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Abstract

There is increasing evidence for a role of MaxiK potassium channel-activity in regulating the

metabolism and intracellular signaling of non-contractile bladder mucosal tissues. At pres-

ent however no studies have determined the impact of urothelial MaxiK-activity on overall

bladder metabolism. To address this we have investigated the effect of bladder lumen instil-

lation of the MaxiK inhibitor, iberiotoxin (IBTX), on mucosal and detrusor metabolism using

metabolomics. Since IBTX does not cross plasma membranes, when instilled into the blad-

der lumen it would only effect urothelially expressed MaxiK-activity. Surprisingly IBTX treat-

ment caused more effect on the metabolome of the detrusor than mucosa (the levels of 17%

of detected detrusor metabolites were changed in comparison to 6% of metabolites in muco-

sal tissue following IBTX treatment). In mucosal tissues, the major effects can be linked to

mitochondrial-associated metabolism whereas in detrusor there were additional changes

in energy generating pathways (such as glycolysis and the TCA cycle). In the detrusor,

changes in metabolism are potentially a result of IBTX effecting MaxiK-linked signaling path-

ways between the mucosa and detrusor, secondary to changes in physiological activity or a

combination of both. Overall we demonstrate that urothelial MaxiK-activity plays a significant

role in determining mitochondrially-associated metabolism in mucosal tissues, which effects

the metabolism of detrusor tissue. Our work adds further evidence that the urothelium plays

a major role in determining overall bladder physiology. Since decreased MaxiK-activity is

associated with several bladder pathophysiology’s, the changes in mucosal metabolism

reported here may represent novel downstream targets for therapeutic interventions.

Introduction

The correct regulation of bladder tone is essential for its normal function; perturbations in the

regulation of detrusor smooth muscle contractility are associated with changes in bladder

voiding, resulting in such conditions as over- or under- active bladder. In this regard, the

importance of MaxiK (a Ca2+- and voltage-gated potassium channel (a.k.a. BK, KCNMA1,

KCa1.1, encoded by the slo gene) in normal bladder function has been shown unequivocally
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through the use of slo-/- knock-out mice [1,2]. In these mice, absence of MaxiK results in

enhanced myogenic and nerve-mediated detrusor contractility and increased voiding fre-

quency. In addition protein levels of MaxiK are down-regulated in bladder from rabbits with

partial urethral obstruction (PUO), a model of overactive bladder [3]. Our own studies in the

PUO animal model have demonstrated that gene transfer of pVAX-Slo (a plasmid construct

expressing the slo gene encoding the MaxiK pore-forming subunit) into the bladder reduced

over-activity [4].

Alterations in MaxiK-activity are at present believed to impact bladder physiology primarily

through regulation of detrusor smooth muscle contractility. Because of this concept, until

recently most studies on the function of MaxiK in bladder physiology have focused on its role

in detrusor and rarely differentiate between its presence or potential different role in other tis-

sue compartments of the bladder. However, it is increasingly recognized that MaxiK-activity is

present in the non-contractile tissues of the bladder (the mucosa: consisting of the urothelium,

lamina propria and microvasculature) where its function is not well-defined [5,6]. Recent stud-

ies have suggested that MaxiK plays a role in regulating metabolism and intercellular signaling

which may be more relevant to its function in the non-contractile tissues of the bladder [7–9].

In patients with overactive bladder (OAB) it has been reported that there is an association

between polyamine metabolism and MaxiK-activity in the urothelium [6,10]. In addition, the

need to study mucosal and detrusor metabolism as separate compartments of the bladder is

supported through the use of metabolomics; our recently published paper demonstrated sig-

nificantly different changes in the mucosa and detrusor caused by hyperglycemia [11].

As yet no studies have been published mapping the impact of MaxiK-activity on global cel-

lular metabolism in tissues of the bladder. To address this we have used metabolomics to deter-

mine the role of urothelial MaxiK-activity in regulating global mucosal metabolism in vivo by

using a specific inhibitor of MaxiK activity (iberiotoxin, IBTX) instilled into the lumen of the

bladder. Iberiotoxin is a hydrophilic compound, which has been shown by numerous studies

not to penetrate the intact cellular membrane and will therefore only effect MaxiK-activity on

the luminal surface of the bladder (the urothelium). However, given the emerging role of the

mucosa in regulating overall bladder function, we also determined if changes in mucosal

metabolism would then impact detrusor metabolism.

Materials and methods

Animals and tissues

All experimental protocols were approved by the Institutional Animal Care and Use Commit-

tee of the Albert Einstein College of Medicine. Sixteen F344 rats were separated into two

groups that received either IBTX (1mg/ml) or vehicle (phosphate buffered saline, PBS) for one

hour via bladder lumen instillation. Urodynamic analysis through continuous flow cystometry

(as described below) was performed for one hour following IBTX instillation. Upon comple-

tion of cystometry animals were sacrificed and the bladders were removed and immediately

placed into cold phosphate buffered saline (137mM NaCl, 8mM Na2HPO4, 2.7mM KCl,

1.47mM KH2PO4, pH7.4) to separate the detrusor and urothelium. Tissue was then transferred

into tubes and stored in -80˚C degree prior to shipping for metabolomic profiling by Metabo-

lon Corp. (as previously described [11]).

Urodynamic analysis

Procedures for urodynamic analysis have been previously described by our laboratory [12].

Urodynamics was through continuous flow cystometry in conscious rats through infusion of

room temperature saline at a rate of 10mL/h to elicit repetitive micturition. The following
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urodynamic parameters were quantified: (a) Bcap = bladder capacity (volume of infused saline

at micturition); (b) MV = micturition volume (volume of urine discharged during micturi-

tion); (c) RV = residual volume (volume of infused saline minus the micturition volume);

(d) BP = basal pressure (lowest average bladder pressure recorded during cystometry; (e)

TP = threshold pressure (intravesical pressure at which voiding is triggered); (f) MP = micturi-

tion pressure (peak intravesical pressure during voiding); (g) IMP = intermicturition pressure

(average pressure between micturitions); (h) SA = spontaneous activity (an approximate index

of spontaneous detrusor contractions between voiding and; (i) Bcom = bladder compliance

(calculated by subtracting the basal pressure from the IMP).

