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ABSTRACT

Using a combination of mathematical modelling,
statistical simulation and large-scale data analysis
we study the properties of linear regulatory chains
(LRCs) within gene regulatory networks (GRNs). Our
modelling indicates that downstream genes embed-
ded within LRCs are highly insulated from the vari-
ation in expression of upstream genes, and thus
LRCs act as attenuators. This observation implies
a progressively weaker functionality of LRCs as their
length increases. When analyzing the preponderance
of LRCs in the GRNs of Escherichia coli K12 and sev-
eral other organisms, we find that very long LRCs are
essentially absent. In both E. coli and M. tuberculosis
we find that four-gene LRCs are intimately linked to
identical feedback loops that are involved in poten-
tially chaotic stress response, indicating that the dy-
namics of these potentially destabilising motifs are
strongly restrained under homeostatic conditions.
The same relationship is observed in a human can-
cer cell line (K562), and we postulate that four-gene
LRCs act as ‘universal attenuators’. These findings
suggest a role for long LRCs in dampening variation
in gene expression, thereby protecting cell identity,
and in controlling dramatic shifts in cell-wide gene
expression through inhibiting chaos-generating mo-
tifs.

INTRODUCTION

The behaviour of cells is controlled in large part by the co-
ordinated activation and inhibition of thousands of genes.
This coordination is achieved via a complex network of gene
regulation that enables a cell to express the appropriate set
of genes for a particular environment and/or phenotype.
The primary mode of gene regulation is through a class

of genes that encode proteins which bind to regulatory re-
gions on the DNA. These transcription factors (TFs) acti-
vate or inhibit the expression of typically a large number
of downstream target genes. Genome-wide studies of TF
binding allow the construction of gene regulatory networks
(GRNs) that summarize the global structure of genetic in-
teractions; each node represents a gene and an arrow be-
tween two nodes denotes the regulation of a target gene by
a TF-coding gene (which we will describe for brevity as a
TF unless there is potential for confusion). The dynamics of
transcriptional regulation are still not fully understood (1).
However, over relatively long time scales, transcriptional re-
sponse is generally analogue, i.e. a stronger expression of a
TF gene results in a higher nuclear concentration of the TF
protein and thereby a stronger activation or inhibition of
the target genes (2–6).

GRNs typically contain thousands of genes and are be-
yond simple intuitive interpretation and understanding.
Therefore, computational and mathematical approaches
must be employed to gain a better understanding of the
structure and function of system-level genetic interaction.
One widely used approach focuses on the study of small-
scale network configurations, called motifs (4,7), and on
their functional pressures. This approach has been effective
in uncovering the functionality of motifs often encountered
across different networks, such as the feed-forward loop and
the bi-fan. The combinatorial complexity of GRNs limits
the applicability of this analysis to motifs comprising more
than four nodes, and complimentary ways of analyzing net-
works are important to better understand how larger-scale
topology is associated with GRN function (4,8,9).

In this article, we use a methodology inspired by motif
analysis to study the behaviour of a particular class of net-
work configurations that we call linear regulatory chains
(LRCs). Our approach exploits the theoretical power of
mathematical and statistical analysis to determine the ex-
pected behaviour of LRCs and to derive predictions that we
then test on biological datasets available in the literature to
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obtain a better understanding of the selection pressures act-
ing on GRNs.

For the purpose of our mathematical analysis, we define
LRCs as linear chains of one-way regulation in which each
node interacts with at most one node downstream and one
node upstream. A given interaction can be either inhibitory
or activating. Each LRC starts at the top layer (no transcrip-
tional input) and ends at the bottom layer (no transcrip-
tional output) of the respective GRN. Transcription factors
that are only regulated by feedback loops are also consid-
ered at top layer. In the GRNs analysed in this study, there
are very few transcription factors in this category. We relax
this definition when studying real GRN datasets, and define
LRCs as linear chains of genes which form a causal chain of
transcriptional interaction, without placing restrictions on
the number of connections to any given node.

While our analysis is focussed here on transcriptional in-
teractions, the generality of network modelling allows the
application of our results to other contexts in molecular bi-
ology and beyond (5,10–12).

MATERIALS AND METHODS

Mathematical model of linear regulatory chains (LRCs)

Each gene forming a given LRC was associated with a value
that identifies both its expression level and the concentra-
tion of its transcribed protein. Moreover, we assumed the
delays due to transcription initiation and translation to be
negligible. Additionally, we assumed the linear chain to be
autonomous, i.e. the concentration of a gene depends di-
rectly only on the concentration of the gene immediately up-
stream. Therefore, the level of expression of each gene in the
chain depends, directly or indirectly, on the concentration of
the gene at the top of the LRC. The interaction among se-
quential genes was modelled by a deterministic interaction
function. In particular, by assuming steady state dynamics,
we can describe the concentration of gene y in the LRC as

y = α + βsxh

1 + sxh
(1)

In this equation, x is the concentration of the transcrip-
tional regulator directly upstream of the gene under con-
sideration. The parameters of the equation characterize the
mode and intensity of the interaction: � models the concen-
tration of y when x is not present, � models the concentra-
tion of y when x is highly expressed, h is the Hill coefficient
which describes the ‘cooperativity’ of transcriptional regu-
lation, and s is a quantity associated with the shape of the
interaction function. When � > �, the equation describes a
transcriptional activator and when �<�, it describes a tran-
scriptional inhibitor (Supplementary Figures S1A and Fig-
ure S1D–G).

Quantitation of general properties of transcriptional regula-
tion

The interaction term described by Equation (1) was used to
model the response of the terminal gene of an LRC with
a different number of genes when the concentration of the
gene at the top of the LRC is varied between zero and in-
finity. In particular, for each step of the LRC, Equation (1)

was used to determine the smallest and highest values that
the target gene could take assuming the maximum possible
variation of the upstream gene. The choice of the parame-
ters is described in the ‘Simulation of LRCs and sensitivity
analysis’ section. The iterative application of Equation (1)
allows us to quantify the effects of the maximal theoretical
variation of the top gene on the potential variation of bot-
tom gene. To this end, we introduced three measures relative
to the response function of the terminal gene: ‘Relative Ef-
fectiveness’ (RE), ‘Lowest Level of Expression’ (LLE) and
‘Highest Level of Expression’ (HLE). These quantities are
described in the main text and in Table 1.

