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Abstract: The gut microbiota is symbiotic with the human host and has been extensively 
studied in recent years resulting in increasing awareness of the effects of the gut microbiota 
on human health. In this review, we summarize the current evidence for the effects of gut 
microbes on the integrity of the cerebral blood–brain barrier (BBB), focusing on the 
pathogenic impact of gut microbiota disorders. Based on our description and summarization 
of the effects of the gut microbiota and its metabolites on the nervous, endocrine, and 
immune systems and related signaling pathways and the resulting destruction of the BBB, 
we suggest that regulating and supplementing the intestinal microbiota as well as targeting 
immune cells and inflammatory mediators are required to protect the BBB. 
Keywords: microbiota, metabolites, blood–brain barrier

Introduction
Under physiological conditions, the intestinal microbiota and the human body are in 
a mutually beneficial relationship. The human body provides a protected environ-
ment and nutrients for the microbiome,1 while the microbes participate in the 
metabolism, digestion and absorption of substances. The gut microbiota is con-
stantly changing but maintained in a relatively stable state, participating in various 
physiological processes. Gut microbes dysbiosis can cause dysfunction of many 
organs, including the brain.2 The blood–brain barrier (BBB) is important for 
protection of the brain and preventing microbes and toxins from entering the central 
nervous system (CNS). Many studies have shown that gut microbiota disorders are 
related to the destruction of the BBB,3–5 although the mechanism remains to be 
clarified.

The Composition and Function of the Blood–Brain 
Barrier
The BBB refers to the barrier between the plasma and brain cells formed by the 
brain capillaries and glial cells and the barrier between the plasma and cerebrosp-
inal fluid formed by the choroid plexus. The BBB consists of brain microvascular 
endothelial cells (BMEC), the perivascular foot of astrocytes, a basement mem-
brane (BM) and pericytes (PCs). In July 2001, the National Institute of Neurology 
and Stroke (NINDS) proposed the concept of a neurovascular unit (NVU) to 
emphasize the dynamic interaction between the BBB, neurons, the extracellular 
matrix (ECM), and microglia. The components of this unit work together to 
regulate the structure and function of the BBB.6,7
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BMECs are held together by tight junction (TJ) proteins to 
form an endothelial cell barrier, which includes claudin, occlu-
din, and zonula occludens (ZO) and junctional adhesion mole-
cules (JAMs) linked to the cytoskeleton.8,9 BMECs overlap 
and occlude adjacent vascular endothelial cells (ECs) to form 
a high-resistance barrier to molecules and metal ions that 
strictly controls the paracellular transport of solutes and 
liquids.10,11 The EC barrier effectively prevents the passage 
of macromolecular substances through the EC junctions and 
maintain the ion homeostasis in the brain.12 TJs are particularly 
important for BBB function, and their loss can greatly increase 
its permeability.13,14 Cerebrovascular ECs have a very low 
transcytosis rate due to the lack of plasma membrane 
vesicles.15–17 PCs protrude from the surface of ECs, spanning 
multiple EC bodies, and wrapping around the capillary 
endothelium.18 The contractile proteins in PCs regulate the 
diameter of capillaries,19 regulating transcytosis and immune 
cell transport across the BBB.

ECs are also surrounded by a continuous BM, which is 
composed of collagen, laminin, nestin, heparin sulfate proteo-
glycan and other glycoproteins. The ECM is secreted by EC, 
PCs and astrocytes. The BM provides binding sites for signal 
transduction of many cytokines (VEGF, Wnt, etc.) and forms 
the second part of the BBB, which can be destroyed by matrix 
metalloproteinases (MMPs).20

Astrocytes are the most abundant glial cell type and play an 
important role in neurovascular regulation.21 The perivascular 
foot of astrocytes surrounds approximately 85% of the surface 
of the brain capillaries outside the BM, forming another phy-
sical, transport, and metabolic barrier. It also communicates 
with neurons to establish endothelial neuronal connections,22 

which transmit neural signals to the local vasculature, affecting 
barrier physiology by altering arteriolar expansion and blood 
flow.23,24 (see Figure 1)

