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a b s t r a c t

Highly pathogenic avian influenza (HPAI) is often controlled through culling of poultry. Compensating
farmers for culled chickens or ducks facilitates effective culling and control of HPAI. However, ensuing
price shifts can create incentives that alter the disease dynamics of HPAI. Farmers control certain aspects
of the dynamics by setting a farm size, implementing infection control measures, and determining the
age at which poultry are sent to market. Their decisions can be influenced by the market price of poultry
which can, in turn, be set by policy makers during an HPAI outbreak. Here, we integrate these economic
considerations into an epidemiological model in which epidemiological parameters are determined by
an outside agent (the farmer) to maximize profit from poultry sales. Our model exhibits a diversity of
behaviors which are sensitive to (i) the ability to identify infected poultry, (ii) the average price of infected
poultry, (iii) the basic reproductive number of avian influenza, (iv) the effect of culling on the market
price of poultry, (v) the effect of market price on farm size, and (vi) the effect of poultry density on disease
transmission.We find that under certainmarket and epidemiological conditions, culling can increase farm
size and the total number of HPAI infections. Our model helps to inform the optimization of public health
outcomes that best weigh the balance between public health risk and beneficial economic outcomes for
farmers.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license.
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1. Introduction

Animal surveillance and management are critical for prevent-
ing future influenza pandemics, as evidenced by over a decade
of intermittent outbreaks of highly pathogenic avian influenza
(HPAI), especially H5N1 and H7N9, and by the animal origin of
the 2009 H1N1 pandemic. Although the case fatality rate for the
2009 pandemic was within the moderate range for seasonal in-
fluenza (Khandaker et al., 2011), case fatality rates based on re-
ported cases for human H5N1 infections have stayed above 50%
(Abdel-Ghafar et al., 2008; Wang et al., 2012) and the early esti-
mated case fatality for human H7N9 infections is approximately
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25% (WHO, 2013a). Over 60 nations have experienced an outbreak
of H5N1 in their poultry populations (Otte et al., 2008a), caus-
ing 628 human infections with H5N1 and 374 deaths worldwide
(WHO, 2013b). For most governments, preparedness and preven-
tion strategies against avian influenza include stockpiling antiviral
agents, culling sick poultry, and vaccinating poultry flocks (Otte
et al., 2008a; Hinrichs et al., 2010). Despite the success of some
of these control policies, regular HPAI outbreaks and human cases
of avian influenza continue to occur. Recent indications of weak-
ening vaccine efficacy (Henning et al., 2011; Long et al., 2011)
and the possibility of drug resistance evolution (Le et al., 2005;
de Jong et al., 2005) necessitate the optimization of HPAI control
policies.

Since 2003, over 400 million birds have been culled worldwide
as a direct result of avian influenza outbreaks (FAO, 2012). In most
countries, farmers are compensated for culled poultry, but often at
far belowmarket price (Otte et al., 2008a;McLeod, 2010; Hall et al.,
2006). From 2003 to 2006, the peak outbreak years in Southeast
Asia, government culling policies arose in an environment of
public panic, and led to reduced poultry demand and lower
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poultry prices (Otte et al., 2008a); in some cases, poultry prices
rebounded to above pre-outbreak levels (Otte et al., 2008a; Hall
et al., 2006). Such price dynamics may be fundamental to policy
optimization – in particular, the level at which the government
should compensate farmers for culled poultry and/or the effort
to expend on detection of disease emergence. If future public
health responses to HPAI outbreaks lower poultry prices, HPAI
prevalence should decrease as poultry farming will temporarily
become less profitable. Conversely, if the public health response
causes poultry prices to rise, a variety of outcomes are possible,
which are considered here.

The effect of market price on farm size – defined here as the
number of poultry on each farm – can undermine the intended
benefits of culling. Thus far, the elasticity of farm size to market
price (the percentage change in farm size resulting from a 1% in-
crease in market price) has only described smaller farms in the
context of falling prices (Hall et al., 2006; Basuno et al., 2010;
Yalcin et al., 2010). In theory, higher prices should lead to larger
farms. Empirically, however, it is not known how short-term or
sustained price changes would affect farm sizes, or how strongly
higher prices could incentivize the intensification of poultry farm-
ing activities. Nevertheless, given the dynamic (McLeod, 2010) and
heterogeneous (Rushton et al., 2005) nature of poultry production
systems in Asia, this is an important effect to explore. Changes in
farm size are crucial aspects of general animal/agricultural disease
systems, as larger farms are more susceptible to disease outbreaks
than smaller farms (Keeling et al., 2001; Ferguson et al., 2001; Otte
et al., 2008b).

