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Abstract

The function of a protein is strongly dependent on its structure. During evolution, proteins

acquire new functions through mutations in the amino-acid sequence. Given the advance in

deep mutational scanning, recent findings have found functional change to be position

dependent, notwithstanding the chemical properties of mutant and mutated amino acids.

This could indicate that structural properties of a given position are potentially responsible

for the functional relevance of a mutation. Here, we looked at the relation between structure

and function of positions using five proteins with experimental data of functional change

available. In order to measure structural change, we modeled mutated proteins via amino-

acid networks and quantified the perturbation of each mutation. We found that structural

change is position dependent, and strongly related to functional change. Strong changes in

protein structure correlate with functional loss, and positions with functional gain due to

mutations tend to be structurally robust. Finally, we constructed a computational method to

predict functionally sensitive positions to mutations using structural change that performs

well on all five proteins with a mean precision of 74.7% and recall of 69.3% of all functional

positions.

Introduction

Proteins are complex biomolecules that have been subject to mutational dynamics for billions

of years and whose tasks are essential for the maintenance, development, and survival of well-

functioning cells. They start from a sequence of amino acids that folds into a three-dimen-

sional (3D) structure that determines their function [1]. Understanding the underlying rela-

tions between sequence, structure, and function of a protein has been an active research topic

in molecular biology for decades [2, 3].

Structure and function prediction from the amino acid sequence has been an open problem

even prior to Anfinsen’s discovery of the thermodynamic hypothesis, which states that, under

normal conditions, the protein sequence is responsible for the native configuration of a protein
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[1, 4]. In the last couple of decades, widely available datasets of protein 3D structures like the

Protein Data Bank [5], machine learning methods such as deep learning [6], as well as high-

throughput methods to quantify functional scores at massive scales [7–9], have brought us

closer to understanding the interconnections between protein sequence, structure, and

function.

In particular, with the advent of the big data paradigm there has been a renewed interest in

the laws yielding structure and function from the one dimensional amino acid sequence [10].

Machine learning methods developed to predict residue-residue contacts in the 3D structure

have recently shown a relation between residue proximity and coevolution measured by the

covariance of positions in homologous protein sequences [10–14]. Coevolving positions have

also been shown to be functionally sensitive to mutations using deep mutational scanning data

[15, 16], reinforcing their prime role in protein structure and function.

The replacement of an amino acid in the sequence—a mutation—can have structural con-

sequences on the resulting protein and thus has a potential effect on its function. In general,

mutations occur naturally and have no effect on the protein function: this is called protein

robustness [17, 18]. Protein adaptation or evolvability also requires that some mutations can

change the protein’s function [19, 20], indeed, a mutation can make the protein obtain a differ-

ent function [21, 22]. Finally, a small set of mutations can leave the protein without the original

function [23], either because of loss or adaptation, yielding protein fragility.

Experimental evidence on the interrelation between function, structure, and mutation has

been shown before. For instance, via the analysis of missense mutations of the tumor suppres-

sor p53, where mutations at the DNA-binding structural domain were found to produce func-

tional loss more often [24]. Computational studies of the effects of in silico mutations in

protein structure have shown that most positions are structurally robust independently from

the chemical properties of the mutant residue [25], and sensitivity depends on their structural

neighborhood [26]. Functionally-wise, experimental research has shown that functional change

(fragility or adaptation) is, in general, exclusively dependent on the sequence position mutated

and not on the amino acid or its mutants [16, 27].

In the case of a mutation, the fact that sequence positions seem to contain the necessary

information for structure and protein fitness, raises the question of the relation between func-

tionally and structurally sensitive positions. Although deep mutational scanning has brought

results in many areas of molecular biology [8], the availability of its data is not yet ubiquitous

and it also has been often created for the analysis of epistatic effects and thus not including sin-

gle mutations. This brings the additional question of whether a relation between structure and

function can be observed by alternative, cheaper methods. Specifically, given a protein, can we

obtain the functional relevance of its sequence positions by looking at its 3D structure?

Network science has been successfully used in biology to model a variety of systems includ-

ing co-expression networks [28–31], metabolic pathways [19, 32], protein-protein interactions

[33–36], detection of protein function [37], and protein structure [38–40]. Amino acid net-

works, where amino acids are represented by nodes that are connected if they are within a dis-

tance threshold, have been used to model protein structure [41, 42] and study the effects of

mutation on structural fitness [25, 26]. A great advantage of computing structural change

under this framework is the availability of more than 144,000 structural protein models based

on their 3D atomic coordinates in the Protein Data Bank [43].

Here, we propose to use this methodology to study the relation between change in protein

structure and function by considering five proteins for which deep mutational scanning data is

available [16, 44–47]. For these proteins, the functional change resulting from a mutation has

been quantified for all amino acid substitutions, in most sequence positions. We obtained
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corresponding structural change data in silico using the perturbation network of a mutation

obtained by comparing the 3D structure of the original protein and that of its mutation.

We found that structurally sensitive positions (SSPs) are not only position dependent but

are also strongly correlated to functionally sensitive positions (FSPs) in all 5 proteins. More-

over, prediction of FSPs using SSPs yields a mean precision of 74.7% and recall of 69.3%

across all five proteins. Moreover, the area under the receiver operating characteristic (ROC)

curve, a quantity often used to assess the quality of the prediction, has a mean value of

0.83 ± 0.04, showing a clear relevance of positions’ structure in functional fragility due to

mutations.

