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ABSTRACT Fungal spores germinate and undergo vegetative growth, leading to ei-
ther asexual or sexual reproductive dispersal. Previous research has indicated that
among developmental regulatory genes, expression is conserved across nutritional
environments, whereas pathways for carbon and nitrogen metabolism appear highly
responsive—perhaps to accommodate differential nutritive processing. To compre-
hensively investigate conidial germination and the adaptive life history decision-
making underlying these two modes of reproduction, we profiled transcription of
Neurospora crassa germinating on two media: synthetic Bird medium, designed to
promote asexual reproduction; and a natural maple sap medium, on which both
asexual reproduction and sexual reproduction manifest. A later start to germination
but faster development was observed on synthetic medium. Metabolic genes exhib-
ited altered expression in response to nutrients—at least 34% of the genes in the
genome were significantly downregulated during the first two stages of conidial
germination on synthetic medium. Knockouts of genes exhibiting differential expres-
sion across development altered germination and growth rates, as well as in one
case causing abnormal germination. A consensus Bayesian network of these genes
indicated especially tight integration of environmental sensing, asexual and sexual
development, and nitrogen metabolism on a natural medium, suggesting that in
natural environments, a more dynamic and tentative balance of asexual and sexual
development may be typical of N. crassa colonies.

IMPORTANCE One of the most remarkable successes of life is its ability to flourish
in response to temporally and spatially varying environments. Fungi occupy diverse
ecosystems, and their sensitivity to these environmental changes often drives major
fungal life history decisions, including the major switch from vegetative growth to
asexual or sexual reproduction. Spore germination comprises the first and simplest
stage of vegetative growth. We examined the dependence of this early life history
on the nutritional environment using genome-wide transcriptomics. We demon-
strated that for developmental regulatory genes, expression was generally con-
served across nutritional environments, whereas metabolic gene expression was
highly labile. The level of activation of developmental genes did depend on cur-
rent nutrient conditions, as did the modularity of metabolic and developmental
response network interactions. This knowledge is critical to the development of
future technologies that could manipulate fungal growth for medical, agricul-
tural, or industrial purposes.
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Fungi exhibit a diversity of morphology and natural history characteristics and can be
found in nearly every environment inhabited by living organisms. Their dispersal via

spores—and, in some cases, via hyphal fragments—spawns new opportunities over
long distances but also creates unexpected environmental challenges for the initial
growth of individual fungi (1–4). Many ascomycetes can produce resistant meiotic
spores (ascospores) via sexual reproduction and/or multiple bouts of large numbers of
mitotic spores (conidia; 5) via asexual reproduction. Conidia usually lack the thick cell
walls or dark pigments that provide resistance against radiation or drought conditions
that are characteristic of ascospores. In the typical life cycle of ascomycete fungi,
vegetative growth is an adaptive mechanism functioning to maintain asexual repro-
duction via rapid hyphal growth and production of conidia versus reproducing sexually
via production of resistant meiotic spores that survive harsh changes in the environ-
ment. Insight into the mechanisms of responses to environmental signals in fungi
requires illumination of the genetics and biology of conidial germination— especially
illumination of the mechanisms of response that are active during early vegetative
growth leading to asexual and/or sexual reproduction.

Neurospora crassa, a model filamentous fungus that flourishes in postfire environ-
ments, has long been studied to understand fungal biology and ecology (6, 7).
Morphological development during asexual growth in N. crassa has been characterized
mainly via gene-by-gene study of specific developmental stages, and genes have been
identified that are responsive to external environmental as well as internal environ-
mental factors during N. crassa growth (8–17). Recently, methods of computational
annotation of metabolic pathways associated with the N. crassa genome have im-
proved (8, 18–21), incorporating the extensive history of biochemical genetics per-
formed on N. crassa metabolism.