Here, we evaluate how certain farm characteristics – size,
turnover, and infection control effort – can be shaped by epidemi-
ological and economic incentives, as well as how culling and its
effects on market price can influence the prevalence of avian in-
fluenza in poultry and the risk of HPAI outbreaks. We combine an
epidemiological model of avian influenza transmission with profit
maximization for the farmer to determine the farmer’s optimal be-
havior, and subsequently, the effect of the government’s poultry
procurement policy on poultry production and HPAI risks to hu-
mans.

2. Model

The epidemiological component of our analysis is based on a
Susceptible–Infectedmodel of avian influenza transmission among
poultry on an individual farm:

ẋh = b − (1 − y)β
xhxs
N

− σ xh

ẋs = (1 − y) β
xhxs
N

− vxs − σ xs,
(1)

where xh is the number of uninfected (healthy) poultry and xs is
the number of infected (sick) poultry. The parameter b is the rate
at which farmers procure chicks/eggs to re-stock their farms or
the rate at which non-infected poultry are born; b determines the
overall farm size, i.e. number of poultry on the farm. Farmers can
maintain a level of infection control y, with 0 < y < y0, where
y0 is the level of infection control needed to drive the pathogen’s
basic reproduction number (R0) below one. The parameter σ is the
rate at which farmers send poultry to market; σ−1 determines the
age of a chicken at sale. The parameter β is the transmissibility of
influenza among poultry and v is the disease-induced death rate,
or virulence, among infected poultry. N is the population size of
poultry. For a density-dependent (DD) contact or infection process,
we setN = 1, and for a frequency-dependent (FD) contact process,
we set N = xh + xs (Keeling and Rohani, 2008). The density-
dependentmodel is best for describing poultry kept in an enclosure
(usually chickens), while the frequency-dependent transmission is
suitable for a population of free-range scavenging poultry (usually
ducks, sometimes chickens); under the FD-model we sometimes
refer to farms as ‘‘flocks’’. In both situations, the system has a
disease-free equilibrium and a unique endemic equilibrium. Our
use of the endemic equilibrium in this analysis assumes that farms
are populatedwith poultry at all times so that a continuous chain of
transmission can bemaintained on a single farm. This is frequently
the case for smallholder poultry farming in Asia (Burgos et al.,
2007; Fasina et al., 2012). In cases where discrete cohorts of birds
are raised, farmers will still maintain multiple cohorts (Henning
et al., 2012) and/or multiple species of poultry on a single farm
ensuring the presence of poultry on the farm at all times (Henning
et al., 2012; Burgos et al., 2007; Edan et al., 2006).

We assume that farmers, consumers, and the government have
access to the samemethod of diagnosing infected poultry, such as a
molecular diagnostic (Fouchier et al., 2000; Zou et al., 2007) or a vi-
sual inspection (Suarez et al., 1998; Peiris et al., 2007). We assume
this test has perfect specificity but imperfect sensitivity θ 6 1. The
specificity of visual inspections may not always be perfect in the
case that other non-influenza avian diseases are circulating, butwe
make the simplifying assumption here that only influenza viruses
are circulating. The equilibrium number of poultry that are osten-
sibly healthy and the number diagnosedwith infection are, respec-
tively,

ŵh = x̂h + (1 − θ) x̂s
ŵs = θ x̂s,

(2)

and these poultry are sent tomarket for sale. Farmers are price tak-
ers, i.e., their actions do not alter the market price of poultry (if all
farmers were to change their behavior in the sameway, this would
have an effect on the market price of poultry, but we do not con-
sider this case here). An individual farmer’s instantaneous income
is

π =

ŵh + κŵs


σP


σ−1

− r (b) − c (b, y) . (3)

Total revenue is the rate σ at which a farmer sends chickens/ducks
to market multiplied by the price P obtained for each healthy bird;
infected poultry are purchased by consumers or the government
at a reduced price κP . A bird’s price depends on its weight, which
depends on its age (σ−1). For analytical tractability, we assume
that the relationship between age and weight is a piecewise linear
function where poultry cannot be sold before age d days and gain
weight linearly for g days afterward; Section 3 (see Appendix A)
shows that the results are not sensitive to this assumption. Substi-
tuting Eq. (2) into Eq. (3), we see that the diagnostic-test sensitivity
parameter θ and the compensation parameter κ always appear to-
gether as (1 − κ)θ ; hence, we assume without loss of generality
that κ = 0.

In Eq. (3) we assume there are two major costs of raising poul-
try. The first is r(b), the cost of maintaining a farm of a particular
size; this includes fixed costs as well as the costs of acquiring fer-
tilized eggs or young chicks and caring for them. We assume that
this cost is convex: r ′ (b) > 0 and r ′′ (b) > 0. With sufficient de-
mand relative to the number of farmers, however, competition en-
sures that farmers are operating on the upward sloping portion of
their average cost curves. The second cost is c(b, y), the cost of con-
trolling infections by cleaning the farm, separating chickens/ducks
from one another, or lowering infection rates by some other
method. We assume that the cost of infection control increases
linearly with the size of a farm and the level of infection control:
c (b, y) = aby, where a > 0 is the unit cost of infection control.