Statistical analysis

The value for each cystometric measurement was determined for each animal after IBTX (or

PBS (vehicle control)) instillation and the mean calculated. Differences were evaluated through

T-test with statistical significance defined as p<0.05.

The metabolomics data set was first normalized and mean-centered. Then, the data were

subjected to unsupervised statistical analysis, principal component analysis (PCA) to classify

the samples (control and IBTX-treated). Subsequently, all the data was subjected to ANOVA

contrast analysis for specific comparison between IBTX-treated groups and control groups.

Analysis by two-way ANOVA with repeated measures identified metabolites exhibiting signifi-

cant interaction and main effects for the experimental parameter of IBTX treatment. The p-

value is the probability that the test statistic is at least as extreme as observed in this experiment

given that the null hypothesis is true. The significance levels were adjusted for multiple hypoth-

esis testing at a false discovery rate (FDR) of 5%, which can be estimated using the q-value.

Results

Cystometry demonstrates the effect of one hour of instillation of IBTX on

urodynamic parameters is limited

In Table 1 we compare cystometric parameters measured after luminal installation of IBTX or

the vehicle control. The only urodynamic parameter that was significantly (p<0.05) affected

by IBTX treatment was micturition pressure (MP) which was reduced. Although it might be

expected that in a non-compliant bladder the MP would be elevated this observation may rep-

resent a specific effect of MaxiK rather than this being a model of a non-compliant bladder.

Table 1. The effect of iberiotoxin on cystometric parameters.

Bcap

(ml)

MV

(ml)

RV

(ml)

BP

(cm H2O)

TP

(cm H2O)

MP

(cm H2O)

IMP

(cm H2O)

SA

(per hour)

Bcom

(ml/cm H2O)

Following IBTX treatment 0.63±0.08 0.54±0.07 0.09±0.03 9.85±1.97 15.08±1.92 38.96±4.62* 13.06±2.03 3.21±0.24 0.24±0.09

Following PBS treatment 0.76±0.06 0.80±0.10 -0.04±0.15 8.63±0.95 19.42±1.41 58.61±1.80 14.03±1.54 5.40±1.31 0.07±0.01

Note: The mean value of each cystometric parameter (± standard deviation) is shown after luminal instillation of IBTX. The following abbreviations were

used (a) Bcap = bladder capacity (volume of infused saline at micturition); (b) MV = micturition volume (volume of urine discharged during micturition); (c)

RV = residual volume (volume of infused saline minus the micturition volume); (d) BP = basal pressure (lowest average bladder pressure recorded during

cystometry; (e) TP = threshold pressure (intravesical pressure at which voiding is triggered); (f) MP = micturition pressure (peak intravesical pressure during

voiding); (g) IMP = intermicturition pressure (average pressure between micturitions); (h) SA = spontaneous activity (an approximate index of spontaneous

detrusor contractions between voiding and; (i) Bcom = bladder compliance (calculated by subtracting the basal pressure from the IMP). The only variable

significantly affected by IBTX treatment was MP (* = P<0.05).

https://doi.org/10.1371/journal.pone.0189387.t001
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Metabolomics demonstrates inhibition of urothelial MaxiK activity effects

the metabolic profile of mucosa and detrusor differently

In total, 522 and 484 identifiable metabolites were detected at significant levels in the mucosal

and detrusor layers, respectively. As shown in Fig 1, following IBTX treatment the percentage

of significant change in the levels of detectable metabolites 6%, p�0.05 (11% p�0.1) in the

mucosa and 16%, p�0.05 (26% p�0.1) in the detrusor. A complete list of the detected metabo-

lites and their change following IBTX treatment is presented as supplemental data (S1 Fig). In

Fig 2 an overview of the involvement of the metabolites sorted by molecular processes in the

Fig 1. Number of metabolites with significantly changed levels after iberiotoxin treatment. Note: the following key is used for throughout the

Figs in the paper: Dark Green Background: Indicates significant (p�0.05) down-regulation of metabolite following IBTX treatment; Light Green

Background: Indicates a trend/narrowly missed statistical significance (0.05<p<0.10) for down-regulation of metabolite following IBTX treatment;

Dark Red Background: Indicates significant (p�0.05) up-regulation of metabolite following IBTX treatment; Light Red Background: Indicates a

trend/narrowly missed statistical significance (0.05<p<0.10) for up-regulation of metabolite following IBTX treatment. Grey Background: Indicates a

detected metabolite which was unchanged following IBTX treatment. White Background: Indicates an undetected metabolite which is part of the

metabolic pathway.

https://doi.org/10.1371/journal.pone.0189387.g001

Fig 2. An overview of the involvement of the metabolites sorted by molecular processes in the mucosa and detrusor that are changed in

response to IBTX treatment is depicted through an enrichment analysis (using MetaboAnalyst 3.0)[13].

https://doi.org/10.1371/journal.pone.0189387.g002
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mucosa and detrusor that are changed in response to IBTX treatment is depicted through an

enrichment analysis (using MetaboAnalyst 3.0) [13]. In the following sections we provide a

more detailed analysis and interpretation of these changes.

Evidence of an effect of urothelial MaxiK inhibition on mucosal and

detrusor mitochondrial metabolism

The data presented below demonstrate a role for urothelial MaxiK-activity in regulating mito-

chondrial metabolism in both mucosal and detrusor tissue. In the mucosa the primary effect

appears to be on mitochondrial metabolism, whereas in the detrusor additional pathways are

affected.