Regulation in response to properties of the environment plays a key role in the
fundamental life cycle fork governed by the classic autoregulatory asexual-sexual
switch (9, 10). As a general rule for fungi, nitrogen starvation inhibits conidiation and
induces sexual development, resulting in slow, robust dispersal, and carbon starvation
leads to conidiation and sexual development (11, 12). Nitrogen starvation has long
been known to induce or upregulate synthesis of “sexual development genes” (sdv),
most of which are responsive to mating-type expression, suggesting that fixed nitrogen
is one of the key environmental regulators in N. crassa sexual development (13). The
effects of carbon starvation on induction of reproduction are also associated with the
specific downregulation of expression of a large set of genes (termed “carbon catab-
olite repression”) (14). Abundant carbon and nitrogen, in contrast, promote asexual
growth, resulting in rapid dispersal.

There have been few genetics-of-development studies that have investigated the
early stages in conidial germination in N. crassa and none that compared the effects of
carbon supply and nitrogen supply (15–17, 20, 22). Conidial germination is rapid and
dramatic, constituting a suite of morphological changes that must represent a chal-
lenge to regulation in the face of the sparsity of nutrients within the environments that
conidia of N. crassa often encounter. Most studies on conidial germination of N. crassa
have used standard artificial media, such as Vogel’s medium (23) and Bird medium (24),
which contain an abundance of carbon and nitrogen sources that repress sexual
development. With results determined on artificial media available as a basis for
comparison, it is becoming increasingly feasible to design experiments that illuminate
fungal ecology (25). Conclusions based on analysis of cultures on artificial media need
to be investigated with nutritional resources approximating the natural environments
in which the fungus grows and for which metabolic and developmental pathways have
been naturally selected. These natural environments likely contain low concentrations
of simple carbohydrates and organic acids. Using artificial Bird medium (BM), which
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promotes asexual development, as well as a more natural medium, i.e., maple-sap
medium (MSM), which supports both asexual and sexual reproduction, we investigated
the synchronous metabolic and developmental processes that occur during the ger-
mination of N. crassa conidia.

RESULTS

We collected and compared genome-wide gene expression data associated with
fine-scaled morphological differentiation during conidial germination in N. crassa cul-
tured on artificial BM and natural MSM. Developmental differences between conidial
germination on BM and conidial germination of MSM were quantified, and differential
regulation in gene expression was observed for genes affecting histones and genomic
methylation, hyphal development, transcription factors (TFs), and responses to envi-
ronmental signals. The expression profiles of these genes enabled reconstruction and
comparison of regulatory networks and metabolic pathways relevant to development
on BM and MSM. Expression profiling led to the identification of genes with knockout
(KO) phenotypes relevant to conidial germination and demonstrated differential ex-
pression of predicted isoforms in N. crassa, including isoforms of key regulators in the
asexual-sexual switch.

Conidial germination on different media. Nearly 50% of wild-type conidia ger-
minated within 3 h after plating onto BM and MSM, which are similar in carbohydrate
content but dissimilar in nitrogen and mineral content (Fig. 1; see also Table S1 in the
supplemental material). Nitrogen content in MSM is too low to be detectable (Table S1),
and it is known that low-nitrogen conditions promote sexual development in N. crassa
(26). Germination commenced earlier on MSM (20% germination within the first 60 min)
when compared to BM (almost no germination within the first 60 min). In contrast,
extension of the germ tube and hyphal development were slower on MSM than on BM
(Fig. 2). In plate tests, more conidia failed to germinate on MSM (6/60 � 10%) than on
BM (3/60 � 5%), but the difference was not statistically significant (Fisher’s exact test,
P � 0.4906). Cultures on MSM started to produce protoperithecia and then perithecia
within 10 days after inoculation and yet did so at a visibly lower density than is typically

A B C D

E F G H

FIG 1 N. crassa asexual spores cultured on BM (A to D) and MSM (E to H) at four distinctive morphological stages of germination, corresponding to (A and
E) fresh conidia, (B and F) polar growth, (C and G) doubling of the longest axis, and (D and H) the time of the first hyphal branching. Arrows indicate first hyphal
branches. Scale bar, 5 �m.
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observed on synthetic crossing medium (SCM; 27), a low-nitrogen medium frequently
used to induce sexual development in N. crassa (see Fig. S1 in the supplemental
material).