Farmers manage their flocks through the birth rate b (or pur-
chase rate) of non-infected poultry, the level of infection con-
trol y, and the age at which poultry are sent to market σ−1. The
farmer sets these parameters (b, y, σ ) to maximize Eq. (3) subject
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to steady-state levels of infection in the ecological model. We as-
sume that

a + r ′


σ (v + σ)

β


< P, (4)

as this inequality describes the basic microeconomic condition re-
quired tomakepoultry farmingprofitable: the unit cost of infection
control plus themarginal cost of eggs (the cost of buying and using
one additional egg) when R0 = 1 must be lower than the market
price of poultry.

When an avian influenza outbreak occurs, the government
responds by defining an area where all ostensibly infected poultry
ŵs and a fraction δ of ostensibly healthy poultry ŵh will be culled.
In areas designated for culling, the government can also impose a
fine f on farmers who sell poultry (sick or healthy) to any party
other than the government. The market price P that a farmer
expects to receive for an ostensibly healthy bird, either from a
private buyer or the government, will rise with δ and fall with
f . Because we assume that the number of smallholder poultry
farmers is fixed, an increase in government procurement of poultry
reduces aggregate supply available to private buyers and increases
the equilibriummarket price of poultry.We do not allow free entry
of poultry farms into the market, as this would negate the effects
of a culling policy. The fine f reduces the market price of poultry,
because selling poultry in an area designated for culling would be
associated with a risk of being caught and fined; in this case, the
per-bird revenue is the market price minus the product of the fine
amount and the probability of being caught. The fine f can also
be viewed as way to operationalize the government’s decision on
how to compensate farmers for poultry it seizes and culls. At the
extreme, the government has two options: seize poultry without
offering compensation to farmers (expected fine equal to market
price) or purchase poultry at market rates (no fine).

Given the flexibility of smallholder poultry farmers and their
anticipation of government policy and future price changes, we
assume that farmers will rapidly respond to price changes. The
government’s objective is to choose δ and f such that the total
social loss from avian influenza

L (f , δ) = ϕ (1 − δ) (1 − θ) x̂s + C (5)

is minimized. Above, ϕ is the health risk to humans from infected
poultry that are not culled; for simplicity, we assume this is a
constant marginal social cost. The equilibrium number of infected
poultry x̂s depends on the market price and, thus, on f and δ. The
term C captures the expense of operationalizing a culling policy,
purchasing/seizing poultry for culling, and implementing a fine.

3. Results

Each individual farmer maximizes his profit (Eq. (3)) at the en-
demic equilibrium, and the government attempts to minimize the
social loss (Eq. (5)). In this system,we demonstrate that risingmar-
ket prices for poultry and increased diagnostic sensitivity can in-
centivize infection control on poultry farms, unless the farm size
itself is highly elastic to price. Our results confirm previous ob-
servations from the economics literature that high compensation
levels for infected poultry can disincentivize infection control
(Bicknell et al., 2000; Beach et al., 2007; Hennessy, 2007), and that
intermediate farm sizes are optimal for profit-maximizing farmers
(Bicknell et al., 2000; Horan and Fenichel, 2007; Horan and Wolf,
2005; Fenichel and Horan, 2007). However, we challenge previous
assumptions that intermediate levels of infection control must be
optimal (Bicknell et al., 2000; Horan and Fenichel, 2007; Gramig
et al., 2009). Optimal government policy depends on (i) local epi-
demiology (high prevalence or low prevalence), (ii) the effect that
the policy will have on market price, and (iii) the effect that mar-
ket price will have on farm size (farm-size elasticity). Essentially, a
culling policy must ensure that it does not generate more infected
poultry than are removed by culling; this can occur if the increased
price from the added government demand for poultry incentivizes
an expansion of poultry farming that is greater than the number of
culled birds.

3.1. Farmer optimization over σ

For each chicken or duck sold, the optimal time tomarket is con-
strained in the range d 6 σ−1 6 d + g , as young chicks cannot be
sold and there is no benefit to waiting beyond the time at which an
individual bird is fully grown. Profit π for individual price-taking
farmers ismaximized by settingσ−1

= d+g , i.e. selling poultry as
soon as they are full-grown, under all conditions relevant for price-
taking poultry farms in both the DD-model and FD-model (Fig. 1A,
Sections 1.1 and 2.1 in Appendix A). By the time a chick reaches
an age at which it can be sold (d days old), its marginal rate of
infection is slow, whereas its marginal rate of monetary apprecia-
tion is rapid. The outcome of this optimization may seem counter-
intuitive, as a one-dimensional optimization problem of a product
of a linear variable (growth) and an exponential decay (probabil-
ity of not being infected) typically yields an intermediate optimum
σ ∗. In this case, however, the probability of remaining uninfected
depends on σ ∗ and the full optimization yields a boundary solu-
tion (the two possible boundary solutions in this optimization are
σ−1