Simulation of LRCs and sensitivity analysis

The RE, LLE and HLE of 10 000 simulated LRCs with 2–
10 genes were computed. Both concentration and parame-
ter values were measured in arbitrary units. For each gene of
the LRC, the parameters that control the interactions were
randomly generated using a uniform sampling. The param-
eters �, � were sampled between 0 and 1000 to indicate up
to a 1000-fold activation or inhibition, h was sampled be-
tween 1 and 10 to account for polymeric regulation of up
to 10 transcription factors and s was sampled between 0
and 10 to account for different activation thresholds. For all
the sampling ranges, the boundaries were excluded. Simu-
lations and statistical analyses were performed in R version
3.2.2. To assess the sensitivity of our results to different pa-
rameter values, we performed an exhaustive computational
analysis to explore the outcome of our analysis when dif-
ferent ranges for the parameters were used (Supplementary
Figure S2). This analysis supports the robustness of our
conclusions.

Assessment of the exponential decrease of RE

To formally assess the exponential decrease of RE, we used
a logarithmic transformation. If a quantity decreases expo-
nentially, at each step the previous value is divided by a con-
stant (d). Therefore, calling REn the average RE after n reg-
ulatory interactions, we have:

REn = REn−1

d
And therefore

log (REn) = log (RE1) − n · log (d)

We used a linear regression on the log-transformed data
and computed the P-value for the estimation of the slope
and the adjusted R2 for the linear model. A P-value close
to zero indicates that the slope is significantly different
from zero and therefore that a clear exponential decay was
present in the non-log-transformed data. An adjusted R2

close to 1 indicate that the linear model describes the data
very well. Therefore, the values reported in the main text
support the existence of a strong exponential trend.

Graph manipulation and analysis

GRNs described in the main text were derived with the same
procedures and parameters described in a previous work
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Table 1. Interpretation of the quantities introduced to describe transcriptional activation and inhibition

Net transcriptional activation Net transcriptional inhibition

Lowest level of Expression (LLE) Baseline transcriptional level, i.e. level of
transcription in the absence of the activator.

Limit of transcriptional inhibition, i.e. minimum
level of transcription when the concentration of
the inhibitor is arbitrarily large.

Highest Level of Expression (HLE) Limit of transcriptional activation, i.e.
maximum level of transcription when the
concentration of the activator is arbitrarily
large.

Baseline transcriptional level, i.e. level of
transcription in the absence of the inhibitor.

Relative Effectiveness (RE) Maximum range of variation in the
concentration of the target gene (effectiveness)
normalized by the mean of the extreme points.

Maximum range of variation in the concentration
of the target gene (effectiveness) normalized by the
mean of the extreme points.

(9). In particular, the E. coli GRN was obtained from Regu-
lonDB version 8 (13) by considering only interactions sup-
ported by at least two evidence codes, the M. tuberculosis
GRN was obtained from the literature (14) by considering
all interactions, the yeast GRN was constructed from the
literature by considering interactions obtained under rich
media growth supported by a P-value lower than 10−3, the
human non-cancer and cancer cell GRNs were constructed
from the proximal filtered network derived from the EN-
CODE data (15) for the GM12878 and K562 cell lines re-
spectively. See our previous work (9) for a discussion on the
rationale behind these choices.

The number of LRCs can be very high in complex net-
works with a high edge density. Therefore, we decided to
develop a probabilistic algorithm to sample from the com-
plete set of LRCs. Specifically, an LRC was grown from a
starting node S selected with a probability proportional to
its total degree. Starting from S, a biased random walk was
performed by randomly selecting an upstream node (with a
probability proportional to its in-degree) or a downstream
node (with a probability proportional to its out-degree).
Nodes already present in the LRC were excluded from fur-
ther sampling. This growing procedure was repeated until
no upstream or downstream nodes were available. 10 000
LRC samples were considered for each network and du-
plicates were removed from the count. The procedure de-
scribed along with all the other operations on the networks
were implemented using R version 3.2.2 and the ‘igraph’
package version 1.0.1 (16). The code is available as a sup-
plementary file.

To perform the statistical analysis of the embeddedness
of chaotic motifs with the aim of assessing the probability
of interaction of the chaotic motifs with the longest LRCs
of the network we employed a simple statistical model that
could avoid many of the mathematical and computational
complications arising from the comparison of real networks
with a randomized null model. In particular, we focused on
the behaviour of the TF directly upstream of the chaotic
motifs, which will be referred to as U. In all of the GRNs
considered in this article, U is the third gene of the longest
LRCs. U regulates n other TFs. Of these, nc are chaotic TFs,
i.e. TFs that take part in the formation of chaotic motifs,
and ns = n − nc are stable TFs, i.e. TFs that do not take
part in the formation of chaotic motifs. Due to the way in
which GRNs have been constructed, U cannot regulate it-
self. Moreover, due to the structure of LRCs U cannot regu-
late the two TFs upstream in the longest LRCs. It is impor-
tant to stress that these two upstream TFs are not chaotic.

Therefore, if a GRN contains NTF TFs, U could in prin-
ciple regulate up to NTF − 3 TFs. The NTF genes can be
further divided into NC chaotic TFs and NS = NTF − NC
stable TFs. Using a hypergeometric distribution, it is possi-
ble to compute the probability that when n TFs are selected
from a set of containing NC chaotic genes and NS − 3 =
NTF − Nc − 3 stable genes at least nc chaotic genes are se-
lected. This probability represents the p-value included in
the main text.

Random and randomized GRNs

A random network associated with a GRN formed by g
genes, n TFs and e edges was obtained by randomly placing
e edges on an empty network with g nodes, in such a way
that the source of each edge was randomly selected from a
fixed set of n nodes. The randomized (rewired) GRNs were
derived from original GRNs of the corresponding organ-
isms using the ‘rewire.edge’ function of the igraph package
version 1.0.1 in R version 3.24. The number of rewiring it-
erations for each GRNs was set to ten times the number of
edges in the network. One hundred randomized GRNs were
generated for each organism or cell type.

Sources for biological data used

The values of RE, HLE and LLE along the linear transcrip-
tional chains in the bacterium E. coli K12 were obtained
from the experiments conducted by Hooshangi et al. (17).
Gene and transcription regulation data for E. coli K12 were
obtained from RegulonDB (13) with the same procedures
and parameters described before (9). Data on the functions
of genes in E. coli K12 were obtained from the referenced
literature and the EcoCyc web resource (18,19). The GRNs
for M. tuberculosis, S. cerevisiae and human cell lines were
derived from experimental data (14,15,20) using the same
procedures and parameters described before (9).