This multilayer membrane structure of brain capillaries 
constitutes a protective barrier for brain tissue. The BBB serves 
as a key regulator of the entry of nutrients from blood sources 
and compounds required for brain health. It also prevents the 
entry of potentially harmful molecules and cells into the brain, 
and maintains brain homeostasis and a suitable microenviron-
ment for neuronal growth.1,25,26

The Effects of Blood–Brain Barrier 
Disruption on the Brain
Destruction of the BBB is involved in a variety of acute and 
chronic CNS diseases and neuropsychiatric disorders, such as 
encephalomyelitis, multiple sclerosis (MS), Alzheimer’s 

disease and schizophrenia. High levels of superoxide,27 activa-
tion of MMPs,28 and upregulation of inflammatory mediators 
in the CNS can cause damage to the BBB. Degradation of the 
BBB leads to increased permeability and leakage, resulting in 
the recruitment of immune cells to the CNS29 and the occur-
rence of neuroinflammation.30

The Impact of Gut Microbiota 
Disorders on the BBB
Gut Microbiota Disorders Associated 
with the BBB
The human body contains about 100 trillion microbes from 
approximately 1000 species, of which the intestinal microbiota 
accounts for more than 90%, mainly comprising Firmicutes, 
Bacteroidetes, Actinobacteria and Proteobacteria.31 These 
microbes play important roles in many physiological functions, 
such as metabolism,32,33 nutrient absorption in the gut, synth-
esis of beneficial bioactive molecules,34 regulation of neuro-
transmitters, maintenance of the integrity and function of 
barriers,35,36 and the immune system.37 Under normal circum-
stances, intestinal microbes are combined in a certain propor-
tion to form an ecological balance. When the internal and 
external environment changes, this balance is broken, resulting 
in gut microbiota disorders. Diet, infection and oral antibiotics 
can change the structure of intestinal microflora.38–40 The 

Figure 1 The blood–brain barrier is composed of brain microvascular endothelial 
cells, pericytes, the continuous basement membrane and the perivascular feet of 
astrocytes, preventing the entry of harmful substances into the brain tissue. The 
blood–brain barrier interacts with extracellular matrices, neurons, and microglia, 
forming neurovascular units, which regulate the structure and function of the 
blood–brain barrier.
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disorder of intestinal microbes may promote the occurrence of 
some diseases. Studies have confirmed that intestinal microbes 
disorders are associated with many CNS diseases, including 
Alzheimer’s disease (AD),41 Parkinson’s disease (PD),42 and 
amyotrophic lateral sclerosis.43 Thus, intestinal microbes dis-
orders are is considered to be the important cause of 
dementia.44,45

A growing number of studies suggest that gut microbes 
have an important influence on BBB integrity. In 2014, 
Braniste et al found that different regions of the brain in 
germ-free (GF) mice (including the frontal cortex, hippo-
campus and striatum) displayed increased BBB permeability 
compared to pathogen-free (PF) mice. The increased BBB 
permeability was associated with decreased expression of 
occludin and claudin-5. After fecal transplantation from PF 
mice or administration of short-chain fatty acid (SCFA)- 
producing bacteria to GF mice, the expression of TJs 
increased, and the integrity of the BBB was restored. This 
indicated the establishment of communication between the 
gut microbiota and the BBB during embryonic development, 
which persists throughout life.3 Fröhlich et al reported that 
induced intestinal dysbiosis induced in mice through the 
administration of antibiotics resulted in reduced expression 

of TJ proteins in the hippocampus, without a reduction in the 
prefrontal cortex and hypothalamus.46

These findings indicate the importance of the gut micro-
biota in the BBB, although the mechanism remains unclear. 
Current research suggests that the gut microbiota regulate 
the BBB through a variety of pathways, including the vagus 
and sympathetic nerves,47 immune48 and endocrine 
systems,49 and intestinal microbial metabolites such as 
SCFAs and lipopolysaccharides (LPS).50,51 (see Figure 2)