= d and σ−1
= d + g). This unique optimum persists for

all values of b, y, θ , and v. Specifically, virulence alone cannot in-
centivize higher poultry turnover; in epidemiological models such
as Eq. (1), high values of v translate to low hazard rates where
prevalence and individual probability of infection decline as v in-
creases. In the density-dependent scenario, faster turnover may be
beneficial when g/d is very large, but not within ranges relevant
for poultry farming (Eq. S14). Section 3 (see Appendix A) shows
that this result is robust to different shapes or the poultry growth
function. Hence, for the remainder of the analysis we assume that
σ = 1/(d + g).

3.2. Farmer optimization over b

In both the density-dependent and frequency-dependent mod-
els, farm size has a unique internal optimum b∗ which maximizes
profit at the system’s endemic equilibrium, consistent with previ-
ous economic optimizations in non-linear disease models (Horan
and Wolf, 2005; Horan and Fenichel, 2007; Bicknell et al., 2000;
Fenichel and Horan, 2007). As an example, under density depen-
dence, we have

∂π

∂b
= (1 − θ) P

σ

v + σ
− r ′ (b) − ay, (6)

and

∂2π

∂b2
= −r ′′ (b) < 0, (7)

which ensures that there is a unique optimum b∗ obtained by set-
ting the left-hand side of Eq. (6) to zero. For both transmission sce-
narios, we have ∂b∗/∂P > 0 and ∂b∗/∂θ < 0, and as we will show
in the analysis that follows, the economic-epidemiological quan-
tity ∂b∗/∂P has a significant influence on the qualitative behavior
of the system.

Under density dependence, if b∗ falls below b0 = σ(v + σ)/
(β (1 − y)), where R0 = 1, the farmerwill choose b0 to achieve the
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Fig. 1. Farmer’s profit in the DD-model as a function of (A) age at which chickens are sent to market, (B) the size of the farm, and (C) and the degree of infection control
implemented on the farm. Vertical dashed lines indicate R0 = 1, and profit lines with R0 <1 are shown in gray. In panel C, because b∗ depends on y and θ , these three profit
lines reach R0 = 1 at different values of y.
Fig. 2. Profit optimization in the y–bplane under density-dependent transmission,where y is infection control effort and b is the recruitment rate of new chicks; bdetermines
the equilibrium farm size. Upwards sloping line is the R0 = 1 curve; the filled circle on this curve is the complete infection control (CIC) solution. Downwards sloping curve
is optimal farm size b* as a function of y. Arrows show direction of increasing profit. Filled circles are local optima, and gray circles represent other critical points. When there
are two local optima, the global optimum is marked with G. As diagnostic-test sensitivity θ increases, the CIC solution becomes locally optimal (B), then globally optimal (C),
and then the only global or local optimum (D). In panel E, the downward-pointing arrows above the R0 = 1 curve indicate that profit always increases as farm size decreases,
and thus equilibrium disease prevalence decreases.
highest profit without exposing his farm to disease (Fig. 1B). Above
a critical value of diagnostic test sensitivity,

θ b = 1 −


r ′ (b0) + ay


(v + σ)

σP
, (8)

the b∗ optimum will fall below b0 and it will be optimal for the
farmer to maintain a small farm size (SFS) to eliminate disease as
this is the most profitable option given this high-sensitivity diag-
nostic. Here, it is assumed that y is fixed and that the farmer does
not or cannot optimize the level of infection control. Under fre-
quency dependence, an SFS solution does not exist, becauseR0 does
not depend on farm/flock size. In this case, the quantity ∂π/∂bwill
always be positive when R0 = 1 (assuming the microeconomic
condition in Eq. (4)), and a unique internal optimum will exist be-
cause the convexity of the farm-maintenance function r makes it
unprofitable for smallholder farmers to maintain very large farms.
3.3. Farmer optimization over y

Optimization over y is shown in Fig. 1C, but it is visualizedmost
easily in the yb-plane for both the DD-model (Fig. 2) and the FD-
model (Fig. 3); under both transmission scenarios the systemhas at
most two local optima, onewith no infection control (NIC) and one
with complete infection control (CIC). This differs from previous
modeling assumptions that an internal optimum must exist for
the implemented level of infection control (Bicknell et al., 2000;
Horan and Fenichel, 2007; Gramig et al., 2009). The existence of
boundary optima for y can be verified in both models by showing
that ∂2π/∂y2 > 0 at the endemic equilibrium (Fig. 1C).