RESULTS

Mathematical formulation of gene regulation

To investigate the effect of LRCs in gene expression we em-
ployed a minimal mathematical model of transcriptional
regulation. The model describes a linear chain of regula-
tion as portrayed in Figure 1A. For two adjacent genes in
the chain, we assume that the rate of transcription of the tar-
get gene varies smoothly with the concentration of the TF
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Figure 1. Dynamics of long regulatory chains (LRC). (A) Schematic of a five gene LRC formed by inhibitory transcriptional regulations. (B) Net transcrip-
tional activation. The figures summarize the salient features of transcriptional activation. The concentration of a target gene (y axis, arbitrary units) varies
as a function of the concentration of an upstream transcriptional activator (x axis, arbitrary units). Three features used to summarize the dynamics of
transcriptional response are highlighted: the effectiveness is reported by the orange line, the highest level of expression (HLE) is reported by the pink line,
and the lowest level of expression (LLE) is reported by the green line. (C) Net transcriptional inhibition. The salient feature of a transcriptional inhibition
is reported using the same conventions of panel B. (D) Net response in an LRC of transcriptional inhibitors. Responses of the genes in an LRC formed by
transcriptional inhibitors are reported using conventions comparable to those of panels (B) and (C). Note (i) how inhibition and activation alternate and
(ii) the changes in LLE (dotted blue line), HLE (dotted red line), and effectiveness (orange line).

of the corresponding upstream gene, according to a Hill-
like function (see Materials and Methods). This function
is characterized by four parameters and is able to describe
both activation and inhibition (Figure 1B and C and Sup-
plementary Figure S1A). To minimize the complexity of our
model, we assume that protein concentration can be used as
a proxy for gene expression, i.e. that the rate of transcription
and the protein concentration are proportional. We define
the source TF as the TF at the top of the chain which is not
itself under transcriptional regulation. Most of our analysis
concerns the effective regulation by the source TF on down-
stream genes. Therefore, it is very important to distinguish
the regulation of a downstream node due to its immediate
upstream TF and the effective regulation of the same node
due to the source TF. A useful feature of the Hill-like func-
tion that we use is its universality: if it describes each of the
individual links in the chain (with Hill coefficient of unity),
then the net regulation of a node due to the source TF can
also be described by the very same function, thus providing
a simplified description of the LRC.

The effective regulation of the nth gene in an LRC can be
described by a function of the expression level of the source
TF. This function will be called Rn(·). The regulatory effect
of Rn(·) can be summarized by three quantities: the ‘lowest
level of expression’ (LLE), the ‘highest level of expression’
(HLE) and the ‘effectiveness’, which is the difference be-
tween HLE and LLE. With regard to the last of these three,
it is more convenient in our analysis to define ‘relative ef-
fectiveness’ (RE), which is the difference between HLE and
LLE divided by their mean (see Table 1 for a summary of
the quantities introduced). More formally:

LLEn=min (Rn (·)) HLEn=max (Rn (·)) REn= HLEn−LLEn
1
2 (HLEn+LLEn)

These three measures complement the Hill coefficient,
which is commonly defined for transcriptional response and
determines the degree of non-linearity, i.e. ‘sensitivity’, of
the regulatory function (17).

The precise sequence of inhibition and activation within
an LRC dictates the net effect on a given target gene when
the expression of the source TF is varied. For example, con-
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sider an LRC comprising only inhibitory interactions: af-
ter an even number of regulatory steps, the initial gene acts
as an activator, while after an odd number it acts as an in-
hibitor (Figure 1D). On the other hand, when the LRC com-
prises only activating interactions, all downstream genes are
effectively activated by the source TF. If the LRC is a mix-
ture of activating and inhibiting interactions, the type of net
regulation of a given gene depends on the number of up-
stream inhibitory links. Due to this dynamic diversity, we
will focus primarily on LRCs comprising only inhibitory
steps. The relevance of our analysis to more heterogeneous
LRCs will be discussed as appropriate.

Simulations of LRCs and comparison to experiments on E.
coli

The behaviour of each step of transcriptional regulation is
characterised by a potentially unique combination of bio-
logical factors that control how the concentration of the
source TF affects the expression of the target TF. In our
model, this behaviour is controlled by four independent pa-
rameters (see Supplementary Figure S1). Our parameteri-
zation allows for greater flexibility, but limits our ability to
perform a full analytical analysis. Therefore, we decided to
study the behaviour of LRCs by analyzing the outcome of
10 000 simulations constructed by randomly sampling all
the necessary parameters and measuring LLE, HLE and
RE as a function of the length of the chain (up to chain
length of 10). The results of our analysis are summarized in
Figure 2A–C.

Our simulations show quite convincingly that the aver-
age RE decreases exponentially, since log(REn) decreases
linearly with increasing n (Figure 2A). This result is robust
to variation in the parameter space (Supplementary Figure
S2A–F), statistically highly significant (P-value < 10−6) and
supported by a strong goodness of fit (adjusted R2 > 0.9).
Additionally, our simulations show that the average LLE in-
creases (Figure 2B) and the average HLE decreases (Figure
2C) with increasing n. The rate of change in LLE and HLE
is less dramatic than the change in RE and more sensitive
to parameter choices.

Using a synthetic biology approach, Hooshangi et al.
constructed a genetic circuit comprising a linear chain of
four transcriptional inhibitors (17). This circuit was formed
by E. coli genes and was inserted into live bacteria. There-
fore, their data are ideal to test the predictions of our model.
On deriving the value of RE from their published data we
find an exponential decrease as predicted by our simulations
(Figure 2D). Moreover, on deriving LLE and HLE we find
a clear increase in LLE and decrease in HLE consistent with
the results of our simulation (Figure 2E and F).

This comparison with experimental results supports the
predictions of our simulations and indicates that the sig-
nal conveyed by the LRC (i.e. the effect of variation of
an upstream TF on a downstream gene) gets exponentially
weaker as the length of the chain increases. To better un-
derstand if this effect was limited to a chain of inhibitors,
we extended our analysis to LRCs formed only by activa-
tors and to LRCs formed by a mixture of activators and
inhibitors. These simulations show that our conclusions on
the behaviour of RE, LLE and HLE are robust to the regu-

Table 2. Statistics for the length of LRCs across different GRNs

Organism/Cell type Median Maximum

E. coli 4 7
M. tuberculosis 6 10
S. cerevisiae 6 11
Human non-cancer (GM12878) cell line 3 6
Human cancer (K562 leukaemia) cell line 8 15

latory nature of the chain considered (Supplementary Fig-
ure S1B and C).