1) As shown in Fig 3, in mucosal tissue IBTX treatment causes a significant decrease in the

ascorbate/dehydroscorbate ratio (and a similar trend was observed in the detrusor). Dehy-

droascorbate is an oxidized form of ascorbic acid, which is transported by GLUT10 into mito-

chondria, where it is reduced to ascorbate. The changes in metabolite expression suggests that

either mitochondrial import, or enzymatic reduction of dehydroascorbate (which would rely

on the generation of the mitochondrially derived cofactor, reduced-glutathione (GSH)), are

negatively impacted by IBTX.

2) As shown in Figs 4 and 5, several products of the mitochondrial enzyme, glycine N-acyl-

transferase, are down regulated after IBTX treatment. For example, as shown in Fig 4, benzoate

levels are not effect by IBTX treatment in either urothelium or detrusor, but its downstream

metabolites, hippurate and 2-hydroxyhippurate are significantly lower in both tissues [14].

Benzoate is metabolized in the mitochondria to hippurate by the action of an ATP-dependent

Fig 3. Iberiotoxin treatment causes a significant decrease in the ascorbate/dehydroscorbate ratio in mucosal tissue (and a

similar trend was observed in the detrusor).

https://doi.org/10.1371/journal.pone.0189387.g003
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acid: CoA ligase to produce benzoyl-CoA, which is subsequently converted to hippurate by

glycine N-acyltransferase, and then exits the mitochondria. Hippurate can then be further

metabolized to 2-hydroxyhippurate. Lowered hippurate levels could reflect either reduced

benzoate uptake by the mitochondria, or reduced activity of mitochondrially located N-acyl-

transferase enzymes, which might occur as a result of reduced levels of co-factors associated

with enzymes (Coenzyme-A (CoA-SH) or ATP), which are generated in the mitochondria.

Other products generated through the activity of the mitochondrially located glycine N-

acyltransferase activity are also down-regulated by IBTX treatment in both the mucosa and

detrusor as shown in Fig 5 [15]. Although the levels of the parent metabolites were not identi-

fied in the metabolomic screen, reduced levels of the mitochondrially generated co-factors of

N-acyltransferase (CoA-SH or ATP) could be a potential cause for the lower levels of these gly-

cylated-products.

3) As shown in Fig 6 there is a reduction in N-acetylated products of several amino acids

(aa) in detrusor and mucosa. In the detrusor, IBTX treatment causes lowered levels of nearly

all aa (see Figs 6 and 7) with a concomitant decrease with their N-acetylated metabolites (ace-

tyl-aa). In contrast, in the mucosa the levels of only a few parent aa are significantly affected by

IBTX treatment, but there are decreased levels of their N-acetylated products, as illustrated by

a decrease in the ratio of acetyl-aa/aa. The N-acetylated metabolites are generated either

through direct acetylation of amino acids in the mitochondria, or are the products of protein

catabolism in the mitochondria. In the mucosa, the lower ratio of acetyl-aa/aa after IBTX treat-

ment compared to that of detrusor suggests that the amino acids present in mucosa are not

Fig 4. Iberiotoxin treatment causes a significant decrease in the hippurate/benzoate ratio in mucosal and detrusor tissue.

https://doi.org/10.1371/journal.pone.0189387.g004
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being efficiently N-acetylated. In the detrusor, lower levels of nearly all amino acids with a pro-

portionately lower level of their N-acetylated products suggests lowered protein catabolism.

4) As shown in Fig 8 IBTX causes reduced levels of urea and arginine in the urothelium,

and in the detrusor reduces the levels of all detected intermediary metabolites of the urea cycle.

The urea cycle has a critical step that occurs in the mitochondria catalyzed by ornithine

transcarbomoylase.

5) As shown in Fig 9 inhibition of MaxiK activity by IBTX causes a significant increase in

the levels of several intermediary metabolites of lipid metabolism in the mucosa. Several of

these intermediates are fatty acids (such as erucate, azelate, nonanedioate, unndecanedioate and

8-hydroxyoctanoate) that are shortened by cytochrome P450 mediated ω-oxidation in peroxi-

somes, with the products of these reactions subsequently transported to the mitochondria for

complete β-oxidation [16]. Overall fewer intermediary metabolites of lipid peroxidation were

detected in the detrusor, and of those that were detected, there was only significantly increased

levels of octanoylcarnitine following IBTX treatment (which was not changed in mucosal tis-

sues). At least in rat liver, the enzyme responsible for the synthesis of octanoylcarnitine (carni-

tine octanoyltransferase) is present only in peroxisomes but not present in mitochondria [17].

These observations suggest that IBTX inhibition of urothelial MaxiK may activate signaling

pathways which specifically affects peroxisomal mediated lipid metabolism in the detrusor.

Histidine metabolism and sulfonation is affected both in the urothelium

and detrusor

In addition to effects on metabolism that can be directly ascribed to inhibition of MaxiK-activ-

ity of mitochondrially-associated pathways there were some effects on predominantly cytosolic

Fig 5. Iberiotoxin treatment causes a significant decrease in the products of glycine N-acyltransferase activity in mucosal and detrusor tissue.

https://doi.org/10.1371/journal.pone.0189387.g005
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pathways. For example, as shown in Fig 10, an effect on the histidine/histamine pathways, and

as shown in Fig 11, on sulfonation. However, several of the steps in histidine metabolism

requires mitochondrially-derived co-factors, such as acetyl-CoA and NAD/NADH. Similarly,

sulfotransferases, which add a sulfuryl group to metabolites, utilize the co-factor 3-phosphoa-

denosyl-5 phosphosulfate which has a synthetic pathway involving several mitochondrially-

mediated steps. Therefore, although these pathways and reactions occur in the cytosol their

down-regulation may be a reflection of lowered levels of mitochondrially-derived co-factors as

a result of IBTX treatment.

In the detrusor urothelial inhibition of MaxiK has additional specific

effects on protein catabolism and energy generating pathways

As described above, there is a change in the levels of some amino acids and their N-acetylated

products in both mucosal and detrusor tissue following IBTX treatment. However, as shown

in Fig 7 the levels for nearly all amino acids are reduced in the detrusor (irrespective of polar-

ity, or if they are essential amino acids). The almost uniform lowered levels of amino acids

caused by IBTX treatment in the detrusor strongly suggests that there lowered catabolism of

proteins (which occurs in the mitochondria).