Sequencing mRNA during germination of conidia. Culturing on both BM and
MSM, we sampled RNAs from four conidial germination stages: fresh conidia, first polar
growth of the germ tube, doubling of the germ tube length, and appearance of the first
branch. A total of 40.6 to 94.5 million 76-bp paired-end reads were obtained from each
sample (GEO accession no. GSE101412). Levels of total reads and mapped reads from
RNA extracted from cultures on BM were slightly higher (6.8% and 7.3%, respectively,
on average) than those from cultures on MSM (Table S2A). The average coverage
depths were calculated following Illumina guidelines (C � LN/G [C, coverage; G, haploid
genome length; L, read length; N, number of reads]), yielding 70� to 120� coverage,
and the rate at which reads mapped to the genome ranged from 93.7% to 96.6%
(Table S2A). The number of genes for which at least one read mapped to the gene for
at least one time point on BM or MSM ranged from 9,167 to 9,202 (Table S2B and C).

Transcriptomics profiles during germination of conidia under different nutri-
ent conditions. Two major expression patterns— downregulation across all four stages
and upregulation across stages after the second stage of germ tube appearance— can
be recognized during conidial germination on BM. In contrast, expression patterns on
MSM were more multifarious, with many genes upregulated from germination across
stages until first branching event (Table S2B and C). Between the initial two stages
(fresh conidia and polar growth), a large portion (1,818 genes) of the genome was
significantly (Bonferroni adjusted P � 0.01) downregulated, and these genes are asso-
ciated with regulation of transcription, DNA binding RNA polymerase II transcription
factor activities, and zinc ion binding (Table S2B and C). Significant functional enrich-
ment (P � 0.05) was identified for signaling pathways, cell cycle control, and carbon
and nitrogen metabolism as well as for biosynthesis of amino acids both between BM
and MSM cultures and across different morphological stages (Table S3A). Interestingly,
mitogen-activated protein kinase (MAPK) signaling pathways were enriched at the last
conidial germination stage but showed contrasting regulation patterns between BM
and MSM.
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FIG 2 Temporal analysis of growth and development of conidia of N. crassa cultured on BM and MSM. Plated conidia were examined
at six time points across the process, enabling sector counts that revealed the (A) proportions and (B) stacked proportions of conidia
at serial stages of germination cultured on BM and the (C) proportions and (D) stacked proportions of conidia at serial stages of
germination cultured on MSM. Measurements for conidia were color-coded at each stage of germination, including those corre-
sponding to fresh conidia (blue), polar growth (red), doubling of the longest axis (green), and first hyphal branching (purple). An
asterisk (*) indicates time points when RNAs were sampled. For staging, germination of 20 randomly selected conidia per plate was
monitored; the error bars delineate 1 standard deviation of the mean for three such plates.
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Expression of genes in hyphal development characterized for conidial germi-
nation. Nutrition impacts during conidial germination were genome wide, affecting
genes involved in development regulation (Fig. 3; see also Fig. S2 and S3). MAPK
regulatory networks are known to regulate entry into serial morphological develop-
ment stages as well as to activate the switch from the asexual phase to the sexual phase
of the life cycle (28–31). For 59 genes that were able to be mapped to the MAPK
signaling pathway of yeast (KEGG pathways) (32), expression exhibited much greater
changes on MSM than on BM (Table S3; see also Table S4). Most (12/15) MAPK pathway
genes expressed in response to starvation were significantly upregulated (P � 0.01) on
MSM (Fig. S2).

Expression of genes associated with hyphal growth exhibited different patterns
between BM and MSM (Fig. 4; see also Fig. S3). Genes associated with carotenoid
synthesis were upregulated 2-fold to 7-fold on MSM but experienced nearly a 2-h delay
in upregulation on BM (Fig. 4A and B). cot genes—which have been shown to confer
colonial-temperature-sensitive (cot) phenotypes (33–37)—were first downregulated
and then upregulated during germing tube extension on BM. These genes, excluding
cot-3, were generally upregulated throughout the process for MSM cultures (Fig. 4C and
D). Similar contrasts in expression levels between BM and MSM were also observed for
genes related to polarity establishment, chitin synthesis, septation, and budding
(Fig. S3A to E). Expression of genes required for sexual development was generally
downregulated across stages on BM but was upregulated across stages on MSM (Fig. 4E
and F).