These results indicate that in an LRC the response of a
gene to the variation in the concentration of an upstream
TF becomes exponentially weaker as the number of links
separating them increases, and thus a long LRC acts as
an attenuator of upstream variation. The steady increase in
LLE indicates that even though each inhibitory link of a
LRC may be capable of perfect inhibition, the net inhibition
of a downstream gene becomes increasingly ‘leaky’. Simi-
lar considerations suggest that activated genes downstream
of a long LRC are only able to achieve an imperfect activa-
tion. These observations are supported by the behaviour of
the average response function for inhibiting and activating
chains (Figure 2G–H).

This average behaviour is, however, not always observed:
in a small percentage of cases (<0.5%) the RE remains sta-
ble or even increases. This indicates that examples with non-
decreasing RE are possible as long as the factors controlling
transcriptional regulation are constrained to specific values
that remain shielded from molecular noise.

Computational analysis of LRCs in E. coli

The results reported in the previous section support the idea
that LRCs of more than a few genes in length act as strong
attenuators of variation. LRCs beyond a few steps in length
should be rare in real organisms since the attenuation sat-
urates exponentially as a function of the number of links
in the LRC (i.e. increasingly long chains act as increasingly
imperfect regulators and exhibit increasingly lower relative
effectiveness). To test this hypothesis, we constructed vari-
ous GRNs from the literature and computed the number of
LRCs of different length. The E. coli GRN, obtainable from
the RegulonDB database (13), is one of the most validated
in the literature. Our analysis on this GRN indicates that
LRCs are preferentially short and that chains with more
than six genes are very uncommon (Figure 3A and Table
2). The lack of long LRCs is particularly evident when the
real GRN is compared to both random (Figure 3A) and
randomised (Supplementary Figure S4) networks.

A consequence of our current analysis is that transcrip-
tional regulation in LRCs is more functional for nodes
closer to the source gene. Therefore, evolutionary argu-
ments would suggest that genes deeper in the chain require
additional regulatory inputs in order to exhibit functional
variation of expression. To test this hypothesis, we looked
at the 52 longest LRCs of E. coli, which comprise six TFs
and one non-TF gene. In all of these LRCs, transcriptional
regulation from TFs outside of the LRCs is present, indi-
cating that off-chain regulation is a common, perhaps even
required, feature. If we divide the genes of these LRCs into
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Figure 2. Properties of simulated LRCs and comparison with experimental data. (A) RE for LRCs of inhibitors. Mean RE across 10 000 simulations is
reported, on a log scale, for LRCs of different lengths composed of transcriptional inhibitors (crosses). The dashed line indicates the linear regression on
the points. Note the very good fit of the model with the data (adjusted R2 = 0.99). Values of REs are normalized so that RE(1) = 1. Errors bars indicate the
standard error. ‘d’ indicates the strength of exponential decrease (see Materials and Methods). In this and the following panels LRC lengths are associated
with different colours. (B) LLE for LRCs of inhibitors. Mean LLE across 10 000 simulations is reported, on a log scale, for LRCs of different lengths
composed of transcriptional inhibitors. Note the steady increase. Errors bars indicate the standard error. (C) HLE for LRCs of inhibitors. Mean LLE
across 10 000 simulations is reported for LRCs of different lengths composed of transcriptional inhibitors. Note the steady decrease. Errors bars indicate
the standard errors. (D) RE computed from the synthetic biology experiments of Hooshangi et al. (17). The y-axis reports, on a log scale, RE. Note the
good fit with an exponential decrease as predicted by the mathematical model (dashed line) with a value of ‘d’ compatible with expectations. (E) LLE
for the biological experiments referenced in the description of panel D. The y-axis reports, on a log scale, the number of proteins per cell (RPPC). Note
the steady increase as predicted by the mathematical model (panel B). (F) HLE for the biological experiments referenced in the description of panel D.
Note the steady decrease as predicted by the mathematical model (panel C). (G) Average response function for the inhibitory regulation of LRCs. The
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two classes depending on their distance for the source gene,
a pattern emerges. The TFs constituting the upper half of
the LRCs, i.e. from the second to the fourth position, are
regulated on average by only a limited number of TFs,
whereas the average number of regulating TFs increases
significantly from the fifth position onward (Figure 3B, P-
value < 2 × 10−16), consistent with our hypothesis. The rel-
atively small number (21) of long LRCs allows us to analyse
their individual structures and functionalities. These LRCs
can be grouped into three categories depending on the genes
contained. The first category contains the MarRAB operon
(22), the second category contains the Gadx-GadW regulon
(23) and the third category contains the RcnR-RcnA genes
(24). As reported in Supplementary Table S1, the vast ma-
jority of the TFs forming these LRCs are involved in stress
and antibiotic response, suggesting that such functionalities
may require the tightly controlled dynamics provided by a
long LRC.

The MarRAB operon and Gadx-GadW regulon form a
peculiar three-gene feedback loop which, due to its high
level of connectivity, is quite unlikely to emergence by
chance. This configuration, which we call a ‘chaotic motif ’
(Supplementary Figure S3A), has the potential to generate
highly variable gene expression profiles (9,25). The chaotic
dynamics allow GRNs with small differences at the level of
gene expression to diverge rapidly over time. Therefore we
previously proposed that the chaotic motifs identified in E.
coli could be used to promote differences in the gene expres-
sion profile across different bacteria thus generating exten-
sive phenotypic heterogeneity in a population and promot-
ing the emergence of antibiotic-resistant cells (9). In Figure
3C the genes forming the only two chaotic motifs observed
in E. coli are reported in red and all of the TFs that regu-
late them, either directly or indirectly, are reported in blue,
violet and green.

While potentially beneficial under stress conditions, a
chaotic response is presumably detrimental in a stable envi-
ronment. Therefore, we expect that the chaotic motifs will
be tightly controlled under normal conditions. As suggested
by our analysis, long LRCs could be ideal candidates to pro-
vide such tight control. Indeed, we find that both chaotic
motifs are intertwined downstream with one or more of the
longest LRCs of E. coli (Figure 3C). Statistical analysis in-
dicates that the probability of these motifs being embedded
into such long LRCs by chance is very small (P-value =
0.004).

To further test this idea we compute the ‘embeddedness’
of different genes into LRCs of different length. More pre-
cisely, for each gene, we computed the ‘mean position across
all LRCs’ (MPAL), which is the mean length over all the
LRCs that contain that gene. Genes that are more often
found in long LRCs will have a larger MPAL. Consistent
with our expectation, the genes involved in chaotic motifs
have a significantly larger MPAL than the other genes of

the E. coli GRN (Figure 3D, P-value < 0.004). These re-
sults support the idea that LRC dynamics is exploited by
cells to control the activation of chaotic motifs.

