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Abstract

Background: Transient ischemic attack (TIA) is usually defined as a neurologic ischemic disorder without permanent
cerebral infarction. Studies have showed that patients with TIA can have lasting cognitive functional impairment. Inherent
brain activity in the resting state is spatially organized in a set of specific coherent patterns named resting state networks
(RSNs), which epitomize the functional architecture of memory, language, attention, visual, auditory and somato-motor
networks. Here, we aimed to detect differences in RSNs between TIA patients and healthy controls (HCs).

Methods: Twenty one TIA patients suffered an ischemic event and 21 matched HCs were enrolled in the study. All subjects
were investigated using cognitive tests, psychiatric tests and functional magnetic resonance imaging (fMRI). Independent
component analysis (ICA) was adopted to acquire the eight brain RSNs. Then one-sample t-tests were calculated in each
group to gather the spatial maps of each RSNs, followed by second level analysis to investigate statistical differences on
RSNs between twenty one TIA patients and 21 controls. Furthermore, a correlation analysis was performed to explore the
relationship between functional connectivity (FC) and cognitive and psychiatric scales in TIA group.

Results: Compared with the controls, TIA patients exhibited both decreased and increased functional connectivity in default
mode network (DMN) and self-referential network (SRN), and decreased functional connectivity in dorsal attention network
(DAN), central-executive network (CEN), core network (CN), somato-motor network (SMN), visual network (VN) and auditory
network (AN). There was no correlation between neuropsychological scores and functional connectivity in regions of RSNs.

Conclusions: We observed selective impairments of RSN intrinsic FC in TIA patients, whose all eight RSNs had aberrant
functional connectivity. These changes indicate that TIA is a disease with widely abnormal brain networks. Our results might
put forward a novel way to look into neuro-pathophysiological mechanisms in TIA patients.
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Introduction

Transient ischemic attack (TIA) is usually defined as a

neurologic ischemic disorder without permanent cerebral infarc-

tion and lasting neurological deficits [1]. Yet, several evidences

have demonstrated that patients suffered a TIA can have lasting

cognitive impairment, despite the recovery of focal neurological

deficits [2]. In a meta-analysis of the risk of cerebral angiography

in patients with TIA or stroke, the risk of transient neurological

deficit was 3.0% and the risk of permanent neurological deficit was

0.7% [3]. There was a study reported that the deficits in executive

function, information processing speed, visual memory, abstrac-

tion, and visuoconstruction were found in these patients, which

may result from the disturbance of frontal functions [4]. And

another research also found that TIA patients with carotid artery

occlusion may develop persisting impairment in execution and

reaction [5]. However, all these studies have been used the

neuropsychological test scores to evaluate the cognitive abnormal-

ities in TIA patients, which may relatively be insensitive to mild

cognitive impairment and can not provide any information about

the mechanism of such cognitive decline.

Recent neuroimaging studies suggested that widespread resting

state brain networks were altered in many neurological and

psychiatric disorders [6,7]. Functional connectivity in resting state

has became a prevalent technique to study the brain networks

without specifically designed behavioral tasks. Functional connec-

tivity represents the temporal synchronization of neuronal

activities between different brain regions within a network, and

can be used to reflect the normal or abnormal state of the

corresponding functions [8,9]. Besides, several related studies have
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demonstrated that inherent brain activity in the resting state is

spatially organized in a set of specific coherent patterns [10,11].

These patterns were named resting state networks (RSNs), which

epitomize the functional architecture of memory networks,

language, attention, visual, auditory and somato-motor [12].

Despite that there is not a consensus yet, a number of consistent

RSNs, as detected by independent component analysis (ICA),

could be jointly reported in the same study [10].

So far, it is unclear about the changes in the functional

architecture of RSNs in TIA during resting state. Some prior

studies found cognitive impairment in TIA patients on attention,

memory, reaction and execution compared to healthy controls

[4,5]. It could be explained just in the light of abnormal regional

responses, but they may also reflect normal responses within a

dysfunctional network. In this case, researches on RSNs in TIA

patients would provide useful data to confirm the network

impairment hypothesis. In the present study, we evaluated the

topological differences of the RSNs between TIA patients and

healthy controls, using the method of ICA on fMRI data of resting

state. We mainly aim to verify 1) whether the functional

connectivity of any RSNs may be altered in TIA patients and 2)

if so, whether these changes are related to the measured clinical

scales. The results of this research may employ a new manner to

investigate the neurological and neurophysiological mechanisms of

TIA.

