.

2.5. Gene Set Enrichment Analysis. By analyzing whole gene
expression profile data, Gene Set Enrichment Analysis
(GSEA) determines whether there are statistical differences
in the expression of specific gene sets in different biological
phenotypes [14]. This algorithm includes genes that are not
significantly differentially expressed but are biologically
important and is complementary to GO and KEGG analysis.
Hallmark gene sets from Molecular Signatures Database
(MSigDB) were chosen as reference gene sets [15]. The
results meeting following thresholds were significant: |
normalized enrichment score (NES)|> 1, nominal
p value< 0.05, and FDR q value< 0.25.

2.6. Protein-Protein Interaction Network. In order to clearly
present the interaction network between proteins encoded
by DEGs and find out hub genes, we constructed protein-
protein interaction (PPI) network. First, we imported the list
of DEGs into STRING database [16], filtered the network
with medium confidence value (0.4), and hid isolated nodes.
Next, Cytoscape software was selected for detailed pro-
cessing and visual analysis. The Molecular Complex De-
tection (MCODE) plug-in in Cytoscape can detect closely
related nodes in a large network and classify them into
different clusters. Genes in the highest scoring cluster were
considered as hub genes.

2.7. Prediction of Pivotal MicroRNAs and Transcription
Factors. Functional Enrichment analysis tool (FunRich) was
used to predict microRNAs (miRNAs) targeting hub genes.
The transcription factors (TFs) were predicted using Da-
tabase for Annotation, Visualization and Integrated Dis-
covery (DAVID) [17]. A threshold of p value< 0.05 was used
for filtering analysis results. Moreover, gene-miRNA in-
teraction network and gene-TF interaction network were
further processed in Cytoscape.

2.8. Validation of Hub Genes. We downloaded the gene
expression profiling data of GSE60993, including 7 ACS
patients and 7 healthy controls [18].The expression values of
hub genes in the matrix were used to draw receiver operating
characteristic (ROC) curves and calculate area under curve
(AUC) by pROC package [19]. AUC value reflects the
sensitivity and specificity of a gene in distinguishing ACS
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from health. Here, we believed that genes with AUC greater
than 0.9 can be used as biomarkers for the diagnosis of ACS.

3. Results

3.1. DEG Screening. A total of 176 DEGs between ACS and
control were finally screened out according to the above
criteria, including 130 upregulated genes and 46 down-
regulated genes. The DEGs were visualized by volcano plot
and heat map, as shown in Figures 1(a) and 1(b).

3.2. Functional Enrichment of DEGs. Gene function anno-
tations of DEGs were primarily enriched in activation and
migration of inflammatory cells and immune response. The
top eight BP, CC, and MF terms are shown in Figure 2(a),
according to the order of adjusted p value. In addition, we
used GOplot R package to draw a circle diagram, which
clearly presented the correspondence between GO terms and
genes (Figure 2(b)). Similarly, top 10 KEGG pathways are
shown in Figures 2(c) and 2(d). The results suggested that
DEGs were mainly involved in immune-related pathways,
such as cytokine-cytokine receptor interaction, NF-κB sig-
naling, and atherosclerosis.

3.3. Gene Set Enrichment Analysis. Gene expression matrix
and phenotype file were prepared to uncover gene sets that
were significantly enriched in ACS group. Based on hallmark
gene set database, we found that some of enrichment results
were similar to GO and KEGG analysis, such as inflam-
matory response and TNF-α signaling via NF-κB. Addi-
tionally, enrichment outcomes including coagulation,
cholesterol homeostasis, hypoxia, and apoptosis were also
closely related to the pathophysiological process of ACS
(Figure 3).

3.4. PPI Network Construction and Gene Cluster
Identification. After filtering original network with medium
confidence value and hiding isolated nodes, the network was
transferred to Cytoscape for detailed processing. As shown
in Figure 4(a), the PPI network consisted of 103 nodes plus
440 edges. The MCODE plug-in identified a total of three
gene clusters, among which cluster 1 having 16 nodes and
111 edges scored the highest (Figure 4(b)). Genes in this
cluster were thought to be central to the development of
ACS, so we uploaded them to DAVID database for en-
richment analysis to further clarify their biological effects.
The results suggested that hub genes were primarily involved
in angiogenesis and inflammation-related functions
(Table 1).