To explore the molecular mechanisms underpinning this
theoretical prediction, we analysed the biology of the
MarRAB operon due to the availability of extensive in-
formation on its genetics as a consequence of its key im-
portance in antibiotic resistance (22). The behaviour of
MarRAB depends on the activity of the marbox enhancer
DNA sequence. Experimental results indicate that Fis acts
as a promoter of MarRAB only when marbox is activated
by MarA, SoxS or Rob (26). Moreover, when MarA, SoxS
or Rob is absent, Fis reduces the activity of MarRAB (26).
Therefore, our theory indicates that when marbox is not ac-
tive, the transcriptional activity of both MarA and MarR
is tightly controlled due to the presence of a long LRC and
that the potential chaotic behaviour of the motif is restricted
(Figure 3E, violet arrows). Upon activation of marbox by
an environmental signal––such as superoxide stress trans-
duced through SoxS (27–29)––Fis activates the MarRAB
operon and the LRC becomes shorter (Figure 3E, yellow
arrows; Figure 3F). This allows larger variations for MarA
and MarB potentially unleashing chaotic dynamics.

Comparable dynamics is observable in the other chaotic
motif, which includes the genes GadX, GadE and GadW. Fis
has been reported to inhibit expression of Gadx in the late
stages of exponential growth, when a dramatic shift in gene
regulation can be observed with respect to earlier stages
(30). Interestingly, the late stages of exponential growth are
commonly associated with stress (30) and the GRN of E.
coli suggests that during this stage Gadx is regulated by a
two-gene LRC, which is formed by Ihf and Fis, instead of
the three-gene LRC which is active in the previous stages
(formed by Ihf, Fis and Crp). To the best of our knowledge,
the exact molecular mechanism underlying this switch has
not yet been elucidated. However, our analysis provides new
ways to approach the investigation of this problem (30).

Computational analysis of LRCs in other microorganisms

The E. coli GRN is one of the most experimentally validated
available in the literature and extensive analysis is possible.
Other less well-characterised GRNs are available for M. tu-
berculosis and S. cerevisiae, allowing an admittedly more
limited exploration. As our theory will be very sensitive to
false positives, the outcome of our analysis for these organ-
isms is potentially less robust.

Many similarities are found between the GRNs of M. tu-
berculosis and E. coli. The LRCs of M. tuberculosis are lim-
ited in number and preferentially short (Figure 4A), LRCs
are shorter than expected from random networks, and the
number of transcriptional regulators is significantly higher
for genes deeper in the longest LRCs (Figure 4B). Remark-
ably, two chaotic motifs with the same structure as those

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
average transcriptional response is reported for LRCs composed of an odd number of inhibitors, which results in a net inhibition. Note the decreasing
Effectiveness, the increasing LLE, and the decreasing HLE as more regulatory steps separate the TF from the source gene. (H) Average response function
for the activating regulations of LRCs. The average transcriptional response is reported for LRCs composed of an even number of inhibitors, which results
in a net activation. Note the decreasing Effectiveness, the increasing LLE, and the decreasing HLE as more regulatory steps separate the TF from the
source gene.
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Figure 3. Interplay of LRCs and feedback loops in E. coli K12. (A) Distribution of the length of LRCs in E. coli K12. The number of LRCs of different
lengths is reported. Note how most LRCs are formed by five or less genes. Length distribution of the real network is in blue and those for average random
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encountered in E. coli can be found (Figure 4C and Supple-
mentary Figure S.3B), and the same intertwining of chaotic
motifs and LRCs discussed above can be observed. Both of
the chaotic motifs of M. tuberculosis are embedded into the
longest LRCs of the organism (Figure 4C) and the probabil-
ity of these motifs being embedded into such long LRCs by
chance is small (P-value < 10−6). Finally, the chaotic genes
are controlled by a significantly larger number of genes than
the stable genes (Figure 4D). In striking similarity to E. coli,
the two chaotic motifs in M. tuberculosis are controlled by
LRCs comprising four genes, hinting that a four-gene LRC
acts as a ‘universal attenuator.’

The experimental work of Harbison et al. provides one
of the most reliable sources for transcriptional interactions
in yeast (9,20) and we reconstructed the GRN of S. cere-
visiae from their data. However, it must be noted that other
datasets exist with different properties (31,32), thus high-
lighting the difficulties associated with the experimental
derivation of the GRN for this organism and suggesting
a perceivable level of noise even in the data that we used.
LRCs of moderate length are present in this organism (Fig-
ure 4E). Nonetheless, they are shorter than expected from
random networks. Moreover, compatible with our expecta-
tions, the number of transcriptional regulators is higher for
genes deeper in the longest LRCs (Figure 4F). No chaotic
motifs are observed in this GRN.

Computational analysis of LRCs in human cell lines

The work of the ENCODE consortium allowed the deriva-
tion of a partial GRN for two human cell lines: GM12878
and K562. The GRN of the human non-cancer cell line
GM12878 behaves as expected from our theory: LRCs are
preferentially short and the longest transcriptional chains
consist of only four TFs and one non-TF gene (Figure 5A
and C). Moreover, LRCs are shorter than expected from
random networks and the number of transcriptional regu-
lators is higher for genes deeper in the longest LRCs (Figure
5C). Compatible with the idea of a relatively stable pheno-
type of normal cells, no potentially chaotic motifs can be
identified in this cell line.

Despite there being a comparable number of TFs and
comparable link density in the two human cells lines, the
GRN of the human leukaemia cell line K562 displays
remarkably different properties: very long LRCs can be
found, although longer LRCs would be expected from ran-

dom networks (Figure 5B, C and E), and potentially chaotic
motifs consisting interlinked feedback loops are common
(9,25) (Figures 5F and 6A and B). The longest LRCs are
composed of 14 TFs and one non-TF gene (Figure 5B and
C, and Figure 6A). Interestingly, the ‘tail’ of the longest
LRCs contains several genes that are often dysregulated in
cancer: EGR1 (33–35), IRF3 (36), POLR3A (37) and IRF1
(38,39).

All but one gene (GTF2F1) involved in the formation of
potentially unstable long feedback loops are embedded into
the longest LRCs found (Figure 6A). The probability of ob-
serving this embedding by chance is small (P-value < 10−2)
and all the TFs involved in the formation of potentially
chaotic feedback loops display a large MPAL (Figure 5F).