In addition, there is an effect on the energy generating pathways of the detrusor, which is

not seen in the mucosa (See Fig 12). In the detrusor levels of glucose and mannose levels are

not affected, suggesting their cellular uptake, and derivation from glycogen stores, are unaffected

by IBTX treatment. However there are decreased levels of several glycolytic intermediates.

Although glycolysis occurs in the cytosol, several key enzymatic steps are dependent on co-

Fig 6. Iberiotoxin treatment causes a significant decrease in the N-acetylated products in mucosal and detrusor tissue.

https://doi.org/10.1371/journal.pone.0189387.g006
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factors produced in the mitochondria (eg. ATP and NADH). The TCA cycle is also perturbed at

the level of succinate dehydrogenase (which is part of complex III in the oxidative phosphoryla-

tion transport chain in the mitochondrial membrane). Overall, the change in energy pathways

resulting from inhibition of urothelial MaxiK inhibition is only evident in the detrusor. These

changes may be a result of IBTX effecting MaxiK-activity linked signaling pathways between the

mucosa and detrusor which regulate detrusor energy generating pathways or may be secondary

to changes in bladder physiology that affect the energy demands of the detrusor.

Discussion

This report is the first to apply metabolomics to document global changes in bladder metabo-

lism mediated through urothelial MaxiK-activity. Interestingly, IBTX inhibition of urothelial

Fig 7. Comparative changes in levels of amino acids in the mucosa and detrusor following iberiotoxin treatment. The amino acids are grouped as

neutral non-polar, neutral polar, charged positive and charged negative. Essential amino acids are shown in red.

https://doi.org/10.1371/journal.pone.0189387.g007
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MaxiK-activity results in changes in metabolism in both the mucosa and detrusor. However,

the changes in metabolism of mucosa and detrusor are significantly different, supporting pre-

vious work that different compartments of the bladder should be considered as separate enti-

ties [11]. Overall our work supports a growing body of evidence that the urothelium plays an

Fig 8. Iberiotoxin treatment causes a significant decrease in the urea cycle products in mucosal and detrusor tissue.

https://doi.org/10.1371/journal.pone.0189387.g008

Fig 9. Comparative changes in levels of several intermediary metabolites of lipid metabolism in the mucosa and detrusor

following iberiotoxin treatment.KDavies-47.

https://doi.org/10.1371/journal.pone.0189387.g009
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important regulatory role in overall bladder function, not only in mediating solute transport,

but also in sensing and communicating to other tissues, primarily the detrusor, to respond to

bladder fullness [18]. A primary signaling mechanism to initiate this response is believed to be

the action of ATP on P2X3 receptors of sensory nerves [19,20]. The observation that inhibiting

Fig 10. Iberiotoxin treatment causes a significant decrease in the histidine metabolism products in mucosal and detrusor tissue.

https://doi.org/10.1371/journal.pone.0189387.g010
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urothelial MaxiK-activity inhibits mitochondrial energy metabolism would be expected to

reduce overall cellular ATP levels and therefore potentially ATP mediated signaling. However,

our studies do not distinguish between the levels of ATP in different cellular pools, for example

ATP stored in cellular vesicles (that are proposed to be the source of ATP used in cellular sig-

naling [21]) and pools used in energy generating/utilizing processes.

The conclusions in this paper are dependent on the specificity of IBTX to block vesicular

MaxiK channels on the luminal side of the urothelial layer and thereby not affect underlying

structures. Several publications have demonstrated the inability of IBTX to cross epithelial

layers [1–3]. Although these publications show that IBTX does not cross epithelial layers, it

has not been specifically shown for the bladder urothelium. However, since the urothelium

forms the tightest and most impermeable barrier in the body [4] we are confident that IBTX

will only affect MaxiK channels on the luminal side of the urothelium. In addition, the sur-

gery to insert the infusion catheter into the bladder lumen, or over-distention of the bladder

during infusion, may result in the loss of barrier integrity. However the surgery to insert the

catheter was performed 4 days prior to the infusion of IBTX which would allow for healing of

bladder tissue at the site of catheter entry. During the infusion of IBTX the bladder is not

over-distended and several studies suggest that filling the bladder to capacity does not affect

bladder permeability [5–7]. In addition, the surgery to insert the infusion catheter into the

bladder lumen, or over-distention of the bladder during infusion, may result in the loss of

barrier integrity. However the surgery to insert the catheter was performed 4 days prior to

Fig 11. Comparative changes in levels of several sulfonated metabolites in the mucosa and detrusor following iberiotoxin

treatment.

https://doi.org/10.1371/journal.pone.0189387.g011

MaxiK-activity regulates bladder metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0189387 December 27, 2017 12 / 18

https://doi.org/10.1371/journal.pone.0189387.g011
https://doi.org/10.1371/journal.pone.0189387


Fig 12. Iberiotoxin treatment causes a significant decrease in the energy generating pathways

(glycolysis and the TCA cycle) in detrusor (but not mucosal) tissue.

https://doi.org/10.1371/journal.pone.0189387.g012
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the infusion of IBTX which would allow for healing of bladder tissue at the site of catheter

entry. During the infusion of IBTX the bladder is not over-distended and several studies sug-

gest that filling the bladder to capacity does not affect bladder permeability [5–7]. Also, as

with all studies using inhibitors, consideration needs to be given to the specificity of the

inhibitor for its target. However, IBTX at the concentrations used in the present studies is

considered a highly selectivity inhibitor of the MaxiK channel [22]. In GH3 cells IBTX does

not alter A-type K+, Ca2+, or Na+ currents, but completely inhibits the MaxiK Ca2+-activated

K+ currents present in this type of cell and in lympocytes, K+ channels are unaffected by

IBTX [23,24]. Given its high specificity, IBTX is a commonly used and important tool to

obtain information on the function of MaxiK channels.