Expression of genes in metabolic pathways characterized for conidial germi-
nation. G-proteins and coupled receptors (gpr)—which are known to be critical regu-
lators of fungal responses to carbon and nitrogen nutrition and major regulators of N.
crassa development (38–41)—were differentially expressed. Genes gna-1 and gpr-4—
which regulate the responses to carbon sources (42)—were highly coordinately down-
regulated in cultures on BM but showed contrasting results in cultures on MSM, upon
which gna-1 was upregulated (Fig. 5A). Expression levels of gpr-5 and gpr-6 and the
corresponding potentially coupled gene gna-3 were highly coordinately downregu-
lated on nitrogen-rich BM (Fig. 5B). Upregulated expression of gpr-6 and gna-3 in MSM
with extremely low levels of nitrogen invites further investigation of their roles as
potential nitrogen sensors in N. crassa.

Both nitrogen resources and carbon resources are critical for hyphal growth. Con-
sistent with our observation of morphological development differences between BM
cultures and MSM cultures, genes regulating polar growth of hyphae exhibited homo-
geneous regulation under both growth conditions (Fig. S3G). However, the nature of
nitrogen metabolism regulation was complex. On nitrogen-deficient MSM, 14 of 17
genes for which homologs are annotated in yeast during nitrogen metabolism (KEGG
pathways) were dramatically upregulated, including 51-fold, 81-fold, and 147-fold
increases for nitrate transporter-10 (nit-10), NCU02361 (formamidase), and nit-6, respec-
tively (Fig. S3H). As sucrose is the dominant carbon source in MSM, we observed stably
high expression of the invertase gene (inv; NCU04265) during the first two stages of
conidial germination on MSM but abrupt downregulation in expression of this gene
on BM.

Expression of transcription factors in conidial germination. Two expression
patterns were commonly observed for TFs in culture on BM; 48 TFs were steadily
downregulated, exhibiting lowest expression at the last stage of development, and 36
exhibited their lowest expression at the second stage (polar growth). Expression of
these TFs showed various expression patterns for MSM cultures. The TFs regulating
both basal hyphal growth and asexual development showed similar downregulated
expression patterns in RNAs obtained from cultures grown under both nutrient con-
ditions. The exceptional transcription factors were tah-1 (tall aerial hyphae) and tah-4,
which were both significantly upregulated in both BM and MSM cultures. Among the
100 TFs profiled (Table S2B and C), some regulate both asexual development and sexual
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FIG 3 Effects of media on conidial germination are genome-wide, and functional groups differentially
respond to BM and MSM during the process. Examples include (A) histone activities and genomic
methylation, (B) hyphal development genes annotated as functioning in conidial germination, (C)
transcription factors, (D) early light-responsive genes, and (E) late light-responsive genes. Genes within
each panel are placed in a single order within each stage, with a diminishing color-shade corresponding
to that order. Bars indicate ratios (BM/SM) of gene expression change from stage 1 to stage 2, stage 2
to stage 3, and stage 3 to stage 4.
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development (30, 43–45). Expression of sub-1, a key regulator in the asexual-sexual
switch (45, 46), exhibited contrasting patterns of regulation between nutrient condi-
tions: significant upregulation across stages on sexual development inducing MSM and
significant downregulation across stages on nitrogen-rich BM.

Expression of genes in response to environmental signals during conidial
germination. Many genes that exhibit early light-regulated responses (ELRGs [47])
were upregulated from germination to the first hyphal branching on MSM but were
downregulated during the same stages on BM (Fig. S4A). For example, NCU01258
(cyn-1) encodes cyanate lyase in nitrogen metabolism and exhibited contrasting ex-
pression patterns between the cultures on nitrogen-rich BM and cultures on nitrogen-
poor MSM. Upregulation of cyn-1 indicates that the fungus had turned to complex
compounds such as cyanate as an alternative nitrogen supply in MSM. Late light-
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regulated genes (LLRGs [47]) were generally upregulated during germ tube extension
and hyphal growth (Fig. S4B). However, there was a dramatic downregulation of these
genes before the appearance of germ tubes in conidia germinated on BM, including a
nearly 70-fold drop for the inv gene (invertase; NCU04265), which catalyzes degradation
of sucrose to glucose.