The longest LRCs have a peculiar structure. Two four-
gene LRCs control the complex set of feedback loops. Re-
markably, a single four-gene LRC, composed by EGR1,
IRF1, POLR3A and IRF1, can be found in the tail of the
longest LRCs (Figure 6A), emanating from the feedback
loops. Our theoretical analysis suggests that the dynamics
of the final gene of this chain (IRF1) is highly constrained
by the LRC, and biological experimentation indicates that
IRF1 is a tumour suppressor gene relevant to a number of
cancers including leukaemia (39–41). Our theoretical inter-
pretation is that the dynamics of LRCs is exploited by can-
cer cells to inhibit the proper activity of this gene.

Note that a group of genes with a high MPAL can be
identified in the Stable group. These genes are therefore
likely to be encountered in relatively long LRCs, and hence
conceivably have very limited RE. Notably, all of these
genes have been shown to have an important role in the sur-
vival of leukaemia cells (NFE2 (42), POLR3A (43), JunD
(44), Myc (45), GATA2 (46), NR4A1 (47), IRF3 (48), IRF1
(39–41)) suggesting that cancer cells may be dynamically
controlling the variation of these genes.

Potential biases introduced by under sampling and errors
in the human GRNs limit the power of a direct mathemati-
cal approach. However, the strong diversity observed in dif-
ferent topological features of the non-cancer and cancer cell
lines is an indication of a profound difference in their tran-
scriptional programs. Therefore, a direct comparison be-
tween the GRNs of the two cell lines can be very informative
in highlighting differences that may then be used to develop
new therapies (9).

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
networks are in red. (B) Degree of regulation in the longest LRCs. The two box plots report the distribution of the number of transcriptional inputs of the
genes in the upper half (second to fourth) and lower half (fifth to seventh) of the longest transcriptional cascades in E. coli. The top genes of the chains
are unregulated by construction and were not included. Note the highly statistically significant difference. (C) Chaotic motifs in E. coli and their upstream
regulation. The network reports the two chaotic motifs found in E. coli with all the genes involved in their regulation either directly or indirectly. The genes
forming the chaotic motifs are highlighted in red. The genes that control only the Marr-Mara-Rob motif are highlighted in blue, the genes that control
only the Gadw-Gadx-Gade motif are highlighted in green, while the genes that regulate both are highlighted in violet. Note how the longest LRC upstream
of the chaotic motifs is the shared one (violet genes). (D) Mean position across all LRCs (MPAL) of genes involved in chaotic motifs versus other genes.
The box plots report the distribution of MPAL for each gene involved in the formation of the chaotic motifs (Chaotic) and for the other genes (Stable).
Note how the MPALs of chaotic genes are significantly larger than the MPAL of stable genes, indicating that chaotic motif genes are encountered more
frequently than average in long LRCs. (E) Interplay of the longest LRCs and of one of the chaotic motifs of E. coli. The Marr and Mara genes found in a
chaotic motif (red arrows) are part of two of the longest LRCs in E. coli: Ihf-Fis-Crp-Mara-Rob-Marr and Ihf-Fis-Crp-Marr-Rob-Mara (thick violet and
red arrows). Note that the motif is controlled by a 3-gene upstream LRC (Ihf, Fis and Crp) when marbox is not active (in violet), while it is regulated by a
2-gene LRC (Ihf and Fis) when marbox is active (see the orange arrows). A similar behaviour can be identified for the other chaotic motif. (F) Dynamics
of one of the chaotic motifs of E. coli. A cartoon of the transcriptional regulation of the marRAB operon is plotted as derived from (13,18,19,26,74,75).
Note that Fis only activates the marRAB operon when marbox is already activated.
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Figure 4. Interplay of LRCs and feedback loops in M. tuberculosis and S. cerevisiae. (A) Distribution of the length of LRCs in M. tuberculosis. The number
of LRCs of different lengths is reported. Note how most LRCs are formed by seven or less genes. Length distribution of the real network is in blue and
those for average random networks are in red. (B) Degree of regulation in the longest LRCs of M. tuberculosis. The two box plots report the distribution
of the number of transcriptional inputs of the genes in the upper half (second to fourth) and lower half (fifth to seventh) of the longest transcriptional
cascades in M. tuberculosis. The top genes of the chains are unregulated by construction and were not included. Note the highly statistically significant
difference. (C) Chaotic motifs in M. tuberculosis and their upstream regulation. The network reports the two chaotic motifs found in M. tuberculosis with
all the genes involved in their regulation either directly or indirectly. The genes forming the chaotic motifs are highlighted in red, while the genes that
regulate them are highlighted in purple. Note how the LRC upstream of the chaotic motifs is composed by three genes as in E. coli. (D) Mean position
across all LRCs (MPAL) of genes involved in the chaotic motif versus the other genes in M. tuberculosis. The box plots report the distribution of MPAL
for each gene involved in the formation of the chaotic motifs (Chaotic) and for the other genes (Stable). In agreement with expectation, chaotic motif genes
show significantly higher MPAL compared with others. (E) Distribution the length of LRCs in S. cerevisiae. The number of LRCs of different lengths is
reported. Note how most LRCs are formed by eight or less genes. (F) Degree of regulation in the longest LRCs in S. cerevisiae. The two box plots report
the distribution of the number of transcriptional inputs of the genes in the upper half (seventh to eleventh) and lower half (second to sixth of the longest
transcriptional cascades in S. cerevisiae. The top genes of the chains are unregulated by construction and were not included. Note the highly statistically
significant difference.
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Figure 5. Interplay of LRCs and feedback loops in human cell lines. (A–C) Distribution of the length of LRCs in the two human cell lines GM12878
(non-cancer) and K562 (leukaemia). The number of LRCs of different lengths is reported. Note the striking difference in the number and length of LRCs
across the different cell lines. (D, E) Degree of regulation in the longest LRCs of human cell lines. The two box plots report the distribution of the number of
transcriptional inputs of the genes in the upper half (fourth to sixthi n GM12878 and ninth to fifteenth in K562) and lower half (second to third in GM12878
and second to eighth in K562) of the longest transcriptional cascades in the two cell lines. The top genes of the chains are unregulated by construction
and were not included. Note the highly statistically significant difference. (F) Mean position across all LRCs (MPAL) of genes involved in chaotic motifs
versus the other genes in cancer. The box plots report the distribution of MPAL for each gene involved in the formation of the chaotic motifs (Chaotic)
and for the other genes (Stable). In agreement with expectation, chaotic motif genes show significantly higher MPAL compared with others. Also note
how various genes implicated in cancer progression, despite not being involved in chaotic motifs, have a very high MPAL, suggesting a narrow variation
of their expression
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Figure 6. Chaotic motifs in cancer cells (K562) and their upstream regulations (A) Interplay of the longest LRCs and chaotic motifs in cancer. The network
formed by all the TFs implicated in the longest LRCs of the cancer cell line K562 is reported. Note how the longest chains (thick arrows) are entangled
with the feedback loops. Two 3-gene LRCs can be observed upstream of the feedback loops and one 3-gene LRC can be observed downstream (blue
arrows). The presence of the 3-gene LRCs upstream of potentially chaotic motifs is consistent with our findings in E. coli and M. tuberculosis. Also note
how IRF1, a gene which is a key regulator of growth of leukaemia and other cancer cells (39–41), is found downstream of the long feedback loops. (B)
Chaotic motifs in K562 and their upstream regulation. The network reports the genes involved in the formation of the chaotic motifs of K562 (red) with
all the genes involved in their regulation either directly or indirectly (violet). Note how the chaotic motifs sit at the bottom of multiple LRCs. (C) A cartoon
demonstration of proposed functional interaction between long linear regulatory chains (LRCs) and chaotic motifs. In gene regulatory networks, upstream
long LRCs restrict transcriptional dynamics of chaotic motifs, which has the potential to produce diverse transcriptional profiles under similar biological
conditions. This restriction can be avoided via alternative regulatory paths in certain organisms such as E. coli upon activation. In addition, long LRCs
can be used to insulate important downstream genes from the dynamics of chaotic motifs.