To measure structural change, we considered three different topological measures of the

perturbation network, namely its size (in nodes), its number of edges, and its weighted sum. In

practice, the size of the perturbation network represents the number of amino acids affected

by the mutation; its edges, in turn, represent the structural contacts between amino acids

changed, and its sum of weights is the number of atomic pairs that either moved closer or fur-

ther apart of a chosen distance threshold. We show that mean structural change of sequence

positions accounted by each measure is correlated to experimentally-obtained functional

change. However, aggregating the perturbation measures increases the correlation between

functional and structural disruption. This relation was found for amino acid networks defined

by 71 different atomic distance thresholds in the range of 3–10 Ångstroms (Å).

Comparing the scores obtained for predictions using a distance threshold of 9 Å with the

scores obtained from all other thresholds in the 4–10 Å range, we observed that predictions

using a 9 Å threshold achieve similar or better scores than all other thresholds. This is true

across the five proteins studied and using all perturbation measures. We suggest that 9 Å is

indeed a good choice of threshold for obtaining accurate predictions of FSPs independently

from protein size.

Finally, the complement of the SSPs, the set of structurally robust positions (SRPs), corre-

lates well with top 40% of positions with weaker functional loss (or with a gain in function).

Within those positions many have a functional change close to zero, suggesting a relation

between structural and functional robustness.

Results and discussion

The relationship between structural and functional change studied here is based on the com-

parison between the perturbation network of mutations and their corresponding experimen-

tally obtained functional change in five proteins. We combined three network-based measures

representing structural change to ultimately be able to predict positions sensitive to mutations.

Below is a summary of the results found:

• Structural sensitivity (or robustness) to mutations is position dependent.

• Significant correlations show that there is a relationship between protein structural and

functional change due to mutations.

• Predictions for functionally sensitive positions based on individual network measures—

nodes, edges or weight—achieve considerable scores. Aggregating multiple network mea-

sures to obtain predictions improves the precision.

• Stronger structural perturbation is related to stronger functional change.

• The use of network parameters allows us to design predictions maximizing different values,

be precision, recall, or both simultaneously.
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• A relationship between robust positions to mutations and those that have small functional

change can also be observed.

Distance thresholds

Correlation between structure and function. Weighted amino acid networks as we have

constructed here are usually defined for distance thresholds between 5 Å and 8 Å, depending

on the intended chemical interactions to capture [38]. Threshold distances for atom-atom

interactions usually vary between 4.5 Å [48] and 5 Å [41, 49]. In general, the edges of amino

acid networks are supposed to be at least loosely based on the underlying chemical interactions

of the protein. Here, we took a different approach: we did not aim to model the biological

interactions between amino acids, but their structural neighborhoods, spanning much larger

distances than those chemically feasible [38].

Given a mutation, the perturbation network resulting from the comparison of a mutated

structure to the original three-dimensional (3D) conformation quantifies the structural change

of the mutation. Four parameters of the perturbation network were considered as perturbation

measures, namely, its number of nodes, its number of edges and their weight sum, and its

diameter (Methods).

To identify the best distance threshold to use, we first calculated Spearman correlation val-

ues between functional change of sequence positions and their perturbation-network parame-

ters. For each protein and each parameter, we compared the mean functional value and the

mean perturbation measure score per sequence position. Higher perturbation scores resulted

from 3D structures farther away from the original, hence possibly more likely to have a dis-

rupted function. This would be reflected by stronger negative correlations, relating higher per-

turbation scores with lower functional scores. For simplicity, we set all correlations to absolute

values.

We found consistent results between the five proteins studied when comparing each pertur-

bation measure to functional change (Fig 1). Mean and standard deviation Spearman correla-

tion (ρ) for measure nodes were −0.56 ± 0.12, for edges −0.53 ± 0.1, for weight −0.51 ± 0.1, and

for diameter −0.3 ± 0.11. For most measures we found statistically significant correlations

between structural and functional change. For measures nodes, edges, and weight the correla-

tions were significant (mean p-value = 3.6 × 10−4 ± 6.2 × 10−3), however that was not the case

for the diameter of the perturbation network (mean p-value = 1.6 × 10−2 ± 5.3 × 10−2).

For measures nodes, edges, and weight, we found that correlations increased steadily for

thresholds between 3 and 4 Å, showing a slight peak around 3.8 Å, and then stabilized around

4 Å for correlations between 0.3 and 0.65. In the case of the measure ‘diameter’, correlations

Fig 1. Spearman correlation between positions’ mean structural and functional scores by protein, perturbation measure, and distance threshold.

https://doi.org/10.1371/journal.pone.0261829.g001
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peaked between 3.5–3.8 Å for all five proteins and then decreased for higher distance

thresholds.

Relations between structure and function shown here suggest that protein structure can be

studied with much higher distance cutoffs (*9 Å). By arbitrarily ignoring chemical-based

interactions we were able to better account for the structural change around a mutated posi-

tion, suggesting that studies exclusively looking at the protein structure may benefit from

including higher distance thresholds.

Prediction of functionally sensitive positions. We also analyzed predictions considering

exclusively individual measures, that is, given a measure, we set a perturbation cutoff and

selected all positions that had at least one mutation above the cutoff (S1 Fig). We considered

cutoff 1.5, representing 1.5 standard deviations above the mean, and looked at both precision

and recall (Methods).

To compare the different perturbation measures, we took the predictions obtained from

single measures and averaged scores over all thresholds and proteins for each measure. We

found that the number of nodes had the highest mean precision (72.66%), weight had the high-

est mean recall (71.76%), and diameter had the lowest score in both cases (52.58% and 49.02%,

for precision and recall, respectively).