Given that the effect of IBTX is primarily on the luminal side of the urothelial layer, the pri-

mary effect on mitochondrial metabolism is intriguing. A possible explanation is that as a

result of inhibition of MaxiK channels there is increased membrane polarization, which in

turn would activate voltage dependent calcium channels increasing cytosolic [Ca2+] levels,

which are known to cause remodeling of mitochondria [25]. An alternative explanation is that

IBTX disrupts the interaction of MaxiK with proteins, such as those involved in signal trans-

duction (several potential candidates were recently identified as part of the MaxiK interac-

tome) or translocation of MaxiK into the mitochondria (for example, through disrupting its

interaction with Tom22) [26,27].

The effect of changes in metabolism in the mucosa are potentially coordinated through the

spread of either [Ca2+] levels or signaling molecules through gap junctions (primarily Cx43)

and pannexin 1 (Panx1). [28,29]. However, the effect on detrusor is most likely communicated

via changes in signal molecule levels released from the mucosal tissue which either acts directly

on the detrusor or via the nervous system. As described above the effect on mitochondrial

metabolism would affect ATP, which is known to be involved in mucosal co-ordination of

bladder function. However, the levels of several other metabolites effected by MaxiK inhibition

could also potentially be involved with coordination of responses between the mucosa and

detrusor. For example, histamine (down 2.5-fold in the mucosa), acetylcholine (down 50-fold

in detrusor) and arachidonic acid derived metabolites which act as paracrine agents (prostacy-

clin, 12-HEPA and 12-HETE, both down approximately 2-fold in detrusor). In addition, the

inhibition of mitochondrial energy metabolism would represent a switch from aerobic to

anaerobic metabolism, in effect a “metabolic reprogramming” of cells, which has been shown

to affect release of prostaglandins from endothelial cells [30,31].

There are several animal models that implicate bladder pathophysiology with changes in

MaxiK activity. For examples, bladder from rabbits with partial urethral obstruction (PUO), a

model of overactive bladder, protein levels of MaxiK are down-regulated [3]. IBTX increased

contractile responses in urinary bladder smooth muscle (UBSM) strips isolated from diabetic

compared to non-diabetic animals, but this was not associated with detectable changes in

mRNA levels encoding the α- and β1-subunits of the MaxiK channel [32]. In contrast, a later

report using patch-clamp electrophysiology demonstrated a reduction of MaxiK activity in

UBSM cells isolated from diabetic compared to non-diabetic bladder, accompanied with

increased α- and decreased β1-subunit mRNA expression [33]. A third study demonstrated

that IBTX induced phasic activity in UBSM strips, an effect that was significantly enhanced in

UBSM strips isolated from diabetic animals [34]. The apparent contradictions in these studies,

that even though there is decreased MaxiK activity in the diabetic bladder [33] IBTX has

greater effect on contractility of diabetic UBSM [32,34] could potentially be explained by early

studies not considering the regulatory role that the urothelium plays in mediating bladder con-

tractility. The effect of diabetes on MaxiK channel activity was only measured in detrusor cells

whereas contractility studies on UBSM strips were not denuded of urothelium. Thus, if
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diabetes has differential effects on MaxiK activity in urothelium and detrusor, then diabetes-

induced changes in the effect of IBTX on UBSM contractility maybe primarily mediated

through the urothelium. Indeed, we and others [5,35] have published that the presence of the

urothelium on UBSM strips from non-diabetic animals increases sensitivity of carbachol-

induced contractility to IBTX, although this effect is attenuated with diabetes. The data pre-

sented here further establishes an important role for the urothelium in regulating bladder

physiology, urothelial MaxiK activity not only regulates mucosal, but also detrusor activity.

Supporting an important role of urothelial MaxiK in regulating bladder physiology are our

own studies in the PUO animal model have demonstrated that instillation of pVAX-Slo (a

plasmid construct expressing MaxiK) into the bladder lumen reduced over-activity [4]. Given

the conditions (luminal instillation) for gene transfer in these experiments it is unlikely that

expression of MaxiK was increased in more than the most superficial tissues of the bladder

(the urothelium) and yet impacted the whole physiology of the bladder.

Even within tissue compartments considered as part of our study (the mucosa and detrusor,

which are the minimal units of the bladder which are easily separated with sufficient tissue to

perform the metabolomics analysis) there are multiple cell types forming sub-compartments,

such as interstitial (and nerve cells [36,37]. Therefore the metabolites measured must be con-

sidered as an average across all the present cell types in that tissue.

Although it is generally accepted that MaxiK channels are fundamental regulators of blad-

der physiology because of their involvement in detrusor excitability and contractility our work

adds to the growing body of evidence that MaxiK activity in the urothelium may have a preem-

inent role in the regulation of bladder physiology. We demonstrate that urothelial MaxiK

channel activity plays a significant role in determining mitochondrially-associated metabolism

in mucosal tissues, which in turn can affect the metabolism of detrusor tissue. In the detrusor,

changes in metabolism maybe a consequence of changes in the levels of mucosal signaling

pathways, or secondary to changes in detrusor physiology, or a combination of both. Since

decreased MaxiK activity is associated with several bladder pathophysiologies, the changes in

mucosal metabolism reported here may represent new targets for pharmacological or genetic

control of urinary bladder function in humans [38].

Supporting information

S1 Fig. All metabolites detected in bladder mucosa and detrusor, with the ratio of changed

levels after iberiotoxin treatment. Significant changes following IBT treatment are indicated

as follows; Dark Green Background: Indicates significant (p�0.05) down-regulation of metab-

olite following IBTX treatment; Light Green Background: Indicates a trend/narrowly missed

statistical significance (0.05<p<0.10) for down-regulation of metabolite following IBTX treat-

ment; Dark Red Background: Indicates significant (p�0.05) up-regulation of metabolite fol-

lowing IBTX treatment; Light Red Background: Indicates a trend/narrowly missed statistical

significance (0.05<p<0.10) for up-regulation of metabolite following IBTX treatment. Grey

Background: Indicates a detected metabolite which was unchanged following IBTX treatment.