DISCUSSION

Theoretical and experimental efforts have provided strong
evidence that variability in gene expression plays a signifi-
cant role in controlling cellular phenotypes in development
(49), health (50) and disease (51,52). While the transcrip-
tional mechanisms responsible for controlling this variabil-
ity continue to be an active area of research (53), the po-
tential system-level interactions are less well explored, and
network analysis of GRNs is a powerful approach to fill
this gap. GRNs provide a description of the coordination
of gene expression at a systems level and can therefore be

used to explore the potential role of topological features that
control the variability of genes expression.

Long LRCs ‘pin down’ relative effectiveness

Our mathematical model suggests that long LRCs ‘pin
down’ the expression of downstream genes, limiting their
ability to vary in response to environmental or intracellu-
lar cues affecting the gene at the top of the chain. In fact,
the variation is predicted to decay exponentially along the
chain. This conclusion is supported by data derived from
synthetic biology experiments on E. coli (17).
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A direct consequence of our model is that long LRCs are
ineffective in transmitting variation in gene expression be-
yond a few transcriptional steps. Therefore, over evolution-
ary time, one might argue that long LRCs yield inefficient
information transmission and will have been negatively se-
lected, resulting in relatively small numbers of long LRCs
in GRNs. This prediction is supported by an analysis of the
GRNs of different organisms, ranging from bacteria (E. coli
and M. tuberculosis), to yeast and human.

It has been observed that the sensitivity of gene regula-
tion becomes higher as LRCs get longer and a ‘switch-like’
behaviour is observed; this can be interpreted as the result of
an increasingly larger effective Hill-coefficient (17). Whilst
our findings do not contradict this, we present an additional
observation that the terminal gene of a long LRC will dis-
play only a limited range of variation in response to changes
in the concentration of the source gene. Beyond a length of
approximately four links, due to the exponential decay, the
range of variation is very small and likely to be compara-
ble in magnitude to the fluctuations in gene expression due
to intrinsic molecular noise. In addition, our modelling in-
dicates that the effectiveness of regulation is compromised
by the LRC topology itself. For example, a linear chain of
an odd number of perfect inhibitors will have a net effect of
imperfect inhibition, and the degree of imperfection will in-
crease with the length of the chain. Taken together, these
observations imply a tradeoff between the sharpness and
the effectiveness of net regulation through an LRC, which
depends on the specific parameters that characterize the in-
teractions, but nonetheless strongly suggest that very long
LRCs are of limited utility in GRNs, and hence negatively
selected through evolution.

Our model also suggests that the average behaviour of
LRCs can be circumvented by constraining the biological
parameters associated with transcription to very specific
values. This suggests that, under specific circumstances, bi-
ological processes may be in place to prevent the emergence
of such average behaviour in LRCs. For example ubiquitina-
tion can control gene expression by affecting the conforma-
tion of transcription factors (54), epigenetic modifications
can affect the ability of TFs to regulate genes (55), and mi-
croRNAs have been shown to directly affect the transcrip-
tional machinery (56,57).

The precise regulation of the parameters required also
suggests that molecular insults are very likely to push LRCs
towards the average expectation, potentially changing the
behaviour of cells. Interestingly, previous work indicates
that microRNA targets are enriched in transcription fac-
tors (56,57). Since LRCs are composed primarily of TFs,
with non-TF genes only appearing at the bottom, this bio-
logical result is compatible with the idea of an evolutionary
pressure controlling the expression of the genes that more
strongly affect the behaviours of LRCs. Finally, it is worth
mentioning that dysregulated microRNA dynamics are ob-
served in cancer (58), thus suggesting that malignant cells
may be unable the maintain the precise regulation of that of
their healthy counterparts and revert to relatively ‘simple’
proliferative behaviours.

Chaotic motifs are potential drivers for heterogeneity

Under normal conditions, cells must be able to filter the
fluctuations of protein concentration, which are due to
molecular noise. To this end, they need to display a sta-
ble response. A consequence of this type of response is the
limitation of the heterogeneity of a population of cells, as
each cell exposed to similar stimuli will react in a compa-
rable way. Therefore, the very same stable behaviour that
helps cells withstand a noisy environment can be detrimen-
tal under stress condition, such as an antibiotic treatment,
as in this circumstance heterogeneity is helpful in allowing
the emergence of resistant subpopulations of cells.

Therefore, it has been suggested that network motifs in
the GRNs of bacteria can be activated only when the cell
is exposed to stress (20,22,23). Ideally, these motifs should
have the potential to produce chaos. Chaos theory is a well-
known mathematical theory that studies the behaviour of
systems that are extremely sensitive to initial conditions––a
paradigm popularized by the so-called ‘butterfly effect’. In
a chaotic system, small differences in initial conditions can
yield widely diverging states after a relatively short time
(59,21).