With these correlations and predictions based on single measures, we saw that in most

cases, we got more information from higher thresholds, reflected by higher correlations and

precision scores. Since the diameter of perturbation networks had less predictable behavior

compared to the other three measures, lower correlation scores, and lower scores when pre-

dicting based just on this measure, we will not include it when making predictions of func-

tional positions. We believe that this measure is too sensitive as adding or removing a single

edge could significantly change the maximal smallest path without significantly changing the

network itself; its sensitivity to small threshold changes is can be seen in Fig 1. For nodes,

edges, and weight, we considered the average scores between the 5 proteins and 3 measures,

and found that precision is maximized at 9.3 Å, while recall is maximized at 8.4 Å, suggesting

that an optimal threshold can be found in that range. Hereafter, we considered 9 Å as the rep-

resentative threshold.

Perturbation cutoffs and minimum counts

Aggregating perturbation measures. When selecting perturbation cutoffs and minimum

counts—the cutoffs defining structurally unstable positions and the number of altered mea-

sures required for instability, respectively (Methods)—we started from the idea that stricter

predictions, those arising from higher cutoffs and counts, reflected higher structural changes.

In other words, we assumed that the more the structure of the protein was modified, the more

likely it was that the function was disrupted. Hence, we expected stricter predictions to result

in higher precision.

Testing different cutoffs and minimum counts confirmed this hypothesis, as well as the

fact that more lenient predictions were more likely to have a higher recall, while sacrificing

precision (S2 Fig, Fig 2, Table 1). In Table 1, we can see that the mean precision increased as

the number of perturbation measures considered (minimum count) increased, while recall

decreased. When we considered only one perturbation measure, we got a mean precision

and recall of 65.96% and 82.58%, respectively. Inversely, when considering all three mea-

sures, we obtained a mean precision of 78.6% and recall of 51.47%. This shows that aggre-

gated scores predict better than single scores when the aim is to obtain higher precision,

suggesting that the three perturbation measures are relevant to account for structural

change.
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Percentages of FSPs and SSPs. Precision and recall scores are also closely related with the

percentage of functionally sensitive positions (FSPs), and structurally sensitive positions (SSPs,

predicted positions), respectively. In Fig 2, we compared how changes in these percentages

were reflected in the precision and recall scores. To obtain changes in the prediction percent-

age, we varied the cutoffs from 1 to 2, in intervals of 0.02, for a total of 51 cutoffs. As cutoffs

Fig 2. Top, comparing precision and recall scores with functional percentage, leaving parameters fixed at (1,1,1)

and minimum count of 2, varying functional percentage from 30 to 70%; bottom, comparing precision and recall

scores with prediction percentage, leaving functional percentage fixed at 40%, minimum count fixed at 2, and

varying the functional cutoffs from 1 to 2 to obtain different prediction percentages (percentages were rounded

and missing values filled in through linear interpolation). The line represents the mean over the proteins, while the

shaded area represents 95% confidence interval.

https://doi.org/10.1371/journal.pone.0261829.g002
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increased, structurally sensitive positions decreased, which was reflected in higher precision

and lower recall, providing further evidence on the relationship between stricter measures and

higher precision scores.

In the range between 18–30% of SSPs, we obtained at least 75% of precision. Larger per-

centages of SSP decreased precision in all proteins. Positions captured with stricter cutoffs

and minimum counts had mutations with larger perturbation networks relative to muta-

tions at other sequence positions. This may be due to some particularity in their 3D struc-

tural neighborhood, whose interconnections are sensitive to most mutations. In this sense,

the more unique the 3D neighborhood of the position, the greater the mean structural

change is to be expected. An example may be the active sites in enzymes, which usually take

a different substructures from the rest of the protein, whether it be a pocket, a cleft, an oligo-

meric interface, or another 3D shape [50]. Indeed, mutations happening at or close to active

sites tend to affect the protein activity either by enhancing it [51, 52], losing it or adapting it

[53].

Similarly, positions within an allosteric path which conveys signals from the active site to a

distant position are found to be co-evolving within protein families, which in turn tend to be

functionally sensitive to mutations [54]. These positions could be subject to structural particu-

larities in their close neighborhoods, relative to other positions, and thus having greater struc-

tural changes. A more thorough analysis of the structural perturbation and its relation to the

neighborhoods of biologically relevant positions is needed in this regard.

In all of our predictions we considered perturbation cutoffs and minimum counts such

that the percentage of structurally sensitive positions returned was informative, ranging

from around 25% when maximizing precision to around 50% when maximizing recall. As a

basis, we compared all of our predictions with the 40% of positions with lowest functional

values, and we henceforth refer to them simply as functionally sensitive positions, or FSPs.

Leaving all other values fixed (perturbation cutoffs, minimum count, and distance thresh-

olds), increasing this percentage led to a better precision and lower recall, while decreasing

this percentage had the opposite effect (Fig 2). We focused on 40% as a balance between

obtaining more precise predictions and selecting positions with significant disruption in

their function.

With distance cutoffs and functional percentage fixed, we focused on combinations of per-

turbation cutoffs and minimum counts to make different predictions. For all of them, we con-

sidered the precision, recall and improvement scores (Methods), the latter representing the

ratio between obtained scores and expected scores from random predictions.