Microorganisms and Their Metabolites
Microorganisms in the gut communicate with the brain 
via mechanical stimulation of intestinal mucosal cells, 
causing local inflammation by producing toxins, receptor- 
mediated signaling, and increasing intestinal 
permeability.52,53 When the intestinal flora is in disorder, 
some pathogenic bacteria in the gastrointestinal tract can 
directly stimulate intestinal chromaffin cells to release 
serotonin, which can activate endogenous afferents and 
cause nerve reflex, thereby enhancing the release of chlor-
ide and water to the intestinal cavity, thus stimulating 
intestinal motility.54 The gut contains numerous bacteria, 
which produce LPS, and convert dietary components into 

Figure 2 Pathways of the effects of gut microbiota on the blood–brain barrier. The gut microbiota can affect the structure and function of the blood–brain barrier through 
various pathways, such as their metabolites, and the nervous, endocrine, and immune systems.
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a series of metabolites such as SCFAs, trimethylamine 
and serotonin. These metabolites regulate homeostasis, 
maintain BBB integrity and affect brain function.55 The 
gut-vascular barrier (GVB) prevents the entry of bacteria 
into the bloodstream from the intestines. Following 
destruction of the GVB, bacteria and their toxic metabo-
lites enter the bloodstream, causing an inflammatory 
response.

Lipopolysaccharide
LPS is the main component of the cell wall of Gram- 
negative bacteria, which is lysed and shed after bacterial 
death. Gut microbiota disorders can lead to increased LPS 
release, increasing intestinal permeability, and affecting 
intestinal and general health.56,57 LPS activates gastrointest-
inal immune cells to release inflammatory cytokines from 
the gut. In vitro experiments, Kacimi et al studied the model 
of endothelial cell death only in the presence of microglia 
and found that LPS induced the death of microglia rather 
than EC. However, when microglia were co-cultured with 
EC, LPS increased EC death. Furthermore, inhibiting micro-
glial activation can prevent injury to the EC. Thus, it has 
been proposed that LPS disrupts the BBB by activating 
microglia to damage EC.58 Singh et al demonstrated the 
interaction of EC with LPS and the main component of the 
cell wall of Gram-positive bacteria, lipoteichoic acid (LTA) 
in vitro. They found that the toxins did not cross the 
endothelial barrier, but the mRNA levels of ZO-1, occludin 
and JAM were suppressed, while mRNA levels of tumor 
necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1 β) 
were increased. These findings indicated that disruption of 
the BBB and release of pro-inflammatory cytokines induce 
neuroinflammation.59 In addition, LPS affects adhesion pro-
teins and membrane transporters, as well as the basal lamina, 
and extracellular matrix.60 LPS also activates Toll-like 
receptor 4 on microglia to release inflammatory cytokines 
and chemokines in the CNS,61 and enhances neuronal 
apoptosis,62,63 thereby affecting the BBB and CNS.

Short-Chain Fatty Acids
SCFAs, which are produced mainly by digestion of dietary 
fiber by the beneficial intestinal microbes, are biologically 
active molecules that can pass the BBB.64,65

SCFAs act as signaling molecules by binding to G protein- 
coupled receptors (GPCRs).66 SCFAs stimulate GPCRs, the 
free fatty acid receptors (FFAR2 or FFAR3), on intestinal 
epithelial cells and brain EC,67–71 protecting the BBB from 
oxidative stress.67 SCFAs can enter the interior of cells and 

inhibit histone deacetylase (HDAC), thus activating gene 
expression.72 HDAC blocks the transcription of brain-derived 
neurotrophic factor (BDNF) and glial cell line-derived neuro-
trophic factor (GDNF).73 In addition, SCFAs stimulate synapse 
and outer membrane vesicles (OMV) for exocytosis.74 OMVs, 
which encapsulate some bioactive molecules secreted by bac-
teria, enter the systemic circulation and cross the BBB to 
induce an inflammatory response.75 Erny et al observed that 
both GF and temporary or partial eradication of the host 
microbiota resulted in microglial defects that partially restored 
microglial features by recolonization with a complex micro-
biota. It was also found that mice lacking the SCFA receptor 
FFAR2 mirrored the microglial defects found under GF con-
ditions, suggesting that SCFAs regulate microglial 
homeostasis.76

Neural Pathway
The neural pathway is mediated by the interaction of the 
gut microbiota with the central, autonomic, and enteric 
nervous systems,45 and participates in normal neurological 
functions, such as the development and formation of neu-
rons and myelin,77 the development of the neurotransmit-
ter system,78 neural signaling and BBB integrity.