White Background: Indicates an undetected metabolite which is part of the metabolic path-

way.

(TIF)

Acknowledgments

We thank Dr. Moses Tar for helping in the analysis of the cystometric data and Metabolon

Inc. for performing the metabolic analysis.

MaxiK-activity regulates bladder metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0189387 December 27, 2017 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0189387.s001
https://doi.org/10.1371/journal.pone.0189387


Author Contributions

Conceptualization: Kelvin P. Davies.

Data curation: Yi Wang, Kelvin P. Davies.

Formal analysis: Yi Wang, Kelvin P. Davies.

Funding acquisition: Yi Wang, Kelvin P. Davies.

Investigation: Yi Wang, Kelvin P. Davies.

Methodology: Yi Wang, Kelvin P. Davies.

Project administration: Kelvin P. Davies.

Supervision: Kelvin P. Davies.

Visualization: Kelvin P. Davies.

Writing – original draft: Yi Wang, Kelvin P. Davies.

Writing – review & editing: Gary G. Deng, Kelvin P. Davies.

References
1. Thorneloe KS, Meredith AL, Knorn AM, Aldrich RW, Nelson MT (2005) Urodynamic properties and neu-

rotransmitter dependence of urinary bladder contractility in the BK channel deletion model of overactive

bladder. Am J Physiol Renal Physiol 289: F604–610. https://doi.org/10.1152/ajprenal.00060.2005

PMID: 15827347

2. Meredith AL, Thorneloe KS, Werner ME, Nelson MT, Aldrich RW (2004) Overactive bladder and inconti-

nence in the absence of the BK large conductance Ca2+-activated K+ channel. J Biol Chem 279:

36746–36752. https://doi.org/10.1074/jbc.M405621200 PMID: 15184377

3. Chang S, Gomes CM, Hypolite JA, Marx J, Alanzi J, Zderic SA, et al. (2010) Detrusor overactivity is

associated with downregulation of large-conductance calcium- and voltage-activated potassium chan-

nel protein. Am J Physiol Renal Physiol 298: F1416–1423. https://doi.org/10.1152/ajprenal.00595.

2009 PMID: 20392804

4. Christ GJ, Day NS, Day M, Santizo C, Zhao W, Sclafani T, et al. (2001) Bladder injection of "naked"

hSlo/pcDNA3 ameliorates detrusor hyperactivity in obstructed rats in vivo. Am J Physiol Regul Integr

Comp Physiol 281: R1699–1709. https://doi.org/10.1152/ajpregu.2001.281.5.R1699 PMID: 11641143

5. Wang Y, Tar MT, Fu S, Melman A, Davies KP (2014) Diabetes attenuates urothelial modulation of

detrusor contractility and spontaneous activity. Int J Urol 21: 1059–1064. https://doi.org/10.1111/iju.

12491 PMID: 24846346

6. Li M, Sun Y, Simard JM, Wang JY, Chai TC (2009) Augmented bladder urothelial polyamine signaling

and block of BK channel in the pathophysiology of overactive bladder syndrome. Am J Physiol Cell Phy-

siol 297: C1445–1451. https://doi.org/10.1152/ajpcell.00259.2009 PMID: 19812367

7. Toro L, Li M, Zhang Z, Singh H, Wu Y, Stefani E (2014) MaxiK channel and cell signalling. Pflugers Arch

466: 875–886. https://doi.org/10.1007/s00424-013-1359-0 PMID: 24077696

8. Petkov GV (2014) Central role of the BK channel in urinary bladder smooth muscle physiology and

pathophysiology. Am J Physiol Regul Integr Comp Physiol 307: R571–584. https://doi.org/10.1152/

ajpregu.00142.2014 PMID: 24990859

9. Chai TC, Russo A, Yu S, Lu M (2016) Mucosal signaling in the bladder. Auton Neurosci 200: 49–56.

https://doi.org/10.1016/j.autneu.2015.08.009 PMID: 26422993

10. Li M, Sun Y, Tomiya N, Hsu Y, Chai TC (2013) Elevated polyamines in urothelial cells from OAB sub-

jects mediate oxotremorine-evoked rapid intracellular calcium rise and delayed acetylcholine release.

Am J Physiol Renal Physiol 305: F445–450. https://doi.org/10.1152/ajprenal.00345.2012 PMID:

23698115

11. Wang Y, Deng GG, Davies KP (2016) Novel insights into development of diabetic bladder disorder pro-

vided by metabolomic analysis of the rat nondiabetic and diabetic detrusor and urothelial layer. Am J

Physiol Endocrinol Metab 311: E471–479. https://doi.org/10.1152/ajpendo.00134.2016 PMID:

27354236

12. Melman A, Zotova E, Kim M, Arezzo J, Davies K, DiSanto M, et al. (2009) Longitudinal studies of time-

dependent changes in both bladder and erectile function after streptozotocin-induced diabetes in