3.5. Further MiRNAs and TF Mining. Sixteen hub genes in
the highest scoring cluster were uploaded to FunRich
software for miRNAs analysis. Among the predicted results,
miRNAs possessing three target genes, including hsa-miR-
4770, hsa-miR-5195, and hsa-miR-6088, were considered to
be key regulators of the pathological process of ACS. Sub-
sequently, we used Cytoscape to visualize the regulatory

network between miRNAs and hub genes, as shown in
Figure 5(a). With the help of DAVID database, we searched
for proteins that regulate hub gene transcriptional processes,
known as TFs. A total of 11 transcription factors were
identified, and the top three ranked by p value were NF-κB,
IK2, and FAC1. The interaction network between hub genes
and TFs is shown in Figure 5(b).

3.6. ROC Curve Verification. Validated by ROC curves, we
found that 3 of the 16 hub genes had high sensitivity and
specificity, including VEGFA (AUC� 0.939), SPP1
(AUC� 0.959), and VCAM1 (AUC� 0.98) (Figure 6). The
three genes may be biomarkers of ACS and have positive
implications for early medical intervention of the disease.

4. Discussion

ACS is a disease with high morbidity that seriously threatens
life quality and survival time of patients. In this study, we
first screened out 176 DEGs, including 130 upregulated
genes and 46 downregulated genes. Then, databases in-
cluding GO and KEGG were selected to do gene enrichment
analysis, and the results suggested that these genes were
primarily involved in inflammatory response signaling.
From the results of GSEA, it could be seen that coagulation,
cholesterol homeostasis, hypoxia, and apoptosis also played
a key role in the pathogenesis of ACS. In order to find hub
genes, PPI network of DEGs was set up in Cytoscape, and
MCODE plug-in analysis was performed. The highest
scoring cluster contains 16 hub genes, which were CXCL12,
FN1, CTGF, BGN, ENG, HMOX1, VEGFA, CCL2, FLT1,
SPP1, VCAM1, PPARG, TIMP1, MMP2, SERPINE1, and
ICAM1. Hub genes related miRNAs and TFs were further
mined by FunRich software and DAVID database, respec-
tively. Furthermore, another microarray dataset (GSE60993)
was selected to plot ROC curves to assess the sensitivity and
specificity of hub genes in ACS diagnosis. Three genes with
AUC> 0.9, including VEGFA, SPP1, and VCAM1, had
excellent reliability as indicators for disease prediction and
early intervention.

Chemokines play a guiding role in leukocyte migration
to the inflammatory site by binding to G protein coupled
receptors [20]. Cytokines are small proteins secreted by
immune cells and some nonimmune cells that have a wide
range of biological activities. They bind to receptors on the
surface of cell membrane, activate intracellular signal
transduction pathways, and play an important role in
maintaining homeostasis in the body. In the process of
atherosclerotic plaque formation, lipid particles are trapped
in the arterial wall [21] and endothelial cells express ad-
hesion molecules in response to modified lipoproteins [22].
Then circulating immune cells are recruited to these sites
and produce proinflammatory mediators such as tumor
necrosis factor (TNF), which elicits local inflammation
[23, 24]. In addition, infiltratingmonocytes differentiate into
macrophages, and sustained phagocytosis of lipoproteins
converts them into foam cells, a major component of ath-
erosclerotic plaques.
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MiRNAs are noncoding RNAs, which have the function
of negatively regulating gene expression at translational level
[25]. MiR-6088, identified in 2012, was found to be differ-
entially expressed during endothelial cell differentiation
[26]. Another study showed that miR-6088 was closely as-
sociated with tumor cell proliferation and migration [27].
MiR-5195, which was found in deep sequencing of small
RNA in acute lymphocytic leukemia, was involved in tumor
cell invasion and metastasis [28, 29]. Similarly, the ex-
pression level of miR-4770 was linked to breast cancer [30].
Although the role of three key miRNAs in regulation of ACS
has not been reported, they may influence atherosclerotic
plaque progression by promoting cell proliferation and
transformation. Transcription factors are proteins that
regulate gene expression by binding with corresponding
DNA sequence to enhance or block the recruitment of target
genes to RNA polymerase. In our study, we predicted 11 TFs
regulating hub genes via DAVID database. NF-κB, the most
significant transcription factor in analysis results, which

promoted the expression of several proinflammatory genes
such as VCAM1 in endothelial cells, increased macrophage
recruitment [31, 32].

