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Abstract 

Corneal endothelial tissue engineering aims to find solutions for blindness due to endothelial 
dysfunction. A suitable combination of endothelial cells, substrates and environmental cues should 
be deployed for engineering functional endothelial tissues. This manuscript reviews up-to-date 
topics of corneal endothelial tissue engineering with special emphasis on biomaterial substrates and 
their properties, efficacy, and mechanisms of supporting functional endothelial cells in vitro. 
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Introduction 
Corneal endothelial cells are important for visual 

function by regulating stromal hydration and 
maintaining corneal transparency. Unfortunately, 
these endothelial cells are generally not proliferative 
in vivo and cannot replace defective cells. Therefore, 
any corneal endothelial diseases may cause corneal 
edema and blindness. At present, the only effective 
treatment of such blindness requires corneal 
endothelial transplantation. However, there remains a 
global shortage of donor corneas with no alternative 
therapies. Recently with the rise of tissue engineering 
strategies, new discoveries suggest corneal 
endothelial progenitors are present in human adult 
corneal culture. Therefore, it is practical to engineer 
corneal endothelial grafts in vitro in an appropriate 
environment with appropriate isolation methods, 
culture substrates, media, and other environmental 
conditions. In this article, we focus on culture 
substrates and their ability to support functional 

endothelial cells in vitro.  

Collagen IV 
Collagen IV is the primary collagen in 

extracellular basement membranes separating 
epithelial and endothelial cells. Since the discovery of 
collagen IV by Kefalides in 1966, collagen IV has been 
investigated extensively by numerous research 
laboratories around the world. So far, six mammalian 
genes encoding six polypeptide chains of collagen IV 
α-chain polypeptides (α1–α6) have been discovered 
and subsequently characterized (reviewed in [1]). The 
NC1 domain is critical for the trimeric structure of the 
type IV collagen.  

Known Functions of Collagen IV 
Type IV collagen filaments are linked to 

interstitial collagen fibers and endothelial basement 
membranes [2]. Collagen IV is a critical mediator of 
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cell behavior [3], tissue compartmentalization, the 
external microenvironment [3], blood vessel 
maintenance, and responses to extracellular 
microenvironment sensors in endothelial cells and 
pericytes [1].  

Collagen IV has been idenfitied to be a key 
basement membrane collagen in endothelial and 
epithelial layers [4], suggesting collagen IV is critical 
for endothelial structure and functions. It is likely 
collagen IV maintains the normal phenotype of 
human corneal endothelial cells (HCECs) and 
prevents endothelial mesenchymal transition (EMT). 
For example, bovine corneal endothelial cells lose 
their phenotype with increased α-smooth muscle 
actin expression and formation of fibronectin fibril 
assembly when seeded on glass or tissue culture 
polystyrene. Bovine corneal endothelial cells also lose 
expression of ZO-1 when seeded on fibronectin and 
collagen I. However, when seeded on collagen IV, the 
endothelial cells are morphologically and 
phenotypically similar to in vivo state with polygonal 
shape and ZO-1 expression located borderly and 
F-actin located cortically [5], indicating that collagen 
IV plays a critical role in maintaining endothelial 
phenotype. On collagen IV coated dishes, HCECs also 
maintain higher cell densities with polygonal shape 
[6] (also reviewed in [7]) with greater attachment [7, 
8]. Consistent with the notion that Collagen IV is an 
important substrate, it had been shown normal 
endothelial cells secrete collagen IV while fibroblastic 
corneal endothelial cells mainly secrete collagen I [9]. 

We have screened different substrates such as 
collagen IV, matrigel, laminin and fibronectin that can 
be coated on an atelocollagen carrier for engineering 
HCEC grafts and noted that collagen IV is the most 
ideal substrate to be used to coat the atelocollagen 
carrier for expansion of HCECs [10]. Because collagen 
IV is the best substrate for culturing HCECs, all our 
experiments have been performed with collagen 
IV-coated dishes or atelocollagen sheets. Despite the 
known importance of Collagen IV, it remains unclear 
of the mechanism of action in how it promotes cell 
attachment and growth on atelocollagen sheets. It also 
remains unclear how collagen IV may affect the 
behavior of HCEC aggregates (not single cells) such as 
phenotype on plastics [10-18] on atelocollagen sheets.  

Atelocollagen 
Atelocollagen is a derivative of collagen I 

obtained by removal of N- and C-terminal telopeptide 
components. Because atelocollagen is solubilized by 
protease, its physical properties are virtually identical 
to those of natural, unsolubilized collagen. In 
addition, atelocollagen has little immune antigenicity 
as it is composed of a G-X-Y amino acid sequence that 

differs little even among different animal species. The 
slight amount of antigenicity in collagen is due to the 
telopeptides attached tocollagen molecules without 
G-X-Y sequence.Although such collagen may resist 
immune-rejection, it may also not support cell 
attachment and expansion.  