MaxiK-activity regulates bladder metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0189387 December 27, 2017 16 / 18

https://doi.org/10.1152/ajprenal.00060.2005
http://www.ncbi.nlm.nih.gov/pubmed/15827347
https://doi.org/10.1074/jbc.M405621200
http://www.ncbi.nlm.nih.gov/pubmed/15184377
https://doi.org/10.1152/ajprenal.00595.2009
https://doi.org/10.1152/ajprenal.00595.2009
http://www.ncbi.nlm.nih.gov/pubmed/20392804
https://doi.org/10.1152/ajpregu.2001.281.5.R1699
http://www.ncbi.nlm.nih.gov/pubmed/11641143
https://doi.org/10.1111/iju.12491
https://doi.org/10.1111/iju.12491
http://www.ncbi.nlm.nih.gov/pubmed/24846346
https://doi.org/10.1152/ajpcell.00259.2009
http://www.ncbi.nlm.nih.gov/pubmed/19812367
https://doi.org/10.1007/s00424-013-1359-0
http://www.ncbi.nlm.nih.gov/pubmed/24077696
https://doi.org/10.1152/ajpregu.00142.2014
https://doi.org/10.1152/ajpregu.00142.2014
http://www.ncbi.nlm.nih.gov/pubmed/24990859
https://doi.org/10.1016/j.autneu.2015.08.009
http://www.ncbi.nlm.nih.gov/pubmed/26422993
https://doi.org/10.1152/ajprenal.00345.2012
http://www.ncbi.nlm.nih.gov/pubmed/23698115
https://doi.org/10.1152/ajpendo.00134.2016
http://www.ncbi.nlm.nih.gov/pubmed/27354236
https://doi.org/10.1371/journal.pone.0189387


Fischer 344 male rats. BJU Int 104: 1292–1300. https://doi.org/10.1111/j.1464-410X.2009.08573.x

PMID: 19389003

13. Xia J, Wishart DS (2016) Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.

Curr Protoc Bioinformatics 55: 14 10 11–14 10 91.

14. Lennerz BS, Vafai SB, Delaney NF, Clish CB, Deik AA, Pierce KA, et al. (2015) Effects of sodium ben-

zoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans. Mol

Genet Metab 114: 73–79. https://doi.org/10.1016/j.ymgme.2014.11.010 PMID: 25497115

15. Badenhorst CP, van der Sluis R, Erasmus E, van Dijk AA (2013) Glycine conjugation: importance in

metabolism, the role of glycine N-acyltransferase, and factors that influence interindividual variation.

Expert Opin Drug Metab Toxicol 9: 1139–1153. https://doi.org/10.1517/17425255.2013.796929 PMID:

23650932

16. Hardwick JP (2008) Cytochrome P450 omega hydroxylase (CYP4) function in fatty acid metabolism

and metabolic diseases. Biochem Pharmacol 75: 2263–2275. https://doi.org/10.1016/j.bcp.2008.03.

004 PMID: 18433732

17. Miyazawa S, Ozasa H, Osumi T, Hashimoto T (1983) Purification and properties of carnitine octanoyl-

transferase and carnitine palmitoyltransferase from rat liver. J Biochem 94: 529–542. PMID: 6630173

18. Li Y, Lu M, Alvarez-Lugo L, Chen G, Chai TC (2016) Granulocyte-macrophage colony-stimulating factor

(GM-CSF) is released by female mouse bladder urothelial cells and expressed by the urothelium as an

early response to lipopolysaccharides (LPS). Neurourol Urodyn.

19. Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells

by hydrostatic pressure changes—a possible sensory mechanism? J Physiol 505 (Pt 2): 503–511.

20. Cockayne DA, Hamilton SG, Zhu QM, Dunn PM, Zhong Y, Novakovic S, et al. (2000) Urinary bladder

hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407: 1011–1015.

https://doi.org/10.1038/35039519 PMID: 11069181

21. Bodin P, Burnstock G (2001) Evidence that release of adenosine triphosphate from endothelial cells

during increased shear stress is vesicular. J Cardiovasc Pharmacol 38: 900–908. PMID: 11707694

22. Candia S, Garcia ML, Latorre R (1992) Mode of action of iberiotoxin, a potent blocker of the large con-

ductance Ca(2+)-activated K+ channel. Biophys J 63: 583–590. https://doi.org/10.1016/S0006-3495

(92)81630-2 PMID: 1384740

23. Garcia ML, Galvez A, Garcia-Calvo M, King VF, Vazquez J, Kaczorowski GJ (1991) Use of toxins to

study potassium channels. J Bioenerg Biomembr 23: 615–646. PMID: 1917911

24. Lewis RS, Cahalan MD (1988) Subset-specific expression of potassium channels in developing murine

T lymphocytes. Science 239: 771–775. PMID: 2448877

25. Shalbuyeva N, Brustovetsky T, Bolshakov A, Brustovetsky N (2006) Calcium-dependent spontaneously

reversible remodeling of brain mitochondria. J Biol Chem 281: 37547–37558. https://doi.org/10.1074/

jbc.M607263200 PMID: 17056496

26. Singh H, Li M, Hall L, Chen S, Sukur S, Lu R, et al. (2016) MaxiK channel interactome reveals its inter-

action with GABA transporter 3 and heat shock protein 60 in the mammalian brain. Neuroscience 317:

76–107. https://doi.org/10.1016/j.neuroscience.2015.12.058 PMID: 26772433

27. Zhang J, Li M, Zhang Z, Zhu R, Olcese R, Stefani E, et al. (2017) The mitochondrial BKCa channel car-

diac interactome reveals BKCa association with the mitochondrial import receptor subunit Tom22, and

the adenine nucleotide translocator. Mitochondrion 33: 84–101. https://doi.org/10.1016/j.mito.2016.08.

017 PMID: 27592226

28. Negoro H, Urban-Maldonado M, Liou LS, Spray DC, Thi MM, Suadicani SO. (2014) Pannexin 1 chan-

nels play essential roles in urothelial mechanotransduction and intercellular signaling. PLoS One 9:

e106269. https://doi.org/10.1371/journal.pone.0106269 PMID: 25170954

29. Negoro H, Lutz SE, Liou LS, Kanematsu A, Ogawa O, Scemes E, et al. (2013) Pannexin 1 involvement

in bladder dysfunction in a multiple sclerosis model. Sci Rep 3: 2152. https://doi.org/10.1038/

srep02152 PMID: 23827947

30. Monlun M, Hyernard C, Blanco P, Lartigue L, Faustin B (2017) Mitochondria as Molecular Platforms

Integrating Multiple Innate Immune Signalings. J Mol Biol 429: 1–13. https://doi.org/10.1016/j.jmb.