Methods

Subjects
The study protocol was approved by the institutional ethics

committee at Sichuan University. Written informed consent was

obtained before each subject’s participation in the trial. 21 TIAs

suffered an ischemic event were enrolled in the study. A TIA was

defined according to the World Health Organization recommen-

dations as any syndrome of focal neurologic dysfunction ascribable

to a vascular territory and lasted for less than 24 hours [13]. Those

with brain lesions on fluid attenuated inversion recovery (FLAIR)

images or T2-weighted images, leukoaraiosis or psychiatric

diseases were excluded. The control subjects were healthy

volunteers matched for age, sex, years of education, and with no

history of stroke/TIA or other neurological disorders. All subjects

had a complete blood count and metabolic profile testing, an

ultrasonic cardiogram, a Holter monitor and a carotid duplex

ultrasound examination.

Cognitive and Psychiatric Assessment
Cognitive and psychiatric assessments of these subjects were

conducted by two independent neuropsychologists. The Montreal

Cognitive Assessment (MoCA) was used for assessing the general

condition of cognitive function, which is a useful brief tool to assess

cognition in TIA patients with mild cognitive impairment(MCI)

[14]. The Auditory Verbal Memory Test (AVMT, Chinese

version based on California Verbal Learning test) was for the

verbal memory and the backward Digital Span Test (DST-

backward) was for working memory. The Hamilton Anxiety

(HARS) and Depression (HDRS) Rating Scales were also

administered to rate the psychiatric characteristics in all subjects.

MRI Acquisition
All TIA patients experienced symptoms with acute onset of

paralysis or numbness which less than 1 month before the MRI

examination. And the median duration of symptoms in TIA

patients was 48 min (ranging from 15 min to 1.5 h).Imaging was

performed on a 3 Tesla Trio scanner (Siemens AG). The resting-

state fMRI was obtained by using an echo planar imaging

sequence with following protocols: TR = 2000 ms, TE = 30 ms,

field of view, 2406240 mm2, acquisition matrix, 64664, and slice

thickness, 5 mm, voxel size = 3.7563.7565 mm. This acquisition

sequence generated 190 volumes in 6 min and 24 s. During the

fMRI scanning, all subjects were informed to keep still with their

eyes closed, to think of nothing in particular and remain awake. A

3D time-of-flight MR angiography (MRA) was performed to

visualize the cerebral vasculature of the subjects and 3D high-

resolution T1-, T2-weighted. High-resolution anatomical images

of the whole brain were acquired with a volumetric three-

dimensional spoiled gradient recall sequence to detect clinically

silent lesions. (TR = 1900 ms, TE = 2.28 ms, 2406240 mm2,

matrix, 2566256,whole head: 176 sagittal slice, slice thickness,

1.0 mm with no gap, voxel size = 0.960.961 mm).

Data Processing and Statistical Analysis
Data preprocessing. Data preprocessing was carried out by

using the SPM8 package (http://www.fil.ion.ucl.ac.uk/spm). The

first ten volumes were discarded because of instability of the initial

MRI signal. The remaining 180 volumes were first carried out

slice timing correction and slice realignment for head motion

correction. No subject’s translational or rotational parameters in a

data set exceeded 61 mm or 61u. Therefore, no datasets were

excluded from the analysis. The functional images were realigned

with the corresponding T1-volume and warped into a standard

stereotaxic space at a resolution of 36363 mm3, using the

Montreal Neurological Institute (MNI) echo-planar imaging

template in SPM8. Then, they were spatially smoothed by

convolution with an isotropic Gaussian kernel (FWHM = 8 mm).

ICA and identification of RSNs. Group spatial ICA was

performed using the GIFT software (http://icatb.sourceforge.net/,

version 1.3e) [15]. For the specific process, please see Methods S1.

Second-level analysis of the RSNs. The ICs in line with

eight RSNs were extracted from all subjects. One-sample t-tests

were then calculated in each group to gather the spatial maps of

each RSNs. Thresholds were set at p,0.001 (FDR corrected) [16].

To compare the changes of the RSNs between TIA and HC, two-

sample t-tests were calculated (p,0.001, FDR corrected). The

group comparisons were masked to the voxels within correspond-

ing RSNs. The mask was created by combining the regions of

corresponding RSNs in both TIA and HC, which were obtained

from one-sample t-tests results (p,0.001, FDR corrected) [17].