Integrins 
 Integrins are composed with two subunits, that 

is, α and β subunits. Integrins form complexes with 
matrix proteins including collagens, fibronectin and 
laminins [19]. Integrins signal through their receptors, 
which are important for endothelial cells to attach to 
the extracellular matrix, and are mediated by various 
α and β integrin subunits. For example, the 
attachment of endothelial cells to fibronectin is mainly 
through α4β1 and α5β1 integrins, while their 
attachment to laminin is mainly through α3β1, α6β1 
and α6β4 integrins [20]. In angiogenesis, 
incorporation of integrin αvβ3 with collagen IV 
mediates endothelial cell adhesion, migration and 
proliferation [21-23]. Inhibition of collagen IV 
production by cis-hydroxyproline reduces tube 
formation, while augmentation of exogenous collagen 
IV promotes tube formation [24]. Integration of 
collagen IV with integrin αvβ3 from endothelial cells 
may result in activation of integrin-mediated 
signaling in endothelial cells [21, 22]. Such integrin 
activation may inhibit apoptosis in pulmonary 
vascular endothelial cells induced by LPS [25, 26].  

However, it remains unclear whether collagen IV 
binds to integrin in our endothelial models and 
activates integrin-mediated signaling?  

Interaction of Integrins and Collagen IV 
 Collagen IV is crucial for the appropriate 

interaction of cells with the basement membrane 
including cell adhesion, proliferation, differentiation 
and migration [27, 28]. In fact, collagen IV is an 
important binding substrate for numerous cell types, 
for example, endothelium [29], hepatocytes [30], 
keratinocytes [31], mesangial cells [32], pancreatic 
cells [33], platelets [34, 35], and tumor cells such as 
breast and prostate carcinoma [36, 37], melanoma [27] 
and sarcoma [38].  

The major integrins includes β1 integrins, for 
example, α1β1 and α2β1 [39-41]. Integrin α1β1 has a 
high affinity for collagen IV, while α2β1 perfers 
collagen I [42, 43]. Deletion of α1β1 integrin may cause 
significant reduction in adhesion and migration of 
fibroblasts and adhesion of smooth muscle cells to 
collagen IV [44]. Functional activity of α1β1 integrin 
has been demonstrated by synthetic peptide with 12 
amino acid residues (457–468) from collagen IV [45]. 
Nontheless, collagen IV has been shown to bind with 
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α2β1 integrin [46] and α3β1 integrin [47-50].  
Specific binding sites of integrins have been 

identified for α3 NC1 domain [51, 52]. For example, 
residues 54-132 of α3 NC1 domain is associated with 
apoptosis and reduced tumor growth in mice [53]. 
Another binding site was at position 185–203 of α3 
NC1 domain which resulted in inhibition of 
melanoma cell proliferation [51, 54, 55]. However, it 
remains unclear what the predominant downsteam 
signaling mechanisms of integrin are and, how 
activation of integrin can affect cell proliferation and 
phenotype in an endothelial system.  

Focal Adhesion Kinase 
Focal adhesion kinase (FAK) is a cytoplasmic 

tyrosine kinase that is critical for embryonic 
development and the etiology of human diseases [56, 
57]. FAK is also widely expressed in many tissues and 
has three major functions:motility, survival and 
proliferation. Integrin-dependent FAK signaling is 
critical for survival [58, 59]. FAK also plays an 
important role in mediation of adhesion responsive 
elements to promote proliferation and activate 
transcription factors [60, 61]. FAK also regulates actin 
cytoskeleton, thus, mediating cell motility [62].  

FAK has 4 domains, N-terminal FERM domain, 
catalytic tyrosine kinase domain, C-terminal 
focal-adhesion targeting (FAT) domain and 
proline-rich region not specified. Integrin-mediated 
adhesion activates FAK by phosphorylating tyrosine 
397, resulting in formation of a binding site for 
Src-homology 2 (SH2) of Src, which then 
phosphorylates other tyrosine sites in FAK and thus 
amplifies its kinase activity dramatically [63]. 
Activation of FAK-Src complex promotes Rac1 
activity via phosphorylation of the scaffolding 
p130Cas protein ( Bcar1) [64]. Such phosphorylation 
enhances recruitment of Dock180 and motility 1 
(ELMO1), which functions as a GEF for Rac1 to 
promote membrane protrusions [65, 66]. FAK-Src 
complex can also phosphorylate paxillin, recruiting 
the ArfGAP paxillin-kinase linker (PKL) and 
Pak-interacting exchange factor-beta (β-PIX), 
activating Rac1 via a direct interaction [67]. 
Interestingly, PKL and β-PIX may be phosphorylated 
through Src, regulating their activities in 
integrin-mediated adhesion [68, 69]. 