2016.10.028 PMID: 27923767

31. Lartigue L, Faustin B (2013) Mitochondria: metabolic regulators of innate immune responses to patho-

gens and cell stress. Int J Biochem Cell Biol 45: 2052–2056. https://doi.org/10.1016/j.biocel.2013.06.

014 PMID: 23838171

32. Nakahara T, Mitani A, Kubota Y, Maruko T, Sakamoto K, Tanaka Y, et al. (2004) MaxiK channel-trig-

gered negative feedback system is preserved in the urinary bladder smooth muscle from streptozoto-

cin-induced diabetic rats. J Smooth Muscle Res 40: 97–109. PMID: 15353864

MaxiK-activity regulates bladder metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0189387 December 27, 2017 17 / 18

https://doi.org/10.1111/j.1464-410X.2009.08573.x
http://www.ncbi.nlm.nih.gov/pubmed/19389003
https://doi.org/10.1016/j.ymgme.2014.11.010
http://www.ncbi.nlm.nih.gov/pubmed/25497115
https://doi.org/10.1517/17425255.2013.796929
http://www.ncbi.nlm.nih.gov/pubmed/23650932
https://doi.org/10.1016/j.bcp.2008.03.004
https://doi.org/10.1016/j.bcp.2008.03.004
http://www.ncbi.nlm.nih.gov/pubmed/18433732
http://www.ncbi.nlm.nih.gov/pubmed/6630173
https://doi.org/10.1038/35039519
http://www.ncbi.nlm.nih.gov/pubmed/11069181
http://www.ncbi.nlm.nih.gov/pubmed/11707694
https://doi.org/10.1016/S0006-3495(92)81630-2
https://doi.org/10.1016/S0006-3495(92)81630-2
http://www.ncbi.nlm.nih.gov/pubmed/1384740
http://www.ncbi.nlm.nih.gov/pubmed/1917911
http://www.ncbi.nlm.nih.gov/pubmed/2448877
https://doi.org/10.1074/jbc.M607263200
https://doi.org/10.1074/jbc.M607263200
http://www.ncbi.nlm.nih.gov/pubmed/17056496
https://doi.org/10.1016/j.neuroscience.2015.12.058
http://www.ncbi.nlm.nih.gov/pubmed/26772433
https://doi.org/10.1016/j.mito.2016.08.017
https://doi.org/10.1016/j.mito.2016.08.017
http://www.ncbi.nlm.nih.gov/pubmed/27592226
https://doi.org/10.1371/journal.pone.0106269
http://www.ncbi.nlm.nih.gov/pubmed/25170954
https://doi.org/10.1038/srep02152
https://doi.org/10.1038/srep02152
http://www.ncbi.nlm.nih.gov/pubmed/23827947
https://doi.org/10.1016/j.jmb.2016.10.028
https://doi.org/10.1016/j.jmb.2016.10.028
http://www.ncbi.nlm.nih.gov/pubmed/27923767
https://doi.org/10.1016/j.biocel.2013.06.014
https://doi.org/10.1016/j.biocel.2013.06.014
http://www.ncbi.nlm.nih.gov/pubmed/23838171
http://www.ncbi.nlm.nih.gov/pubmed/15353864
https://doi.org/10.1371/journal.pone.0189387


33. Kryshtal DA, Paduraru OM, Boldyriev OI, Kit O, Rekalov VV, Shuba Ia M. (2011) [Changes in calcium-

dependent potassium channels of isolated smooth muscle cells of the bladder in rats with experimental

diabetes]. Fiziol Zh 57: 25–32. PMID: 21870515

34. Vahabi B, Lawson K, McKay NG, Sellers DJ (2011) Phasic activity of urinary bladder smooth muscle in

the streptozotocin-induced diabetic rat: effect of potassium channel modulators. Eur J Pharmacol 660:

431–437. https://doi.org/10.1016/j.ejphar.2011.03.053 PMID: 21497590

35. Kosan M, Hafez G, Ozturk B, Ozgunes O, Gur S, Cetinkaya M. (2005) Effect of urothelium on bladder

contractility in diabetic rats. Int J Urol 12: 677–682. https://doi.org/10.1111/j.1442-2042.2005.01098.x

PMID: 16045562

36. McCloskey KD (2010) Interstitial cells in the urinary bladder—localization and function. Neurourol Uro-

dyn 29: 82–87. https://doi.org/10.1002/nau.20739 PMID: 20025023

37. Gevaert T, Vanstreels E, Daelemans D, Franken J, Van Der Aa F, Roskams T, et al. (2014) Identifica-

tion of different phenotypes of interstitial cells in the upper and deep lamina propria of the human blad-

der dome. J Urol 192: 1555–1563. https://doi.org/10.1016/j.juro.2014.05.096 PMID: 24893312

38. Hristov KL, Chen M, Kellett WF, Rovner ES, Petkov GV (2011) Large-conductance voltage- and Ca2

+-activated K+ channels regulate human detrusor smooth muscle function. Am J Physiol Cell Physiol

301: C903–912. https://doi.org/10.1152/ajpcell.00495.2010 PMID: 21697543

MaxiK-activity regulates bladder metabolism

PLOS ONE | https://doi.org/10.1371/journal.pone.0189387 December 27, 2017 18 / 18

http://www.ncbi.nlm.nih.gov/pubmed/21870515
https://doi.org/10.1016/j.ejphar.2011.03.053
http://www.ncbi.nlm.nih.gov/pubmed/21497590
https://doi.org/10.1111/j.1442-2042.2005.01098.x
http://www.ncbi.nlm.nih.gov/pubmed/16045562
https://doi.org/10.1002/nau.20739
http://www.ncbi.nlm.nih.gov/pubmed/20025023
https://doi.org/10.1016/j.juro.2014.05.096
http://www.ncbi.nlm.nih.gov/pubmed/24893312
https://doi.org/10.1152/ajpcell.00495.2010
http://www.ncbi.nlm.nih.gov/pubmed/21697543
https://doi.org/10.1371/journal.pone.0189387