Since the correlations between the mean structural and functional scores by protein showed

similar scores among the thresholds 4–10 Å for nodes, edges and weight scores (Fig 1), we cal-

culated the precision, recall and improvement scores for each of the possible thresholds for the

three measures, to compare them to the predictions we obtained using the threshold 9 Å for

those measures and evaluate the choice of parameters (Fig 3).

Table 1. For all three minimum counts, we evaluated predictions with 51 different perturbation cutoffs ranging

from 1 to 2 (same cutoff for all three measures), and calculated the mean over all cutoffs and proteins, obtaining a

mean score for precision and recall for each minimum count.

Minimum count Mean Precision (%) Mean Recall (%)

1 65.96 82.58

2 72.78 67.42

3 78.6 51.47

https://doi.org/10.1371/journal.pone.0261829.t001
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Protein structure-function relation

Distance threshold of 9 Å. Having established that stricter measures result in predictions

with higher precision but lower recall and vice versa, we considered three sets of parameters to

give predictions focusing on high precision, high recall, and an equilibrium between both. We

refer to these predictions as maximizing precision, maximizing recall, and maximizing both.

In Fig 2, we varied cutoffs between 1 and 2, and looking at the prediction percentages, we

obtained ranges of 38.7% to 63.2% for minimum count 1, 26.6% to 50% for minimum count 2,

Fig 3. Comparing the precision and recall obtained from varying the threshold for nodes, edges and weight scores from 4 Å to 10 Å, with

threshold 9 Å, representing our predictions for FSPs, highlighted in red. Different minimum count and cutoff vectors were used to A) Maximize

precision, B) Maximize recall, and C) Maximize precision and recall.

https://doi.org/10.1371/journal.pone.0261829.g003
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and 15.1% to 39.1% for minimum count 3 (with lower values for cutoff 2, higher for 1). Based

on this, and the known behavior of the parameters, we chose the minimum counts and cutoffs

for predictions depending on the value to maximize and to keep informative prediction per-

centages: lower to maximize precision and higher to maximize recall.

First, to maximize precision, we selected stricter measures, considering a minimum count

of three, as it had the highest mean precision, and a perturbation cutoff vector (1.5, 1.5, 1.5).

This resulted in a mean precision of 80.5%, a mean recall of 53.1%, and a mean prediction per-

centage of 26.3% (Fig 3A), as well as an improvement by a factor of 2. In other words, using

the three perturbation measures to account for structural change, we got a set of functionally

sensitive positions with high precision.

In other studies, coevolving positions in protein families obtained using statistical coupling

analysis, usually called protein sectors, have been found to form physically connected subnet-

works of amino acids [15, 55]. Most of these positions, around 20% of all sequence positions,

have been found to be sensitive to mutations. In particular the protein sector of the PSDpdz3

protein, one of the proteins studied here, has been related to functional loss from single muta-

tions [16]. Predicted positions maximizing precision, showing a similar percentage of the

amino acid sequence, may also be related to protein sectors in other proteins but further

researcher is needed in this direction.

Next, to maximize recall, we focused on more lenient measures. We considered the pertur-

bation cutoff vector consisting of all ones, and a minimum count of 2. This minimum count

showed more balanced results between precision and recall, while the perturbation cutoff vec-

tor (1, 1, 1) helped maintain a high recall. Comparing those predictions with the functionally

sensitive positions, we found a mean recall of 82.2% over the 5 proteins studied, with a mean

precision of 65.7%, while the mean percentage of predicted positions was 50% (Fig 3B). This

resulted in an improvement of random predictions by a factor of 1.64.

A more general prediction, aiming to maximize precision and recall simultaneously, was

achieved by once again using the perturbation cutoff vector (1.5, 1.5, 1.5), but with a minimum

count of 2. This prediction resulted in a mean precision of 74.7%, a mean recall of 69.2%, and

a mean prediction percentage of 37% (Fig 3C), as well as an improvement by a factor of 1.87.

By predicting roughly the same number of positions as the number of FSPs, we believe this

combination of parameters is a good general prediction if there are no functional values to

compare to.

Functional prediction from SSPs. As we can see in Fig 4B for VIM-2 protein, in S3–S7

Figs for the other four proteins, and in Table 2, structural change due to mutation, similar to

functional change, is position-dependent and independent from chemical properties of either

the mutant amino acid or the one being replaced, supporting similar results from previous

work [26]. This position dependence is also found in terms of functional change from muta-

tions (Fig 4A, Table 2), suggesting that both structure and function relevance is determined by

the position and not by the amino acid occupying it. Notably, structural measures with a

higher position independence also showed higher correlations with functional change. This

further supports the importance of the structural neighborhoods of positions disregarding

chemical bonds to study protein structure.

To further evaluate our model, we obtained the receiver operating characteristic curve, plot-

ting the True Positive Rate against the False Positive Rate. We fixed the threshold at 9 Å and

varied the perturbation cutoff from 0.03, to 3. As we have seen, changing this value varies the

recall, or True Positive Rate, with lower values corresponding to a higher recall. For a mini-

mum count of two, evaluating predictions for sensitive positions resulted in a mean area under

the curve of 0.83 ± 0.04 (Fig 5).
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High precision to predict functional positions reinforces evidence about the relation

between function and structure. Interestingly, on average more than 80% of highly SSPs (top

26%) tended to also be FSPs for all five proteins studied, yielding a precision that to our knowl-

edge is not yet met in other non-experimental scenarios. Our framework could have applica-

tions in fields where a high precision in determining non yet known functional positions

could be of significance, e.g. to inhibit the function of a target protein related to disease by a

single mutation. Moreover, precision rates of around 70% were similar using perturbation net-

works and coevolving positions [16]. Given a protein, the advantage of our method is the lack