Let y0 be the level of infection control at which the disease
is eradicated and the CIC solution is reached. In the FD-model,
y0 = 1 − (v + σ)/β as in all simple dynamic epidemiological
models, indicating that the necessary amount of infection control
to eliminate the disease is inversely proportional to the system’s
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Fig. 3. Profit optimization in the y–b plane under frequency-dependent transmission, where y is infection control effort and b is the recruitment rate of new chicks; b
determines the equilibrium farm size. Vertical line on the right-hand size of each graph is the R0 = 1 line, and the filled circle on this line is the complete infection control
(CIC) solution. The curve in each figure is the optimal farm size b* as a function of y. Arrows show direction of increasing profit. Filled circles are local optima, and gray circles
represent other critical points. When there are two local optima, the global optimum is marked with G. As diagnostic-test sensitivity θ increases, the CIC solution becomes
locally optimal (B), then globally optimal (C), and then the only global or local optimum (D).
intrinsic R0. In the DD-model, however, R0 depends on b∗, b∗

depends on y, and the usual critical infection-control fraction
cannot be calculated as a simple function of the basic reproduction
number. Instead, y0 in the DD-model is the unique solution to

β · b∗ (y, θ, P) · (1 − y)
σ (σ + v)

= 1 (9)

and is defined implicitly. We see that y0 depends on the market
price of poultry (P), the diagnostic test sensitivity (θ ), and on v, σ ,
and β as it usually does.

A persistent economic incentive for infection control occurs
when

∂π

∂y


y=0

> 0. (10)

Inequality (10) is satisfied when θ is above a unique critical value
that we define as θ y2. Under density dependence, θ y2 is defined
implicitly via the equation

a
P
R0


θ, b∗


=

v + θσ

v + σ
. (11)

In Eq. (11), the left-hand term describes the potential fraction
of revenue lost to infection control expenses at the CIC solution,
which decreases with θ because b* and R0 decrease with θ . The
right-hand term describes the fraction of revenue lost from dead
poultry and positive diagnosis at the NIC solution. When economic
loss due to death/diagnosis exceeds expenditure on infection
control, the farmer perceives amarginal benefit to infection control
for all y, and the NIC solution ceases to be locally optimal.
Under the assumptions of the FD-model, an explicit expression
exists for this threshold:

θ y2 =
a
P

v + σ

β


β − v

σ

2

−
v

σ
. (12)

It can be seen that under both models θ̄y2 increases with β , i.e in-
fection control is more difficult to incentivize for more transmissi-
ble diseases because of the high cost of infection control required
to bring R0 below one. If the farm size (b∗) is not sensitive to rev-
enue and profit (determined by a and P), then θ̄y2 increases with a
and decreases with P . In other words, the more profitable poultry
farming becomes, the easier it is to incentivize infection control.

However, under density dependence farm size can exert a large
influence on disease dynamics. The elasticity of farm size tomarket
price P is defined as εb = (P/b∗) · ∂b∗/∂P , and for the DD-model,
Eq. (11) can be differentiated to show that

∂θ y2

∂P
< 0 exactly when εb < 1. (13)

Thus, infection control is more easily incentivized as prices rise,
unless the price increase has a stronger effect on farm size. If in-
creasing the price P has an overly strong effect on farm size (εb>1),
rising prices make the CIC solution unattainable as infection con-
trol becomes too expensive on very large farms. Two competing
costs accumulate as prices and farm sizes rise: the cost of purchas-
ing and maintaining more chicks/eggs and the cost of controlling
infections on larger farms. When εb>1, the latter increases more
quickly, making it more difficult to incentivize a CIC strategy.
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Fig. 4. Effect of price on θ-thresholds in density-dependent and frequency-dependent models. As the market price of poultry increases, infection control is generally
incentivized, unless price elasticity (εb) is larger than one in the density-dependent model. The thresholds defined by θ̄y1 are not shown as crossing θ̄y1 does not change the
optimal behavior of no infection control (NIC).
There are four threshold behaviors for θ defined by the behav-
iors in Figs. 2 and 3 (note that θ̄b does not exist in the FD-model).
The thresholds that define these behaviors obey

θ y1 < θπ < θ y2 < θ b, (14)

assuming the microeconomic condition in Eq. (4). The relationship
among the θ-thresholds is shown in Fig. 4. When no diagnostic
test is available (θ = 0), the globally optimal solution is to ignore
disease risks and perform no infection control. As θ increases, the
system evolves the following behaviors: (i) when θ > θ̄y1 the CIC
solution is a local optimum; (ii) when θ > θ̄π the CIC solution is
a global optimum; (iii) when θ > θ̄y2 the NIC solution ceases to
be locally optimal, and there is persistent marginal profit from in-
fection control; and (iv) when θ > θ̄b profit always increases with
decreasing disease prevalence.