Extensive studies have confirmed the potential value of
three hub genes in the diagnosis of ACS. SPP1, also known as
OPN, is a calcium-binding glycosylated phosphoprotein
associated with bone formation, inflammation, and vascular
calcification [33]. Its expression would upregulate when
calcium was deposited in atherosclerotic plaques [34]. A
study of 120 subjects conducted in 2000 first proposed that
there was a positive relationship between SPP1 and coronary
artery disease, and SPP1 might be a potential biomarker to
identify patients with or at risk for ACS [35]. Another study
confirmed that SPP1, as a hub gene, was significantly over
expressed in patients with carotid plaque rupture, suggesting
that it was involved in plaque instability and had a predictive
role in plaque rupture [36]. In atherosclerosis model mice,
knockdown of SPP1 not only reduced atherosclerotic lesion
size but also decreased the number of macrophages in the
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Figure 1: (a) The volcano plot was presented, in which green dots represented downregulated genes and red dots represented upregulated
genes in ACS samples. (b) Heat map of gene expression. Each row represented one DEG, and the color gradually changed from green to red,
indicating the shift of gene expression from low to high. ACS: acute coronary syndrome; DEG: differentially expressed gene.
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plaque. Thus, SPP1 could slow disease progression via
regulating the number of immune cells and suppressing
inflammatory response [37]. Vascular endothelial growth
factor (VEGF), which can be subdivided into VEGFA,
VEGFB, and VEGFC, is a substance that increases vascular
permeability and promotes endothelial cell migration and

proliferation [38]. VEGFA, an important component of the
VEGF family, is an indispensable growth factor for intra-
plaque angiogenesis and is directly related to plaque stability.
Under hypoxic conditions, VEGFA bound to its receptor,
activating mitogen-activated protein kinase (MAPK), which
induced endothelial cell proliferation, macrophage
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Figure 3: Gene set enrichment analysis of GSE19339. Significantly enriched gene sets were selected based on threshold values: | normalized
enrichment score (NES)|> 1, nominal p value< 0.05, and FDR q value< 0.25.
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Figure 4: (a) The PPI network analysis for DEGs. Different clusters identified by MCODE were marked with different colors. Sixteen dark
blue dots were cluster 1, six purple dots were cluster 2, and three orange dots were cluster 3. (b) The PPI network of 16 hub genes. PPI:
protein-protein interaction; MCODE: molecular complex detection.
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Table 1: Biological processes associated with hub genes in cluster 1.

Biological process Gene count FDR
Angiogenesis 8 5.60E− 07
Response to hypoxia 7 7.05E− 06
Cell adhesion 8 8.33E− 05
Extracellular matrix disassembly 5 7.32E− 04
Extracellular matrix organization 6 8.08E− 04
Positive regulation of angiogenesis 5 0.003863389
Cell chemotaxis 4 0.035011825
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Figure 5: Continued.
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infiltration, and foam cell formation [39]. VCAM1, a
member of immunoglobulin superfamily, was combined
with integrins VLA-4, favoring the recruitment of leukocytes
and thus aggravating atherosclerotic plaque [40]. All in all,
known biological roles of the three hub genes strengthen the
reliability of our results.

Some limitations in the study should be noted. Firstly,
dataset GSE19339 selected in our study covered a small
sample size and was not jointly analyzed with other datasets.

The reason was that we wanted to explore hub genes closely
related to the occurrence of plaque rupture. Therefore, only
studies with thrombus as specimen were included. Secondly,
the results were not experimentally validated. To compen-
sate for this limitation, another dataset (GSE60993) from
GEO database was chosen to plot ROC curves and calculate
corresponding AUC values, which helped to improve the
reliability of our findings. In the following work, relevant
clinical and animal experiments will be conducted to explore
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Figure 5: (a) Interaction network between miRNAs and their target genes. Genes were indicated by purple arrows and miRNAs were
represented by blue circles. Moreover, miRNAs targeting two genes were shown by green circles. (b) Interaction network between genes and
TFs. The diamonds represented genes and circles indicated TFs. The smaller the p value, the darker the circle color. miRNAs: microRNAs;
TFs: transcription factors.

SPP1

AUC: 95.9%

0

20

40

60

80

100

Se
ns

iti
vi

ty
 (%

)

80 60 40 20 0100
Specificity (%)

(a)

VCAM1

AUC: 98.0%

0

20

40

60

80

100

Se
ns

iti
vi

ty
 (%

)

80 60 40 20 0100
Specificity (%)

(b)

VEGFA

AUC: 93.9%

0

20

40

60

80

100

Se
ns

iti
vi

ty
 (%

)

80 60 40 20 0100
Specificity (%)

(c)

Figure 6: ROC curves of three hub genes with excellent diagnostic value for ACS. The AUC was calculated for each plot. ROC: receiver
operating characteristic; AUC: area under curve.
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the molecular mechanism of hub genes in ACS and provide
potential targets for disease intervention.

5. Conclusion

Our study reveals three diagnostic markers of ACS, in-
cluding VCAM1, SPP1, and VEGFA, which may influence
disease progression by mediating immune responses and
inflammation-related pathways.
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