Microbial populations can regulate the CNS develop-
ment and affect the expression and signaling of amygdala 
transcriptional genes.79 Significant amygdalar and hippo-
campal expansion was observed in GF mice compared to 
that in the conventional colonization mice. The basolateral 
amygdala pyramidal neurons of GF mice had more stubby 
and mushroom spines, while the ventral hippocampal pyr-
amidal neurons were shorter and less branched,80 with 
decreased BDNF expression in the hippocampus.81

Metabolites produced by the gut microbes act locally on the 
intestinal neurons that innervate the gut and are transmitted to 
the brain via neural signals. Metabolites also activate Toll-like 
receptors present in intestinal epithelial cells,82,83 producing 
intestinal inflammatory responses and increasing apoptosis and 
loss of intestinal neurons,84 thus affecting the function of the 
enteric and central nervous systems.

Vagus Nerve
The vagus nerve is an important pathway by which the 
intestinal microbiota communicates with the brain. The 
gut microbiota can act on the intestinal neurons and com-
municate with the brain by altering the vagus signals to 
stimulate anti-inflammatory reflexes, release mediators 
such as acetylcholine, and interact with immune cells to 
reduce inflammation.47 Stimulation of the vagus nerve 
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reduces the co-localization of neutrophils and endothelial 
cell adhesion molecule (ICAM)-1 induced by LPS stimu-
lation, as well as decreasing gene expression of hypotha-
lamic inflammatory mediators (IL-6, CXCL-1, ICAM-1) 
and attenuating inflammatory responses in brain areas.85 

In the rat model of ischemic stroke, non-invasive vagus 
nerve stimulation was also observed to reduce BBB leak-
age in the lesion area, improve TJ levels, and reduce 
MMP-2/9 expression to protection the integrity of the 
BBB.86

Neurotransmitters
Neurotransmitters are neurochemicals that transmit neural 
signals between synapses. Intestinal microbes are symbio-
tic with the human body to secrete neurotransmitters 
(GABA, 5-HT, catecholamine, and histamine).87 Elevated 
enteric neurotransmitters may be involved in the patholo-
gical process of abnormal excitation of intestinal nerve 
cells. While being transported to the brain through the 
blood circulation and neural channels, they may also acti-
vate the vagal nerve chemoreceptor by paracrine, and 
finally stimulate anti-inflammatory reflex.47,88 By control-
ling the function of the BBB, neurotransmitters regulate 
the transmission of information between the periphery and 
the brain.89,90 Gut dysbiosis changes the production of 
5-HT, which is also called serotonin. Changes in the 
local concentration of 5-HT are transmitted to the brain 
along the gut-brain axis, affecting CNS signaling.91 The 
attenuation of pro-inflammatory factors and the elevation 
of tryptophan and the serotonergic precursor was observed 
in rats following treatment with bifidobacteria.92 The gut 
microbes can convert histidine to histamine. Histamine 
affects both anti-apoptotic proteins and autophagy proteins 
through the heat shock response pathway, and induces 
microglia anti-inflammation to reduce neuroinflammation 
as well as motor neuron death.93

Endocrine Pathway
Neuroendocrine-Hypothalamic-Pituitary-Adrenal 
Axis
The endocrine pathway allows the transfer of humoral 
factors to mediate bidirectional activity between the gut 
microbiota and the brain.94,95 Changes in the structure of 
the gut microbiota drive the pro-inflammatory state, which 
leads to increased permeability of the intestinal barrier.96 