Under density dependence, the threshold θπ can be derived as

θπ = 1 −


1 −

a
P

 
v + σ

σ


, (15)

and this threshold has a similar form (Eq. S42) in the FD-model.
When θ > θ̄π , a farmer would practice complete infection control
on his farm assuming he is a global optimizer and ‘‘sees’’ that the
global optimum is at y = y0. Note that the θ̄π threshold also
defines a threshold a = vP/(v + σ), below which the low cost of
infection control makes the CIC solution more profitable than the
NIC solution, evenwhen infected poultry are impossible to identify
(θ = 0). Here, the case fatality rate of infected poultry determines
the target subsidy level for infection control, revealing a powerful
effect of disease-induced virulence on the economics of optimal
health policy. In fact, all four θ-thresholds can be expressed as
thresholds in a, underscoring the influence that a subsidy for
infection control would have in reducing disease prevalence.

3.4. Differences in farm/flock size between the DD- and FD-models

For a free-range flock, inwhich frequency-dependent transmis-
sion represents disease dynamics more realistically than density-
dependent transmission, the recruitment rate b has a significant
economic effect but no epidemiological effect, because the rate of
contacts among hosts is independent of the flock size. Under fre-
quency dependence, equilibrium flock sizes are larger and more
sensitive to market price because equilibrium disease prevalence
does not increase with flock size. Conversely, the farm/flock sizes
in the FD model are less sensitive to changes that affect the popu-
lation of infected poultry. For example,

∂b∗

DD

∂θ
<

∂b∗

FD

∂θ
< 0 and

∂b∗

DD

∂κ
>

∂b∗

FD

∂κ
> 0 ,
but
∂b∗

FD

∂P
>

∂b∗

DD

∂P
> 0. (16)

Thus, changes in diagnostic-test sensitivity θ or the compensation
amount κ for infected birds will have a larger impact on farm
size in the DD-model than in the FD-model. However, infection
control is easier to incentivize for frequency-dependent disease
transmission,whetherweare changing the overallmarket price (P)
or the expected value of infected poultry (κ , θ ), as the thresholds
θ̄y2 and θ̄π are lower under frequency dependence (Eq. S44).
Because R0 is lower under frequency dependence, the system is
on a steeper part of the prevalence curve, and thus the marginal
benefit of infection control is higher than in a DD-model.

3.5. Effects of government response policy

Focusing on the risk ϕ of human exposure to HPAI in the
government loss function (Eq. (5)), the loss function (DD-model)
changes with culling effort as follows:

dL
dδ

= ϕ
b(1 − θ)

v + σ


(1 − δ) εb

1
P

dP
dδ

−


1 −

1
R0

 
+

dC
dδ

. (17)

Hence, culling is beneficial at high R0 because infected poultry are
removed, but culling can be detrimental within the NIC solution
if its effect of increasing price and thus farm size creates more
infected poultry than it removes. In Eq. (17), the left-hand term
inside the square brackets represents the elasticity of farm size to
culling effort. If this term is larger than the equilibrium fraction of
infected poultry, culling will be detrimental. Note that evaluating
culling effort relies heavily on the boundary solutions for infection
control: a small culling effortmay be detrimental under low R0, but
a larger culling effortmay be beneficial if the increase in themarket
price is sufficient to reach the CIC boundary solution.

Optimal government policy changes with different economic-
epidemiological conditions (DD-model, Fig. 5). When farm size is
inelastic to price (εb ≈ 0), culling is optimal as it removes infected
poultry from human contact and has no other adverse effects on
farm size. When price fluctuations have an appreciable effect on
farm size (εb > 0), reducing poultry prices within the NIC solution
is always seen as a beneficial policy from the governmental per-
spective, because this policy reduces the total poultry population.
When R0 is low (Fig. 5C), culling would typically not be beneficial
if it led to price increases (unless those price increases were suffi-
cient to incentivize farmers to the CIC solution). However, culling
can be beneficial when R0 is high and εb is less than one (Fig. 5B),
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Fig. 5. Schematic of the government’s loss function L(f , δ) in different economic and epidemiological scenarios (DD-model). Red areas indicate regions where the
government’s loss is high due to either high operational cost or many unculled, undiagnosed sick poultry. Blue areas indicate regions where loss is low. White areas indicate
that the system is at the disease-free equilibrium for these parameters. (A) When farm size is inelastic to price, the government’s best option is to cull, allow price to rise,
and incentivize farmers to control their own infections. (B) With moderate farm-size elasticity and high R0 , both culling and fining are beneficial as culling removes infected
chickens and fining lowers prices and incentivizes smaller farms. (C) With moderate farm-size elasticity and low R0 , the benefits of culling are negated by increased farm
sizes. (D) When farm-size elasticity εb >1, fining is optimal, as culling and increased market price lead to larger farms and more infection. In addition, the CIC solution does
not exist for εb >1 as infection control becomes very expensive on large farms. In the FD-model, only behaviors in panels B and C are observed (with no SFS solution); see
Fig. S2. CIC, complete infection control; CIC/g, complete infection control for a farmer that optimizes globally across multiple local optima. SFS, small farm size.
because more infected poultry are removed than added through
economic incentives. Under a model of frequency-dependent in-
fection, culling removes more infected poultry than it incentivizes
when εb <1 (Fig. S2 and Eq. S47).