Correlation analyses. A Pearson correlation analysis was

performed to explore the relationship between Z values in network

maps and neuropsychological scores. The voxels in corresponding

RSNs showing significantly different Z values between TIA and

HC groups were extracted as a mask, which consists of several

regions of interest (ROIs). These ROIs were applied to all subjects.

The mean Z values of each individual within these ROIs were

correlated to the neuropsychological scores and then thresholded

at a significance level of p,0.05.

Results

Subjects’ Characteristics
Demographic profiles and risk factors of both groups are

presented in Table 1. Patients with TIA showed only significant

differences compared with normal controls in carotid artery

stenosis (P = 0.006). The results of the cognitive and psychiatric

tests are summarized in Table 2. The TIA patients tended to have

poorer scores in MoCA, AVMT, and DST-backward but without

statistical significant difference. There were no significant differ-

ences in HARS and HDRS between two groups.

Brain Networks in Transient Ischemic Attack
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Spatial Pattern of RSNs in each Group
The one-sample t-tests revealed a typically spatial pattern in

each RSN in both TIA and HC group. Our results for IC

classification and spatial pattern were consistent with the results of

previous studies [10,18], which are illustrated in Fig. 1.

Aberrant RSNs in Patients with TIA
The two-sample t-tests revealed the differences in functional

connectivity between the two groups (Fig. 2; Table 3). Compared

to HC, TIA patients illustrated both increased and decreased

(p,0.001, FDR corrected) functional connectivity in the DMN

and SRN, and TIA patients exhibited specifically decreased

(p,0.001, FDR corrected) functional connectivity in the DAN,

CEN, CN, SMN, VN and the AN(clustering extent threshold, 15

voxels). Table 3 summarizes for the abnormal functional

connectivity brain regions of each RSN.

However, no significant correlation was found between brain

regions with aberrant functional connectivity and neuropsycho-

logical scores.

Discussion

In the present study, we mainly focused on the confirmation of

whether the intrinsic functional connectivity of RSNs was altered

or not in patients with TIA and on detecting whether there was a

link between these changes and the disease severity.

Previous studies have demonstrated that the most common

cause of TIA is atherosclerosis, which usually occurs in one of the

internal carotid arteries [19]. Meanwhile, some other studies have

suggested that the occlusion of internal carotid arteries may be a

major risk factor for cognitive impairment [20,21]. It’s reported

that individuals who experienced a TIA have some changes in

cognitive functions, such as attention, working memory, and

learning and memory, which rely on DAN, SRN, CN and DMN.

We also chose other RSNs (including VN, AN, SMN and CEN) in

our study. Different regions belonging to these networks have

already showed abnormal brain activations in TIA patients as

compared with HC. We found that functional connectivity was

significantly different among eight RSNs. Both increased and

decreased functional connectivity was found in the DMN and the

SRN and decreased functional connectivity was found in all other

networks in TIA patients. These results were similar to the

literature on differential activations of specific cerebral regions in

nondisabling transient ischemic attacks (TIA) and minor strokes

patients as compared with healthy controls.

The default mode network (DMN) is engaged in maintaining

the baseline brain activities associated with cognitions of pisodic

memory, and environmental monitoring [22]. As we know, DMN

exhibited high levels of activity during resting state and decreased

the activity for processes of externally oriented mental activity,

which was induced by a wide range of sensory and cognitive tasks

[23]. Our findings indicated that the left middle temporal gyrus,

inferior temporal gyrus and right superior frontal gyrus showed

decreased functional connectivity in TIA patients as compared

with HC. Previous functional neuroimaging studies have suggested

that the middle temporal gyrus and inferior temporal gyrus are

involved in several cognitive processes, including language and

semantic memory processing, as well as visual perception [24,25].

Furthermore, the superior frontal gyrus (SFG) is thought to

contribute to higher cognitive functions and particularly to

working memory [26,27]. Together, these may suggest that the

dysfunction of middle temporal gyrus and superior frontal gyrus

could be resulted from long-term existence of various ischemic

risks and was related to the impairment of cognitive function of

TIA patients.

In the present study, the aberrant functional connectivity of

DMN in TIA patients was also represented by the increased

functional connectivity in the left medial frontal gyrus, left

posterior cingulate/precuneus and right angular gyrus. Recent

neuroimaging studies have shown that the posterior cingulate

cortex (PCC), ventral medial prefrontal cortex (vmPFC) and the

bilateral angular gyrus were more active during resting state than

during cognitive tasks [28,29]. In addition, the angular gyrus and

posterior cingulate/precuneus were significantly activated during

memory retrieval [30]. What’s more, the mPFC is supposed to

provide information from prior experiences in the form of

memories during the construction of self-relevant mental simula-

tion. These findings have suggested that medial prefrontal cortex

played an important role in the prominent cognitive behavioral

models of TIA. It has been showed that DMN played a critical

role in social cognition and particularly in the relationship between

the self and the social environment in TIA patients.