Theoretical studies indicate that certain network motifs
have the potential to produce a chaotic response (25) and
recent experimental work has shown complex oscillations
and, loosely speaking, chaotic dynamics of certain GRN
motifs both in cell-free system and in vivo (60). Since a
chaotic response is able to generate wildly different values
by starting from very similar initial conditions, it has been
suggested that chaos can act as a ‘heterogeneity engine’
that allows a population of cells to quickly explore a large
number of phenotypes (9). Such phenotypic heterogeneity
is likely to play a crucial role in allowing the emergence of
resistant clones which will help a population to overcome
challenging conditions such as environmental stress and an-
tibiotic treatments (61,62).

As discussed above, minimal chaotic motifs can be iden-
tified in the GRNs of E. coli and M. tuberculosis. Moreover,
more complex and somewhat more disorganized chaotic
motifs can be found in cancer. This suggests a strong par-
allelism between the systemic processes that allow bacteria
and cancer to generate heterogeneity and ultimately to over-
come the ability of the immune systems to properly fight
infections and cancer.

Long LRCs suppress generators of potential ‘butterfly ef-
fects’

A limited number of long LRCs can be observed in the
GRNs analysed. This suggests that such configurations may
be important to limit the gene expression level of a few se-
lected genes. Remarkably, we find that in both E. coli and
M. tuberculosis, long LRCs are associated with genes ac-
tivated during stress and antibiotic response. The expres-
sion of stress response genes is associated with an increased
metabolic cost, which generally results in a reduced growth
rate (63–65). Therefore, it is reasonable to expect a tight con-
trol of these genes to prevent a dampening of the fitness of
a population. Indeed, such tight control is embodied in the
dynamics of LRCs. Additionally, the transcriptional con-
trol exerted by LRCs on genes downstream in the chain can
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help reduce noise arising from stochastic gene expression
and fluctuations in the cellular environment (66–69).

The entanglement of long LRCs with potentially chaotic
motifs in E. coli and M. tuberculosis suggests that the dy-
namics of long LRCs may allow these organisms to directly
influence phenotypic variability and hence population-level
heterogeneity by allowing a chaotic response only when
needed. This finding is supported by the biology of both the
MarRAB operon and the GadW, GadX, and GadE genes in
E. coli and suggests new ways to bolster the effectiveness of
drug treatments by targeting the mechanisms that lead to
the emergence of resistant clones in bacterial populations.
In all the GRNs that we analysed, the chaotic motifs are ob-
served after LRCs composed of exactly four genes. This is in
remarkable agreement with our theoretical observation that
the genetic variation is tightly restrained from the fourth
gene onward, and leads us to propose that four-gene LRCs
act as ‘universal attenuators’.

In the cancer cell line, long LRCs and potential chaotic
motifs are entangled in such a way to support both strong
variations in the expression of certain genes, i.e. those within
long feedback loops, such as EGR1 (a regulator of multi-
ple tumour suppressor genes (70)) and a very limited vari-
ation in the expression of others, i.e. those residing at the
end of LRCs, such as IRF1 (an essential regulator of growth
of leukaemia and other cancer cell types (38–40)). Indeed,
four-gene LRCs operate at both the ‘input’ and ‘output’ of
non-linear feedback loops in the K562 GRN. The combined
action of these competing dynamics may be able to generate
heterogeneity while limiting the necessary variation in gene
expression associated with tumour suppression.

Our findings may provide a mechanistic basis for ‘onco-
gene addiction’ (71,72). The term is used to indicate that
some tumours depend on the constitutive activation of a
single oncogene for sustaining growth and proliferation and
that transient inactivation of that particular oncogene may
be enough to promote differentiation or apoptosis of cancer
cells (73). Universal attenuators may drive the constitutive
activation of a gene, and thus targeting of LRCs could be a
novel strategy for cancer cell killing.

Analysis of LRCs shed new light on the topological pressure
acting on GRNs

We have previously shown that mathematical modelling
can be used to explore the topological features associ-
ated with robustness in GRNs. In particular, the theory of
Buffered Qualitative Stability (BQS) postulates that long
causal chains of genes, irrespective of the in-degree of the
gene at the top of the chains, should be limited in num-
ber due to their evolutionary susceptibility to seeding long
feedback loops, which can create instability (9). Taken to-
gether with our current results, this indicates that long
causal chains of TFs are dangerous for the cell, and, along
with their limited functionalities, suggests that healthy cells
should have very limited instances of such configurations.
This is indeed observed in real data.

Further connections emerge when potential sources of
instability (chaotic motifs) are contextualized with respect
to LRCs. When chaotic motifs are identified in a GRN,
they are entangled downstream of long LRCs. Moreover,

and quite unexpectedly, an LRC comprising exactly four
genes (and therefore three transcriptional interactions) can
be found upstream of all the chaotic motifs. This strongly
suggests that the four-gene LRC provides a general mecha-
nism in GRNs to ‘pin down’ or insulate the genes involved
in the generation of a chaotic response, hence allowing a
topological control of heterogeneity.

We have presented a set of results arising from theoreti-
cal modelling, statistical simulations and data analysis, all
focused on the role of two different topologies in GRNs,
namely, long linear regulatory chains (LRCs) and chaotic
motifs. Our modelling work indicates that LRCs have a key
role in reducing variation in gene expression, while chaotic
motifs can act in the opposite manner and generate strong
variation through chaotic dynamics. LRCs are highly effec-
tive at shutting down variation, and hence there is no ad-
ditional benefit for a GRN to have very long chains, a re-
sult which is consistent with the GRNs analysed. Chaotic
motifs, in being able to generate variation so rapidly, would
presumably be inactivated in the steady state of a cell’s life
cycle, and indeed we find in bacteria and a human non-
cancer cell line that such motifs, when present, always sit
at the end of relatively long LRCs, implying that they are
strongly suppressed. The GRN of a human cancer cell line
exhibits a much richer interplay between LRCs and chaotic
motifs, and we postulate this may allow a given cancer cell
to drive strong variation in certain genes and inhibit expres-
sion of tumour suppression genes, thereby allowing optimal
conditions for growth and survival in the challenging envi-
ronment of host tissue. Due to the ubiquity in the GRNs
studied of four-gene LRCs, we postulate these modules as
‘universal attenuators’, with a key role of controlling poten-
tially chaotic feedback loops.

Our work provides evidence that one can exploit knowl-
edge of the topology of GRNs to exert a direct control on
the variability of genes, even if a precise characterization of
the parameters that control gene regulation is unavailable.
Given the qualitative differences between the GRN topolo-
gies of normal and cancer cells (9), this may provide a way
to design new targeted therapies that selectively affect gene
expression variability only in cancer cells.
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