Fig 4. A) Experimentally obtained functional data from deep mutational scan of VIM-2 protein, with darker values representing higher functional

disruption, specifically blue is loss of function while red represents gain of function [47]. B) Standardized data of the number of nodes perturbed by

each mutation where each entry is the number of standard deviations from the mean of the distribution. The perturbation network was constructed

using a threshold of 9 Å; blue represents highest structural perturbation, and red represents lowest. C) Predictions maximizing precision. X-axis has the

sequence positions, Y-axis has the experimentally obtained mean functional value. Blue dots are SSPs—our predictions for FSPs—while shaded blue

area contains the 40% of sequence positions with lowest functional scores representing strongest functional loss. Top row shows the functional values

experimentally obtained for VIM-2 protein, bottom row the other four proteins studied. D) Predictions maximizing recall. E) Predictions maximizing

both measures.

https://doi.org/10.1371/journal.pone.0261829.g004
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of need of its protein family to predict its functionally sensitive positions, thus enlarging the

scope of proteins to be used.

Structural and functional robustness

Our predictions so far have focused on identifying positions likely to be functionally sensitive

(FSPs). Thus, by turning to the positions left out of a certain prediction, we could identify

those more likely to be functionally robust (FRPs) to mutation. We compared these new pre-

dictions, obtained from the complement of different predictions for unstable positions, with

the 40% of positions with highest mean functional scores (Fig 6). This percentile of positions

represents those with a gain of function, or those with small functional changes resulting in

scores similar to the WT amino acid at that position.

In this case, we considered the cutoff vector consisting of only ones to define the structur-

ally sensitive positions. By considering the complement of these positions as structurally

Table 2. Considering structural and functional data, we looked at perturbation values per position, and consid-

ered the percentage of positive scores and negative scores, keeping the maximum of the two. This presents a mea-

sure of consensus between the changes at each position, the higher values represent that most mutations result in the

same effect (whether positive or negative values), independent of the mutant amino acid or the amino acid being

replaced. We present averages and standard deviations over positions and proteins for the nodes, edges, and weight

measures (structural data) and for the functional data.

Measure Positions sharing same sign (%)

Nodes 87.9 ± 14.4

Edges 83.9 ± 15.8

Weight 77.7 ± 15.3

Functional data 81.4 ± 15

https://doi.org/10.1371/journal.pone.0261829.t002

Fig 5. ROC curves for predictions of A) sensitive positions and B) robust positions are shown. ROC curves were obtained from varying cutoff-vector elements from

0.03 to 3, and fixing a minimum count of 2.

https://doi.org/10.1371/journal.pone.0261829.g005
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robust, we kept positions where all mutations had scores less than one standard deviation

above the mean, those closer to the wild type. Since we considered the complement of sensitive

positions, smaller minimum counts lead to stricter predictions for robust positions and vice

versa.

We considered one prediction, with a minimum count of one, to showcase the relationship

between structural and functional robustness. The minimum count of one guarantees that all

mutations for predicted positions are less than one standard deviation above the mean for all

three measures. This prediction had a mean precision of 70.4%, mean recall of 65% and a

mean prediction percentage of 36.8%, which resulted in an improvement of 1.44. Once again

we calculated the receiver operating characteristic curve, with threshold 9 Å. Predictions for

robust positions with a minimum count of one resulted in a mean area under the curve of

0.80 ± 0.04 (Fig 5).

We also tested predictions for robustness analogously to those for sensitivity, selecting posi-

tions with at least one value below a threshold for a specific number of measures. This resulted

in predictions with lower precision, between 50 and 60%, compared to 70.4% as presented

above. This shows that, while a single ‘bad’ mutation can be telling of a sensitive position with

high precision, the same cannot be said for ‘good’ mutations and robust positions. Instead, we

find good predictions for robust positions when all mutations have scores closer to the mean,

suggesting higher constraints for stability are required from the structural neighborhoods.

Protein evolvability depends on the ability of a protein to obtain a new function from a set

of mutations (protein innovability), as well as in protein robustness (ability to withstand muta-

tions) [17, 56]. Specifically, robustness is the ability of the protein to maintain both structure

Fig 6. A) Functional data from deep mutational scan of PTEN protein, with lighter values representing smaller functional disruption, specifically blue is

loss of function while white/red represents functional robustness to mutation [44]. B) Standardized data of the number of nodes perturbed by each

mutation where each entry is the number of standard deviations from the mean of the distribution. The perturbation network was constructed using a

threshold of 9 Å; blue represents highest structural perturbation, and red represents lowest. C) Predictions maximizing precision. X-axis has sequence

positions, Y-axis has mean functional value. Blue dots are SRPs—our predictions for FRPs—while shaded red area contains the 40% of sequence positions

with higher functional robustness. Top row shows PTEN protein, bottom row sows the other four proteins studied.

https://doi.org/10.1371/journal.pone.0261829.g006
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and function in the case of mutations. The fact that over all five proteins, on average 70% of

the top 30% structurally resilient positions were also within the most functionally robust may

be a consequence of this property.

Concluding remarks

We set out to explore the relationship between change in protein structure and function

through the use of protein three-dimensional coordinates, in silico mutagenesis, and published

deep mutational scanning datasets. We developed a method to predict functionally sensitive

positions using structural data, and found a mean precision of 74.7% and a mean recall of

69.2% when comparing the predictions to functionally sensitive positions. By considering the

complement of a set of predictions as structurally stable positions, we found a mean precision

of 70.4% and a mean recall of 65% when comparing to the 40% of positions with highest func-

tional values. Predicting randomly would lead to precision values close to the 40% of positions

deemed functionally sensitive (or stable), and these predictions improve random predictions

by factors of 1.87 and 1.44, respectively.