The SRN has already shown special physiological characteris-

tics with a high level of neural activity during resting conditions

Table 1. Demographic characteristics and risk factors of
participants.

Characteristics
TIA Patients
(n = 21) HC (n = 21) P value

Age, mean (SD) 50.1(6.5) 48.2(7.9) 0.39

Sex, males (%) 15(0.71) 13(0.62) 0.51

Education, mean years (SD) 10.4(2.1) 10.5(2.8) 0.95

Risk factors (%)

Hypertension 8(0.38) 5(0.24) 0.32

Diabetes 3(0.14) 1(0.05) 0.29

Hyperlipidemia 7(0.33) 6(0.28) 0.74

Atrial Fibrillation 0 0

Previous stroke 0 0

Smoking 5(0.24) 2(0.09) 0.21

Carotid artery stenosis 11(0.52) 2(0.09) 0.006

Intracranial arteries stenosis 2(0.09) 0(0) 0.49

Abbreviations: TIA, Transient ischemic attack; HC, Healthy controls; SD, standard
deviation.
doi:10.1371/journal.pone.0071009.t001

Table 2. Cognitive and psychiatric tests of participants.

TIA Patients
(n = 21)

Controls
(n = 21) P value

MoCA, mean (SD) 24.5(3.5) 26.2(1.6) 0.053

AVMT, mean (SD) 47.9(15.8) 55.7(19.8) 0.065

DST-backward, mean (SD) 5.1(1.9) 5.7(3.4) 0.060

HARS, mean (SD) 9.3(2.7) 8.3(2.3) 0.224

HDRS, mean (SD) 6.5(2.1) 5.6(1.7) 0.142

Abbreviations: MoCA, Montreal Cognitive Assessment; AVMT, Auditory Verbal
Memory Test; DST-backward, Backward Digital Span Test; HARS, Hamilton
Anxiety Rating Scales; HDRS, Hamilton Depression Rating Scales; SD, standard
deviation.
doi:10.1371/journal.pone.0071009.t002
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[18,31]. In this study, patients with TIA showed significant

decreased functional connectivity in left medial prefrontal cortex,

and increased functional connectivity in left superior frontal gyrus

in SRN compared to HC. There were several studies indicating

that monitoring-related medial prefrontal cortex activity was

served as a signal that was engaged regulatory processes in the

lateral prefrontal cortex to implement performance adjustments

[32]. Thus, it may hint that the reduction of functional

connectivity of the medial prefrontal cortex in SRN may affect

the self-related activity of TIA patients. In fMRI experiments,

Goldberg et al. have found evidence that the superior frontal gyrus

is involved in self-awareness, in coordination with the action of the

sensory system [33]. According to the definition of TIA, the

symptoms of a TIA are short-lived and usually last a few seconds

to a few minutes and most symptoms disappear within 60 minutes

[1]. This may indicate that the increase of functional connectivity

of the superior frontal gyrus regulated the recovery process of TIA

patients after onset of illness.

DAN is thought to mediate goal-directed top-down processing.

It is also involved in many higher-order cognitive tasks [34].

Disruption of interhemispheric FC was reported to significantly

correlate with abnormal detection of visual stimuli in the attention

network in stroke patients [35], who share the similar pathophys-

iology with TIAs. We found that the right inferior parietal lobule

(IPL) and left superior parietal lobule presented the decreased

functional connectivity within DAN in TIA patients. We reviewed

evidences which showed that the right IPL played an important

role in two different aspects of attention: maintaining attentive

control on current task goals [36,37] as well as responding to

salient new information or alerting stimuli in the environment

[38,39]. Therefore, damage to the right IPL may lead to deficits in

both maintaining attention and responding to salient events in

TIA patients. Previous study suggested that the superior parietal

lobe was critical for sensorimotor integration by maintaining an

internal representation of the body’s state [40]. Our findings may

reflect that the two brain regions within DAN play a role in

cognitive regulation and functional maintenance in TIA patients.