LPS crosses the intestinal epithelial barrier and activates 
the neuroendocrine-hypothalamic-pituitary-adrenal axis.97 

As a result, mast cells are activated and corticotropin- 

releasing hormone (CRH) is released, resulting in 
increased permeability of the blood–brain barrier. CRH 
and adrenocorticotropic hormone (ACTH) can also 
directly activate microglia to release neuroinflammatory 
mediators and promote neuroinflammation in the brain.98 

Exposure of neonates to LPS results in increased ACTH 
and corticosterone production in response to stress and 
decreased brain glucocorticoid receptor (GR) density.99 

Bifidobacterium administration increases the diversity of 
intestinal microbes in maternal separation mice, which not 
only downregulates intestinal inflammation, but also 
weakens the excessive stress response of the hypothala-
mus-pituitary-adrenal axis, thereby affecting brain bio-
chemistry and behavior.100

Enterogenous Hormones
Intestinal microbes regulate the number and activity of 
enteroendocrine cells and the synthesis and secretion of 
biological hormones through local stimulation and produc-
tion of metabolites.101,102 Hormones such as leptin, ghre-
lin, and glucagon-like peptide 1 (GLP-1), which are 
synthesized in the intestines, regulate energy homeostasis 
and have protective effects on neurotoxicity induced by 
toxic microbial metabolites.103–105 In response to SCFAs, 
enteroendocrine cells release the neuropeptides GLP-1 and 
PYY to enhance satiety via the neuroendocrine 
pathway,106,107 while the expression is reduced in GF 
mice.108 GLP-1 is secreted by intestinal L cells and parti-
cipates in the regulation of a variety of central nervous 
system functions.109 Changes in GLP-1 content are related 
to changes in gut microbes. After traumatic brain injury 
(TBI), the number of bacterial species in the faecal 
microbes of mice decreased significantly.110 Clostridium 
butyricum (Cb) can produce a large amount of SCFA 
butyrate in the intestinal tract to stimulate the production 
of gastrointestinal hormone in the colon.111 After supple-
ment of Cb, reduction of inflammatory reaction and intest-
inal permeability, improvement of neurological 
dysfunction and BBB injury are observed in TBI mice, 
which is considered to be related to increased GLP-1 
secretion.112

Immune Pathway
Under normal circumstances, the intestinal microbiota and 
the host are in a symbiotic state. Following disruption of 
the intestinal flora, the microorganisms and their metabo-
lites interaction with the host immune system may 
occur.91,113 The changes in the composition of the gut 
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microbiota lead to increased intestinal permeability and 
stimulation of an immune response by the bacteria and 
their toxic metabolites. The activated immune cells and the 
secreted immune signal molecules then reach the BBB via 
the blood circulation. Systemic inflammation and elevated 
levels of circulating cytokines upregulate adhesion mole-
cules, chemokines, and MMPs in the BBB and the 
brain,114,115 and downregulate TJs to increase the perme-
ability of the BMEC layer.116 The disrupted BBB allows 
the entry of fibrin, which is deposited as insoluble fibrin 
and activates an immune response.117 Solutes and toxins 
enter the brain causing increased inflammation and recruit-
ment of leukocytes and macrophages,114 which stimulate 
the inflammatory signaling of the NVU.118 Thus, intracer-
ebral inflammation and neurodegeneration are exacerbated 
via a vicious cycle.

T Lymphocytes
Atarashi et al isolated bacterial strains that induced the 
proliferation of regulatory T cells (Tregs) from human 
stool samples, suggesting that the intestinal flora can acti-
vate Tregs.119 SCFAs also induce the production and dif-
ferentiation of Tregs by inhibiting HDAC activity.120,121 In 
multiple sclerosis, the species abundance of intestinal 
microbes decreased, with the depletion of Clostridia 
XIVa and IV Clusters.122 Intestinal dysbiosis leads to 
reduced the content of propionic acid in serum and 
feces,123 decreased Treg cells and increased helper 
T cells (Th1 and Th17) in peripheral blood.124 Activated 
T lymphocytes migrate from the periphery to the CNS, 
secreting cell adhesion molecules and chemokines, and 
leading to infiltration of the CNS by monocytes and 
macrophages. In this way, the blood–brain barrier is 
destroyed.125