By changing the prediction parameters, we were able to obtain predictions with higher pre-

cision or recall, and we found a relationship between stricter parameters for structural sensitiv-

ity, requiring a bigger effect in the perturbation network, and more precise predictions. When

predicting stable positions, more lenient parameters for sensitivity translate to stricter require-

ments for stability, and the same effect on precision was obtained. This supported a close rela-

tionship between structural and functional change in a protein. On the other hand, more

lenient predictions for structural sensitivity lead to a greater recall, which relates to the greater

percentage of positions included in the predictions. Our predictions maximizing precision

improve that value by a factor of 2 for sensitive positions, compared to random predictions.

The method described can be used to predict sensitive positions in a protein without resort-

ing to experimental methods, and it can be used as a standalone or in combination with other

variant effect predictors [57], with the advantage that only the three-dimensional coordinate

file is required as well as its in silico mutations. By knowing how the choice of parameters

relates to the precision and recall in the proteins studied, we can estimate the probability of

certain positions being functionally sensitive, and combine predictions to obtain positions

most likely to be functionally sensitive, and predictions likely to encompass most functionally

sensitive positions.

The predictions we considered and their respective scores show that it is harder to predict

which positions are likely to show functional values above zero, showing gain of function, or

close to zero, showing little or no functional change. However, we were able to observe a clear

relationship between structural and functional robustness by looking at their correlation and

their mutual position dependence.

The present approach may result particularly relevant in the design of protein structures via

directed mutagenesis methods [58, 59]. Protein structure-based drug design [60, 61] either

with pharmaceutical and biotechnological applications or even in terms of disease modeling,

relevant in the context of, for instance, the COVID-19 pandemic [62, 63]. Also of contempo-

rary relevance are the potential applications of our approach in the context of protein struc-

tural and functional prediction of CRISPR-Cas9 modifications [64–68]. The common scenario

is that CRISPR-Cas9 genome editing allow us to determine gene sequences via highly specific

modifications. Less clear are, however, the potential impact that such gene specific changes

may bring to protein structure and function. In view of the plethora of applications of

CRISPR-Cas9 genome editing in health, agriculture and biotechnology, it will become useful

to have tools to predict, although still approximately, such effects.
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A potential continuation of the work presented here is the use of machine learning models

for classification prediction of functional positions trained on structural data from perturba-

tion networks. In the same direction, if the structural data could be obtained exclusively from

the 3D atomic coordinates, using network parameters local to the position, these models

would not need further mutagenesis software. The need for this software represents the major

weakness of our approach, as it require the availability and know-how of a third party software,

a trade-off for not requiring additional data beyond the atomic coordinates of the protein.

However, the computational time required was less or similar than other state-of-the-art meth-

ods showing good agreement with our predictions, such as DynaMut [73] (see Methods). The

position dependence of structural change should incite further research on the identification

of atypical neighborhoods in the structural vicinity of a position, and their relation with func-

tional sensitivity to mutations.

Methods

Code availability

All the code used in this work is publicly-available at https://github.com/CrisSotomayor/

perturbation-networks.

Protein selection

We selected five proteins with published deep mutational scanning data and corresponding

three-dimensional coordinates available in the Protein Data Bank [5], focusing on enzymes

with substrate binding assays. The proteins selected were PSD95pdz3 (PDB: 1BE9) [16], phos-

phatase and tensin homolog (PTEN) (PDB: 1D5R) [44], APH(3’)II (PDB: 1ND4) [45], Src

kinase catalytic domain (Src CD, PDB: 3DQW) [46], and VIM-2 metallo-β-lactamase (PDB:

4BZ3) [47].

Functional change

We used the deep mutational scanning data to obtain functional scores for individual muta-

tions. We considered the mean functional change at each position: the average score for all

mutations at a particular position for which scores are available. Using these values and the

percentage of positions we want to consider, we define functionally sensitive positions (FSPs)

by sorting positions and selecting said percentage of positions with the greatest loss of func-

tion: the lowest mean functional change. Similarly, functionally robust positions (FRPs) are

defined by selecting a percentage of positions with the weakest loss of function: the highest

mean functional values. These values translate to positions with positive mean values or values

close to zero. Throughout this paper we will consider 40% of positions for both FSPs and

FRPs.

Amino acid networks

Given the three-dimensional atomic coordinates of a protein and a distance threshold t, an

amino acid network G(t) is a network where nodes correspond to sequence positions and an

edge between two nodes exists if there is a pair of atoms, one in each amino acid, at distance

less than t. Moreover, each edge in the network has a weight corresponding to the number of

atomic pairs at distance less than t between the two nodes.

The construction of the networks was done in the Python programming language and

implemented in a library called Biographs [69] based on the popular libraries NetworkX
[70] and Biopython [71].
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Perturbation networks

Corresponding structural change data is obtained by first producing the same mutations in sil-
ico for each protein. Then, the resulting 3D structure of each mutation is modeled with an

amino acid network and compared to the network of the wild-type 3D structure. The struc-

tural change of the mutation is represented by the topological difference of the two networks

and called the perturbation network of the mutation, which accounts for the structural change

of the protein. In this model, each topological measure of the perturbation network quantifies

an effect of the mutation on a different structural property of the protein, and can be used to

identify structurally sensitive positions to mutations. The full details of how we constructed

the perturbation networks are described below.