A central-executive network (CEN) is responsible for high-level

cognitive functions [41]. The CEN plays a critical role in the active

maintenance and manipulation of information in working

memory, and in judgment and decision making in the context of

goal directed behavior [42].We knew that TIA patients may

develop persisting impairment in execution, visual attention

function and working memory. However, the relation between

brain regions belonging to CEN and behavioral expression of TIA

patients need to be further studied. Besides, our study found the

Figure 1. Cortical representation of the eight group-level RSNs in HC and in TIA groups. Lateral and medial views of left hemisphere and
lateral and medial views of right hemisphere for each groups. The color scale represents T values in each RSN (maps thresholded at p,0.001, FDR
corrected).
doi:10.1371/journal.pone.0071009.g001
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decreased functional connectivity of the anterior cingulate cortex

in CEN in TIA patients compared with HC. It has been suggested

that the top-down attention control is mediated by the anterior

cingulate cortex (ACC) [43,44]. The ACC is connected with the

prefrontal cortex and parietal cortex as well as the motor system

and the frontal eye fields [45], which makes it a central station for

processing top-down and bottom-up stimuli and assigning

appropriate control to other areas in the brain [46]. To sum up,

these findings may thus reflect the functional impairment of CEN

in the cognitive control of TIA.

Some research found that core network (CN) was not only

associated with task control function [47,48], but also involved in

‘‘salience’’ processing during resting state [49]. Another important

role of CN is to switch between the DMN and task-related

networks in cognitive control [50]. We found decreased functional

connectivity in left superior frontal gyrus and right medial frontal

gyrus. Previous researches have suggested that the superior frontal

gyrus and medial frontal gyrus may form part of an attention or

executive control system [47,51], and TIA patients also have the

impairment in these functions. This implied that these brain

regions within CN played a significant role in cognitive control of

TIA patients.

In general, the perceptual systems consisted of the visual,

auditory and somato-motor networks, which can be considered at

the lower-order of the cognitive processing hierarchy. Our results

indicated that TIA patients presented a certain decreased

functional connectivity among SMN (left postcentral gyrus), VN

(bilateral middle occipital gyrus) and AN (right superior temporal

gyrus) compared with HC. What’s more, some previous researches

have demonstrated the functions of these brain regions: the lateral

postcentral gyrus was involved in somatosensory processing from

the heterolateral side of the body [52,53]; the middle occipital

gyrus was involved in visual function [54,55], memory [56,57],

language [58,59] and some other functions [60,61]; the superior

Figure 2. 3D renders of a two-sample t-test each RSNs in the TIA vs. HC (p,0.001, FDR corrected). The warm and cold colors indicate the
brain regions with significantly increased and decreased functional connectivity in TIA, respectively.
doi:10.1371/journal.pone.0071009.g002
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temporal gyrus was involved in auditory processing, but also has

been implicated as a critical structure in social cognition [62].

Furthermore, known from clinical history and the previous studies,

the most frequent symptoms of TIA patients include temporary

loss of vision, difficulty speaking, weakness on one side of the body,

and numbness or tingling, usually on one side of the body [63].

Therefore, the aberrant functional connectivity of SMN, VN and

AN found in our study may be associated with perceptual

impairments in TIA patients.

Unfortunately, the study failed to demonstrate significant

correlation between RSNs and neuropsychological scores. The

possible reason might be that the patients we recruited were young

and only had a short disease history. Therefore, function alteration

may not be significantly enough to be explored by traditional

psychological scales used in our study. Actually, this was in line

with the hypothesis that there was a long presymptomatic period

in the development of cognitive impairment and psychiatric

disturbances after the ischemic attack [64].

Several limitations of the current study are deserved to be

mentioned. First, the sample size for TIA patients is small, with

variations in the age and disease on-set time, which might affect

the statistical analysis and results of this study. In addition, the ICA

method is not able to provide information on the functional

connectivity in all brain regions, for instance, the limbic system

[65]. Furthermore, the neurophysiological meaning of the RSNs

still remains unclear. Finally, although a lot of literature revealed

that spontaneous brain activity [66] is organized into RSNs

[18,67], so far, the RSNs hasn’t provide a complete description of

brain functional architecture.

Conclusions
In conclusion, we observed selective impairments of RSN

intrinsic FC in TIA patients, whose all eight RSNs had aberrant

functional connectivity. Both increased and decreased functional

connectivity was found in the DMN and SRN, and decreased

functional connectivity was exhibited in all other RSNs in TIA

patients compared to HC. Our fMRI study might potentially put

forward a novel way to understand the neuro-pathophysiological

mechanism of cognition function changes in TIA.
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