Microglia
Microglia are innate immune cells of the CNS and play an 
role in immunological surveillance in the brain by partici-
pating in information transfer and clearing cell debris.125 

The gut microbiota plays an important role in regulating 
the maturation and function of microglia.76 GF mice 
showed immature gene expression profiles and morpholo-
gical differences, such as increased microglial cell volume 
and branching. After colonization with diverse microbial 
communities, GF mice showed a mature microglial phe-
notype similar to that of SPF mice. After treatment with 
antibiotics, microglia isolated from SPF mice showed 
a cell morphology similar to that in GF mice.76 

Following destruction of the BBB, microglia are activated 
by inflammatory substances and oxidative stress. The acti-
vated microglia exhibit an amoebic phenotype and mediate 
phagocytosis from a branching state.126 The microglia 
upregulate a variety of active proteins, including major 
histocompatibility complex (MHC) I, MHC II, and secrete 
multiple cytokines and chemokines. Activated microglia 
can be divided into pro-inflammatory (M1 type) and anti- 
inflammatory (M2 type) subtypes, which interact with 
infiltrating T lymphocytes to generate nociceptive or neu-
roprotective outcomes.127

Inflammatory Cytokines
An imbalance in the intestinal flora can lead to increased 
intestinal permeability. Bacterial cell wall antigens are 
recognized as patterns and combined to produce pro- 
inflammatory cytokines. Pro-inflammatory cytokines can 
be transported to tissues including the brain to initiate 
inflammatory processes,128,129 leading to extravasation of 
leukocytes, upregulation of vascular cell adhesion protein 
1 (VCAM-1), ICAM-1 and MMPs,130 and disruption of 
the BBB integrity. Increased BBB permeability allows the 
entry of pathogens and toxins into the brain. Astrocytes 
adopt a pro-inflammatory phenotype, releasing IL-1β, IL- 
6, TNF-α and prostaglandins,131 which influence crossing 
of the paracellular and transcellular barrier. In addition, the 
inflammatory cytokines TNF-α and IL-1β can also induce 
the expression of CXCL1 and CCL2,132 which participate 
in the recruitment of immune cells to the brain and further 
promote the inflammatory response.

Signaling Pathways
Wnt/β-Catenin Signaling Pathway
The Wnt signaling pathway is activated by binding of the 
Wnt protein to the N-terminal cysteine rich domain of the 
Frizzled (FZD) protein family receptors. The FZD protein 
family forms part of the seven-transmembrane GPCRs 
family,133 and is responsible for immobilizing Wnt pro-
teins on the cell surface. The signal is transmitted to the 
Disheveled (DVL) protein in the cell via the C-terminus of 
the FZD protein.134–137 DVL binds to the Axin/GSK3/ 
APC complex, thereby inhibiting the degradation of β- 
catenin (β-cat) in the cytoplasm. Following the increase 
in cytoplasmic levels, β-cat is transferred into the nucleus 
and acts as a transcription factor subunit to induce tran-
scription of the target gene, resulting in subsequent cellular 
responses. Activation of the canonical Wnt/β-catenin path-
way has been reported to control BBB differentiation and 
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maturation,138,139 and play a positive role in the develop-
ment of BBB by regulating TJ protein expression.138 

Inactivation of β-cat leads to a significant downregulation 
of claudin3, upregulation of plasma membrane vesicle- 
associated proteins and decomposition of the BBB.140