FAK Signaling Interacts with STAT3 Signaling 
to Promote Cell Growth 

Previous publications have suggested that v-Src 
activation inhibits apoptosis and promotes 
anchorage-independent growth through activation of 
PI 3-kinase and STAT3 (pY705) signalings [70-74]. 
Activated FAK signaling can also activate STAT3 

(pY705) to facilitate anchorage-independent growth 
[75]. Conversely, we have also reported that 
LIF-JAK-STAT3 (pY705, LIF, leukemia inhibitory 
factor) signaling promotes HCEC growth by delaying 
contact-inhibition [17]. Activated LIF may promote 
JAK-STAT3 (pY705) signaling [76]. It is unclear 
whether activation of FAK signaling requires 
potentiation of LIF-JAK-STAT3 (pY705) signaling for 
promoting HCEC attachment and growth on collagen 
IV coated dishes/atelocollagen sheets, and if so how 
the two signalings interact. STAT phosphorylation at 
Y705 position may be the key for survival of HCECs 
on atelocollagen sheets coated with collagen IV.  

LIF may induce various cellular responses, for 
example, differentiation, proliferation [77], and 
embryogenesis [78, 79]. LIF is also a key cytokine for 
sustaining self-renewal and pluripotency of mouse 
ESCs and iPSCs. Upon binding to its receptor (R), 
LIF-R stimulates activation of signal transducer 
glycoprotein 130 (gp130), which then activates 
gp130-associated JAK kinases [80, 81]. Activated JAK 
kinases phosphorylates STAT3 proteins 
(pY705-STAT3), promoting JAK/STAT (pY705) 
signaling. When phosphorylated, the STAT3 proteins 
are dimerized, going into the cell nucleus to mediate 
expression of targeted genes [82]. Thus, STAT3 is a 
key mediator downstream of LIF. In the JAK family, 
JAK1 and JAK2 are closely linked to LIF signaling 
[83]. JAK1 is also critical for self-renewal of murine 
ESCs [84]. These suggest activation of 
LIF-JAK1-STAT3 (pY705) signaling may be involved 
in delaying contact inhibition and over-expression of 
ESC and NC markers of HCEC monolayers in 
modified embroyonic stem cell media (MESCM). In 
fact, we have discovered that LIF, but not bFGF, in 
MESCM plays a pivotal role in delaying contact 
inhibition of HCEC monolayers in the late phase 
(D35) of culture [17]. Further analysis indicates that 
such delaying contact inhibition is associated with 
upregulated expression of positive G1/S phase 
transition genes by activating LIF-JAK1-STAT3 
signaling pathway [17]. In such an event, the signaling 
is via phosphorylation of tyrosine 705. If Stat3 
(pY705) is lost, embryonic mice may not survive [85]. 
Stat3 (pY705) also mediates cell proliferation, 
apoptosis in numerous tissues [86], and self-renewal 
of embryonic stem cells [76, 87]. However, its role and 
mode of action during neural crest formation remains 
largely unknown. 

In contrast, STAT3 (pS727) may just play a minor 
role in cellular biological process. In this process, 
STAT3 proteins may be phosphorylated at serine 727 
(S727) through mitogen-activated protein kinases 
(MAPK) and c-Jun kinases [88-90]. However, such 
interactions between MAPK and STAT3 (pS727) are 
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not well understood. STAT3 (pS727) plays an 
important role for maximized function of the gene 
transcription and for promotion of the cell growth in 
vitro [91], probably synergestically with STAT3 
(pY705). Interestingly, integrin-mediated FAK 
signaling mediates mitochondrial bioenergetics, 
probably through nuclear translocation of 
pS727-STAT3 [92]. Such signal is important for actin 
reorganization, cell mobility, cell adhesion, and cell 
cycle mediation [93]. When activated, STAT3 may 
translocate due to S727 cytoplasmic phosphorylation 
[94]. Integrin-activated FAK signaling via STAT3 
(S727) can decrease ATP synthesis, which is key to 
prevent mitochondrial dysfunction, apoptosis, and 
subsequent cell death [95]. It remains unclear whether 
the integrin-FAK-STAT3 pathway activated by 
collagen IV plays the same or different roles in 
HCECs. It is also unclear how FAK activates STAT3 
(pS727). And if so, how such activation of STAT3 
(S727) affects the attachment and proliferation of 
HCECs on atelocollagen sheets coated with collagen 
IV. And if so, whether such activation of STAT3 (S727) 
inhibits apoptosis of HCECs on atelocollagen sheets 
coated with collagen IV, and if so, via which integrin? 

Conclusion  
In the past few decades, major efforts has been 

invested in developing tissue engineering techniques. 
One of the main strategies for effective tissue 
engineering is the proper selection of the cell 
substrates. For human corneal endothelial 
engineering, the methods are conditioned to the need 
of human corneal endothelial growth and with an 
environment which resembles the cellular and 
environmental conditions in vivo. Overall these 
elements are critical for successful engineering of 
functional tissue with normal phenotype and 
genotype.  
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