For each protein, we performed in silico mutagenesis using the algorithm FoldX 5.0
[72]. We mutated every position with corresponding functional data to the other nineteen

amino acids. For each mutation, FoldX yields a three-dimensional structure that was used to

construct the mutation’s amino acid network. For each protein, its corresponding wild type

amino acid network is obtained from the original structural file (PDB file). Using multithread-

ing with 30 cores, computing the structures for all the point mutations took less than 24 hours

per protein.

The perturbation network of a specific mutation is obtained by comparing wild type and

mutation networks [42]. Given a distance threshold t, let A and B denote the adjacency matri-

ces for the wild type and mutation networks G(t) and M(t), respectively. Let matrix C denote

the absolute difference of the matrices A and B:

C ¼ jA � Bj:

After removing all the rows and columns containing only zeros from matrix C, we obtain

the adjacency matrix that defines the perturbation network P(t) (Fig 7). We consider four

topological attributes of P(t), namely its size (referred here as ‘nodes’), number of edges

(‘edges’), total sum of weights (‘weight’), and its diameter (maximal smallest path, called

here ‘diameter’). However, the diameter was ultimately not considered for making

predictions.

Structural change

For proteins with multiple identical chains, we obtained the perturbation networks for all

mutations of all chains, and then calculated the average of each mutation over the different

chains to obtain a single score per position. In order to capture a broad range of atomic dis-

tances, we constructed all networks using 71 different thresholds between 3 Å and 10 Å, where

consecutive thresholds are spaced by a 0.1 Å step.

The four perturbation measures have different scales, and vary in magnitude according to

the distance threshold, so we standardized the data to make comparisons between the different

measures. We considered four data arrays per protein and threshold, one for each measure,

containing the corresponding scores of every possible mutation (4 measures × 5 proteins × 71

thresholds = 1420 data arrays). We removed the null scores resulting from mutation to the

same wild type amino acid to preserve the range of values obtained from non-synonymous

mutations, and then standardized each array. A visual comparison of the standardized pertur-

bation network data and the functional data is shown in Fig 4.

Given the standardized data, every mutation in every protein has four scores called nodes,

edges, weight, and diameter, respectively. We refer to these four scores as the perturbation

scores.
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Data standardization

In order to make all structural measures comparable across all mutations, the value of the per-

turbation of each mutation is measured in standard deviations from the mean, that is, the

mean of the perturbation of all mutations was subtracted to each value and divided by the stan-

dard deviation. The perturbation value of each of the structural measures considered (nodes,

edges, and weight) is given by the absolute difference between the network obtained by the

mutation and the original (Wild-type) network, thus negative values are closer to the original

network’s values while positive values show a stronger structural perturbation.

Functional data was not standardized. In order to define the functionally sensitive positions

we used the bottom 40% of the positions in terms of mean functional change (smaller values).

This was done as we found the data to have varying distributions and few positions above the

standard deviation cutoffs due probably to independent experimentation and methodology of

the measuring of the functional change of mutations.

Fig 7. Example of an amino-acid network G with three nodes and three edges. The network M represents a mutation in node b, resulting in nodes a
and b losing three pairs of atoms, and nodes c and b losing one edge. The network P is the perturbation network of the mutation. In this example, P has

3 nodes, 2 edges, weight 4, and diameter 2.

https://doi.org/10.1371/journal.pone.0261829.g007
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Defining structural sensitivity

Since each measure represents different changes in the perturbation network, and therefore on

the protein structure, each provides a different way to identify structurally sensitive positions

(SSPs). First, we say that a mutation is sensitive for a certain measure if its corresponding per-

turbation score is above a particular perturbation cutoff. Given the four perturbation scores,

we consider a perturbation cutoff vector containing four values including the specific cutoffs

for sensitivity in terms of nodes, edges, weight and diameter measures, respectively. Thus,

modifying the values in this vector yields different structurally sensitive mutations. Each cutoff

corresponds to the number of standard deviations from the mean taken in each distribution,

e.g. a cutoff of 1.5 corresponds to the value obtained by adding 1.5 standard deviations to the

mean of the distribution.

For each of the four perturbation measures, we identify sensitive positions if at least one

mutation at that position has a score above the corresponding cutoff. In other words, sensi-

tive positions for a certain measure are all the positions in the protein with one or more sen-

sitive mutations. Since a position can be sensitive for each of the four measures, we define

the minimum count as the number of measures for which a position needs to be sensitive in

order to be considered a structurally sensitive position (SSP). The positions defined as struc-

turally sensitive will serve as our predictions for functionally sensitive positions (FSPs)

(Fig 7).

Given a distance threshold and a protein, predictions are thus made based on a cutoff vector

and a minimum count. For example, considering the perturbation cutoff vector (1,1,1,1), and

minimum count of 2, predictions include all positions in the protein that have at least one

mutation with perturbation measure score one standard deviation above average, for at least

two of the four measures.

We will also consider structurally robust positions (SRPs), as the complement of SSPs for

certain parameters. That is, all positions not defined as structurally sensitive will be considered

structurally robust.