Nuclear Factor Kappa-B (NF-κB) Signaling Pathway
The NF-κB pathway is a proteinase-dependent receptor 
signaling pathway that is activated by microbial patho-
gens, LPS, cytokines, heat shock protein 90 (HSP90) and 
high mobility group proteins (HMGB1) in the blood. 
Normally, the NF-κB dimer binds to the Inhibitor of 
kappa-B (IκB) protein and remains in the cytoplasm. 
Stimulation of the upstream signals leads to activation of 
the IκB kinase (IKK) complex and IκB protein phosphor-
ylation. Following ubiquitination, the IκB protein is then 
targeted for proteasome-dependent degradation and NF-κB 
is released into the nucleus to activate downstream gene 
transcription. NF-κB regulates the expression of numerous 
genes such as cytokines (IL-1β, IL-6, TNF-α, GM-CSF), 
inflammatory chemokines (RANTES, MCP-1), and adhe-
sion molecules (VCAM-1, ICAM-1, E-selectin), and plays 
important roles in various aspects of inflammatory and 
innate immune responses.141,142 Activation of the NF-κB 
signaling pathway promotes glial cell activation143 and 
expression of ICAM-1, VCAM-1, IL-6, IL-8 and mono-
cyte chemoattractant protein 1 (MCP-1), which contribute 
to the destruction of the BBB.144

c-Jun N-Terminal Kinase (JNK) Signaling Pathway
The c-Jun N-terminal kinase, also known as stress-activated 
protein kinase, is a member of the mitogen-activated protein 
kinase (MAPK) family. The JNK signaling pathway is acti-
vated by various factors such as cytokines (IL-1, TNF-α), 
growth factors (EGF, PDGF), GPCRs, and stress, and is 
involved in cell proliferation, differentiation and apoptosis 
and other biological processes.145 The JNK protein is serine/ 
threonine protein kinase encoded by three genes, Jnk1, Jnk2 
and Jnk3, and located mainly in the cytoplasm.146 After stimu-
lation, JNKK1/MKK4/SEK1 or JNKK2/MKK7 mediates 
JNK activation by phosphorylation of Thr183 and Thr185.147 

The activated JNK is then transported into the nucleus, where it 
phosphorylates c-Jun and activates the apoptotic signaling 
pathway. Studies have shown that JNK inhibitors reduce 
MMP-9 expression, and increase the expression of TJ proteins 
(ZO-1, claudin-5, occludin), thereby preventing BBB 
destruction.148–150

Janus Kinase/Signal Transducers and Activators of 
Transcription (JAK/STAT) Signaling Pathway
JAK is a non-receptor tyrosine protein kinase (PTK) the 
substrate of which is STAT. JAK is rapidly recruited and 
activated by cell surface receptors (eg, interferons, inter-
leukins, and growth factors). Activated JAK phosphory-
lates the tyrosine residue of the receptor, providing 
a binding site for proteins containing an SH2 domain. 
STAT binds to the receptor and then is also phosphorylated 
by activated JAK. Activated STATs form dimers and enter 
the nucleus to induce transcription of the target gene. This 
signaling pathway is known as the JAK-STAT pathway. In 
an animal model of ischemia/reperfusion injury, Gong et al 
found that inhibition of JAK/STAT signaling activation 
increased TJ levels and reduced BBB permeability.151 

Chaudhuri et al also demonstrated that activated STAT1 
induces IL-6 expression and reduces the expression of 
claudin-5, ZO-1 and ZO-2 in BMEC. The STAT1 inhibitor 
fludarabine attenuates this downregulation of claudin-5 
and ZO-1 and blocks the migration of monocytes across 
the BBB.152