If it were possible to impose a fine on sales of infected poultry
only, such a policy would reduce the price of infected poultry rela-
tive to healthy poultry andwould offer better control ofHPAI than a
broad policy of fining/culling that applied to all poultry (Fig. 6). This
reveals a powerful effect of information (Rich and Perry, 2011) on
the government’s optimal response policy, and is identical to de-
creasing the compensation parameter κ (or equivalently, increas-
ing θ ). Eqs. S33 and S45 show that dL/dθ < 0 under both FD and
DD transmission scenarios, indicating that social loss decreases as
information increases.

4. Discussion

A growing number of articles have begun to integrate economic
dynamics into non-linear disease models. This work looks at the
impact of self-interested behavior of individuals who might be-
come infected (Philipson and Posner, 1995; Dow and Philipson,
1996; Geoffard and Philipson, 1996, 1997; Boozer and Philipson,
2000; Smith et al., 2005; Bonds and Rohani, 2010; Bonds et al.,
2010; Klepac et al., 2011; Plucinski et al., 2012) or owners of live-
stock that may become infected (Bicknell et al., 2000; Horan and
Fenichel, 2007; Horan and Wolf, 2005; Fenichel and Horan, 2007;
Mahul and Gohin, 1999; Rich, 2007; Fenichel et al., 2010). In this
paper we expand the scope of economic dynamics in disease mod-
els by incorporating both markets for livestock and the public pol-
icy effects on those markets. Broadening the economic effects in
epidemiological models can yield many benefits because (i) eco-
nomic variables can change on the same time scale as disease
transmission and (ii) economic and epidemiological variables can
be profoundly inter-linked. As shown in this analysis, price elastic-
ity can affect farm size and thus disease transmission, whereas the
basic reproductive number of a virus – a knowable epidemiological
quantity – can determine whether it is optimal to purchase poul-
try for culling or to penalize poultry sales. A logical next stepwould
be to shift from analysis of static equilibria to dynamic equilibria, a
move that has brought great benefits to evolutionary epidemiology
(Boni et al., 2006; Day and Gandon, 2007).

We have elucidated some of the mechanisms that drive the
dynamics of economic-epidemiological systems in the context of
avian influenza. High compensation for culled poultry can disin-
centivize infection control (Bicknell et al., 2000; Beach et al., 2007;
Hennessy, 2007) and under density-dependent transmission, in-
termediate farm/flock sizes are optimal for balancing the oppos-
ing effects of profit and disease (Bicknell et al., 2000; Horan and
Wolf, 2005; Horan and Fenichel, 2007; Fenichel and Horan, 2007).
Under frequency-dependent transmission, intermediate farm sizes
are optimal due to the convexity of the farm-maintenance cost
function (r). Under the general conditions of our model, there is
no economic benefit to higher turnover in the poultry population.
It remains to be seen if this result holds for animal populationswith
longer lifespans (Eq. S14).
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Fig. 6. Schematic of the government’s loss function L(f , δ); red areas for high loss, blue areas for low loss, white areas when the system is at the disease-free equilibrium.
The vertical axis shows the fine (fS ) that is imposed on the sale of sick poultry only. (A) When εb <1, culling removes infected poultry and fining incentivizes smaller farms.
In this panel, we assume R0 is sufficiently high such that culling results in a net removal of sick poultry, as in Fig. 5B. (B, C) When εb >1, culling incentivizes larger farms and
fining incentivizes smaller farms. The CIC/g and CIC solutions are always reached at a lower price or lower fine in the FD-model (this feature is not shown in panel A). CIC,
complete infection control; CIC/g, complete infection control for a farmer that optimizes globally across multiple local optima.
Previous work assumed that the economically optimal level of
infection control should be intermediate (Bicknell et al., 2000; Ho-
ran and Fenichel, 2007; Gramig et al., 2009), but we show that
under a very basic assumption – the cost of infection control in-
creasing linearly with host population size and infection control
effort – the non-linear relationship between prevalence and in-
fection control makes the marginal profit of infection control high
when R0 is close to 1 and lowwhen R0 is large. Consequently, profit
as a function of infection control is convex, not concave, and opti-
mal infection control has boundary solutions. Further investigation
into the cost of infection control in ourmodel suggested that when
the cost function is non-linear multiple local optima could occur.
Thus, the shape of the infection-control cost function may be one
of the more important features to measure using field data from
economic-epidemiological systems.