Assessing accuracy of predictions

In order to test the predictions obtained from the perturbation network data, we identified

functionally sensitive positions from the deep mutational scanning data. To have a single

functional value to define FSPs, we first attempted to standardize the data and look at posi-

tions with values above a certain cutoff. However, given the different data distributions of

the proteins, this yielded vastly different percentages of FSPs. Two proteins had no posi-

tions with mean values one standard deviation above average, and when considering 0.5

standard deviations, percentages ranged from 17% to 38%. This made predictions hard to

evaluate and highly dependent on each individual protein and its functional-change

distribution.

Instead, we evaluated positions with lowest mean functional-change value using the 40-per-

centile, and compared these with predictions made from different cutoff vectors and mini-

mum counts. That is, we consider FSPs to be the top 40% of positions with a stronger

functional loss. Rounding down from the number of positions times 0.4, we obtain a mean

functional percentage of 39.8%.

Given a perturbation cutoff vector and a minimum count, we get a set of predictions, posi-

tions likely to be functionally sensitive based on their perturbation networks, and compare

them to 40% of positions with lowest mean functional values. We considered two measures to

score these predictions: the recall, i.e. what percentage of FSPs we were able to predict, and the

precision, i.e. what percentage of our predictions were functionally sensitive.
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Given a set of predictions, or SSPs, and a set of FSPs, the intersection of them represents the

true positives. The precision and recall scores can then be expressed as:

Precision ¼
True Positives

SSPs
¼

True Positives
True Positives þ False Positives

Recall ¼
True Positives

FSPs
¼

True Positives
True Positives þ False Negatives

The prediction percentage represents the ratio between SSPs and the total number of posi-

tions in the protein, while the functional percentage represents the ratio between FSPs and

total positions:

Prediction Percentage ¼
SSPs

Total Positions
¼

True Positives þ False Positives
Total Positions

Functional Percentage ¼
FSPs

Total Positions
¼

True Positives þ False Negatives
Total Positions

We can also think about the precision and recall scores in terms of conditional probabili-

ties:

Precision ¼ P x 2 FSPs j x 2 SSPs½ � ¼
P½x 2 FSPs ^ x 2 SSPs�

P½x 2 SSPs�

Recall ¼ P x 2 SSPs j x 2 FSPs½ � ¼
P½x 2 FSPs ^ x 2 SSPs�

P½x 2 FSPs�

Assuming independence between a position being functionally sensitive (x 2 FSPs) and a

position being structurally sensitive (x 2 SSPs)—as would be the case if predictions were done

randomly—we obtain that:

Null Precision ¼
P½x 2 FSPs ^ x 2 SSPs�

P½x 2 SSPs�
¼
P½x 2 FSPs� � P½x 2 SSPs�

P½x 2 SSPs�

¼ P x 2 FSPs½ � ¼
FSPs

Total Positions
¼ Functional Percentage

Null Recall ¼
P½x 2 SSPs ^ x 2 FSPs�

P½x 2 FSPs�
¼
P½x 2 FSPs� � P½x 2 SSPs�

P½x 2 FSPs�

¼ P x 2 SSPs½ � ¼
SSPs

Total Positions
¼ Prediction Percentage

Given these null scores, which would result from random predictions, we can obtain a sin-

gle improvement score by dividing the corresponding real and null values:

Improvement Score ¼
Real Recall
Null Recall

¼
Real Precision
Null Precision

¼
True Positives� Total Positions

FSPs� SSPs

Comparison with state of the art methods

We compared our predictions with those obtained from DynaMut [73], which generates a pre-

diction of the impact of a mutation on protein stability. Due to time constraints, and as this
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software is implemented on a web server, we performed an alanine scan instead of obtaining all

point mutations, with results taking around 3 and a half weeks. We considered the obtained

value for ΔΔG from DynaMut for each position, and compared the mean value for our predic-

tions maximizing accuracy, maximizing recall, and the positions not predicted to be functionally

sensitive in either case. We found a general agreement with the results, as shown in S8 Fig, with

both sets of predicted functionally sensitive positions consistently obtaining a lower ΔΔG than

positions not predicted, indicating a mutation that makes the protein less stable. Considering

that ΔΔG was calculated for a single mutation per position, compared to our thorough muta-

tional scan, we believe that the results show a good agreement between the two approaches.

Supporting information

S1 Fig. Predictions based on individual measures, considering cutoff 1.5, comparing preci-

sion and recall scores obtained from varying the threshold for measures nodes, edges,

weight, and diameter, from 3 Å to 10 Å.

(TIF)

S2 Fig. Precision and recall across 51 different perturbation cutoffs, ranging from 1 to 2 in

intervals of 0.02. Each row and column represents a different minimum count and protein,

respectively.

(TIF)

S3 Fig. Matrix of normalized structural change across all mutations for protein PSD95pdz3.

Red and blue colors represent structural loss and robustness, respectively.

(TIF)

S4 Fig. Matrix of normalized structural change across all mutations for protein PTEN. Red

and blue colors represent structural loss and robustness, respectively.

(TIF)

S5 Fig. Matrix of normalized structural change across all mutations for protein APH(3’)II.

Red and blue colors represent structural loss and robustness, respectively.

(TIF)

S6 Fig. Matrix of normalized structural change across all mutations for protein SRC CD.

Red and blue colors represent structural loss and robustness, respectively.

(TIF)

S7 Fig. Matrix of normalized structural change across all mutations for protein VIM-2.

Red and blue colors represent structural loss and robustness, respectively.

(TIF)

S8 Fig. Point plot displaying the mean ΔΔG obtained from DynaMut [73] for three sets of

positions for each of the five proteins studied, those included in the maximum precision

prediction, those included in the maximum recall prediction, and those not included in

either.

(TIF)
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