Toll-Like Receptors (TLRs) Signaling Pathway
TLRs, which were the first pattern-recognition receptors 
(PRRs) to be discovered, recognize pathogen-associated 
molecular patterns (PAMPs) on the surface of pathogenic 
microbes to initiate an innate immune response. TLRs are 
a type I transmembrane protein receptor composed of an 
intracellular segment, a transmembrane region, and an 
extracellular segment. The extracellular domain directly 
recognizes and binds to pathogens or their products, acti-
vating signaling pathways, and inducing expression of 
certain immune effector molecules. The TLR signaling 
pathway is divided into two main pathways: the myeloid 
differentiation factor 88 (MyD88)-dependent pathway and 
the MyD88-independent pathway. The MyD88-dependent 
pathway mediates NF-κB activation and produces cyto-
kines, while the MyD88-independent pathway induces 
the production of type I interferon (IFN).153 When the 
intestinal epithelium is damaged, LPS enters the blood, 
causing peripheral immune activation. TLR4, which is 
expressed in various cell types in the CNS,154 induces 
immune activation and neuroinflammation in the brain. 
The mutual interaction between TLR2 and TLR4 affects 
brain health.155 Mayerhofer et al demonstrated that the 
TLR2 agonist LTA increases the circulating levels of cyto-
kines (TNF-α, IL-6, IFN-γ, etc.) and cytokine mRNA 
expression in the brain in mice, and is also involved in 
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transcriptional downregulation of TJ proteins (claudin 5, 
occludin) in the brain.155 In a model that mimics the 
human BBB, Paradis et al showed that TLR4 increases 
monocyte migration and stimulates the migration of mono-
cytes across the BBB in response to CCL19.156

Nucleotide-Binding Oligomerization Domain-Like 
Receptor (NLR) Signaling Pathway
NLRs belong to the family of intracellular PRRs. The NLR 
proteins have a central oligomerization domain, NOD,157 

which plays an important role in self-oligomerization and 
activation. The C-terminus of the leucine-rich repeat is respon-
sible for sensing upstream ligand signals and modulating NLR 
activity.158–160 The N-terminus of the effector domain activates 
the downstream signaling pathway by interacting with down-
stream proteins.161 NLRs participate in the activation of multi-
ple signaling pathways involved in processes such as 
autophagy, signal transduction, and inflammatory body 
formation.162 This results in activation of the NF-κB signaling 
pathway, the production and release of pro-inflammatory cyto-
kines (interleukins, chemokines), and initiation of innate and 
adaptive immune responses. Using LPS and muramyl dipep-
tide (MDP) to induce the expression of inflammasomes 
(NOD2, NLRP3 and caspase-1) and cytokines in human cere-
bral ECs, Nagyőszi et al showed that NLRs and inflamma-
somes can be activated in brain ECs.163 Ge et al found that 
caspase-1 inhibitors prevent the apoptosis of damaged BMECs 
by inhibiting the expression of caspase-1 and pro- 
inflammatory cytokines, thereby reducing BBB damage after 
TBI.164

Potential Therapeutic Tools for 
Promotion and Restoration of BBB 
Integrity
Current studies have indicated that the gut microbiota and brain 
perform complex bidirectional activities via the gut-brain-axis. 
However, the mechanisms by which the intestinal microbes 
affects the BBB and brain health of the host remain to be 
clarified. Supplementation of probiotics, prebiotics, synbiotics, 
and transplantation of fecal microbes may reduce the entry of 
harmful metabolites into the systemic circulation, contributing 
to the integrity of the gut and BBB.165 Lactobacillus plantarum 
MTCC 9510 supplementation improved the intestinal and 
BBB integrity and reduced the abundance of 
Enterobacteriaceae.166 Patients receiving probiotic treatment 
exhibited reduced serum C-reactive protein levels, improved 
insulin metabolism, and increased in Mini-Mental State 
Examination (MMSE) scores.167,168 In addition, further studies 

of therapies targeting immune cells and peripheral cytokines 
that may also reduce inflammation-induced BBB hyperperme-
ability and prevent the entry of harmful substances into the 
brain are warranted.

Conclusions
The gut microbiota affects the activity of the brain through 
a variety of different mechanisms. The brain is influenced by 
the interaction of the gut microbiota with intestinal cells, 
metabolite production by microbes, secretion of gut hor-
mones, and changes in neural and immune signaling and 
blood circulation to the BBB. Further studies of the correla-
tion of the specific changes in the number and type of species 
in the gut microbiota and signaling via the gut-brain axis at 
the molecular level are required to fully elucidate the 
mechanism by which the microbes influence the brain. 
Therefore, corresponding strategies aimed at controlling the 
gut microbiota are implicated in the prevention and treatment 
of certain neurological and psychological illnesses.
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