As understanding of the complex interactions in economic-
epidemiological systems improves, new parameters and mecha-
nisms will be identified as key drivers of these systems. In this
analysis of avian influenza, the expected economic value of in-
fected poultry impacts the systemdynamics dramatically, whether
this value is driven by (i) ability to diagnose infected poultry, (ii)
compensation levels for infected poultry, or (iii) fines placed on
sales of infected poultry. The lower themarket value of an infected
animal, the more likely it is that economic optimization and pub-
lic health optimization will coincide. However, if this market value
is too low, there is a risk that infected animals may be concealed
(Bicknell et al., 2000; Beach et al., 2007; Hennessy, 2007; Gramig
et al., 2009). To avoid this potentially dangerous outcome, poli-
cies other than culling should be considered. The θ-thresholds de-
scribed by Eqs. (8), (12) and (15) can be rewritten in terms of κ
or a, revealing the direct relationship between the market value
of an infected animal and the cost of infection control. The inter-
changeability of θ , κ , and a, suggests that subsidized infection con-
trol could achieve the same goals as improved diagnosis or fines
on sales of infected poultry. Mass poultry vaccination, already ini-
tiated in many countries (Domenech et al., 2009), can be consid-
ered a form of subsidized infection control as it lowers the product
β(1 − y) in the model defined by Eq. (1).

One component of welfare omitted from this study is the
economic impact on the farmer. Conditions that force the farmer
to lower the farm/flock size are likely to harm the farmer
economically.When transmission is frequency-dependent, there is
no disease-induced small farm size solution, and the optimal flock
size is larger than when transmission is density-dependent. Under
these circumstances, free-ranging flocks are better for farmer
livelihood, as they free ride by using physical space as a natural
means of infection control, and are thus less subject to the density-
dependent effects of disease transmission. Future economic
analyses of avian influenza control should incorporate this model
behavior as both a useful means of infection control and an
important potential negative externality. On the other hand, free-
ranging flocks aremore sensitive to falling prices (Eq. (16)), putting
the farmer at risk of a large relative loss in income. Understanding
the dynamics of farmers’ livelihood also requires an understanding
of price dynamics that result from HPAI outbreaks and consumer
response. During the initial H5N1 outbreaks in 2003–2005, poultry
prices plummeted due to a drop in demand (Otte et al., 2008a).
In Cambodia and Vietnam, market prices recovered to levels
exceeding pre-outbreak prices, possibly because of decreased
supply (Otte et al., 2008a; Hall et al., 2006). Given the lack of
systematic data on price changes, the lowered state of alarm over
H5N1 (Lau et al., 2010), and the high state of alarm in 2013
concerning influenza H7N9 infections, there is no simple way to
predict how a culling policy would affect poultry prices.

Finally, poultry farmers’ pro-social behaviors should be consid-
ered as an important element of the dynamics presented here, as
farmers may have an incentive to lower disease prevalence simply
because they are at risk of internalizing some of the costs associ-
ated with HPAI outbreaks. In addition, farmers may also behave
altruistically if they are aware that certain farming behaviors may
present a public health risk to others or the community at large.
A game-theoretical formulation of our model with multiple indi-
vidual farmers making infection control decisions would allow us
to determine how significant of an effect altruistic behavior could
have in such a system (Shim et al., 2012). In the current model,
we are able model pro-social behavior by artificially lowering the
value of κ below the consumers’ value of κ . This would reflect the
farmer placing a lower value on infected poultry for reasons other
than the external market price.

Ourmodel systemdemonstrates the complex behaviors that oc-
cur when culling affects price and price affects farm size, showing
that the basic reproductive number of a virus can determine if it is
better economically for the government to purchase chickens for
culling or to impose a fine on chicken sales. Further theoretical de-
velopments in economic epidemiology should be aimed at creat-
ing new model frameworks from which practical models can be
built and tested; for influenza in particular the evolutionary pos-
sibilities for changing virulence should also be taken into account
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(Hatta et al., 2001; Schrauwen et al., 2011; Boni et al., 2013). Fu-
ture models should include non-equilibrium approaches, stochas-
tic outbreak dynamics, spatial and network analysis (Tildesley
et al., 2010), the effects of export markets, the timing of culling
policies, and the economic consequences of farm downtime (Otte
et al., 2008a; McLeod, 2010). Empirical studies will be needed to
measure the structural costs of expanding/shrinking poultry farm-
ing activities, costs of implementing different types of infection
control, market reactions to changing poultry prices, and whether
government interventions such as culling have short-term or last-
ing effects. Some of these parameters will be very difficult to mea-
sure, as they may be observable only in the context of a true public
health threat. Both theoretical and empirical studieswill be needed
to advance our understanding of the balance between optimal pub-
lic health outcomes and optimal economic outcomes.
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