Coordinated metabolic and developmental networks during conidial germina-
tion. Key genes annotated in nitrogen metabolism, conidial germination, and the
asexual-sexual switch were investigated for their associations in Bayesian coexpression
networks (Fig. 6; see also Table S3B). Associations among genes associated with asexual
development, including conidiation genes con-8 and con-13 and genes cot-2, cot-1, and
cot-5 regulating asexual growth and development, were conserved between cultures
on BM and MSM. Associations among genes playing roles in the initiation of sexual
development, including light sensor genes nop-1 and phy-2 as well as genes per-1, pp-1,
sd, and tnr-1, were also conserved between the two cultural conditions. For cultures on
nitrogen-rich BM, however, the asexual development subnetwork (cot genes) and
nitrogen transport subnetwork (nit genes) were tightly modular. For cultures grown
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on nitrogen-poor MSM, which facilitates entry into both asexual development and
sexual development, the asexual and sexual initiation modules were distinct but
appeared less hierarchically organized, and the nitrogen metabolism genes were
integrated with the developmental pathways much more extensively than with each
other. For cultures on BM, the sexual development initiation subnetwork was posi-
tioned downstream, perhaps being responsive to expression regulation within the
asexual development subnetwork—specifically, with respect to nitrogen metabolism.
For cultures on MSM, the sexual development initiation subnetwork was located further
upstream and was more integral to nitrogen transporter expression than on BM.

Alternative splicing. By analysis of our paired-end sequencing data, we differen-
tiated among the expression results determined for isoforms of 898 predominantly
metabolic genes that have been annotated with at least two isoforms (http://genome
.jgi.doe.gov/Neucr2/) (Table S4A). Isoforms of 21 genes exhibited differential expression
patterns between BM and MSM cultures, especially during early germination from stage
1 to stage 2 (Table S4B). Among the 17 isoforms that exhibited a significant (P � 0.01)
expression change for cultures on both media, isoforms of essential sexual reproduc-
tion gene sub-3 (submerged protoperithecia-3; NCU01154T1) exhibited 2-fold down-
regulation on BM but 2.5-fold upregulation on MSM.

Knockout phenotypes during conidial germination. A total of 195 genes exhib-
ited statistically (P � 0.05) and biologically (�5-fold) significant differences between the
two media in comparisons of data obtained from similar time points or across the
conidial germination process. Among these genes, 144 knockout strains (43) were
available from the Fungal Genetic Stock Center (FGSC [48]) for phenotypic investiga-
tion. In comparisons of wild-type strains with matched mating-type gene knockouts, we
observed altered phenotypes in 22 of the knockout strains (Fig. 7; see also Fig. S5). Of
the 22, only 13 genes are functionally annotated (Table 1). Generally, upregulation of
expression was consistent with the time of function. For example, expression of a
hypothetical protein was detected only in the early stages of germination, and the
knockout of the corresponding gene—NCU07801 (idler)—resulted in significantly de-
layed germination and slower hyphal growth. In another example, one knockout
exhibited a novel phenotype of spore elongation, in which conidiophores extended
their long axis to form a dumbbell-like structure (NCU08095; cdg [conidia dumbbell
germination]) before forming a normal germ tube (Fig. 8). Interestingly, expression of
NCU08095 was significantly downregulated in both BM cultures and MSM cultures.
Orthologs of cdg were found only in some genomes of Sordariomycetes, Leotiomyce-
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tes, and, Eurotiomycetes and were absent in other ascomycetes and yeast genomes—
and the ortholog in Rutstroemia was annotated as a kynurenine formamidase (Fig. S6).

DISCUSSION

In many cases, conidial germination is the critical first step of fungal colonization. We
previously reported signatures of gene expression associated with mating type iden-
tifiable during asexual reproduction of N. crassa on BM (49). In this study, we investi-
gated the conidial germination process and its responses to different nutritional
conditions by profiling transcriptomics across four distinct morphological stages of
conidial germination on two different media. Commercial maple sap provides a readily
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FIG 7 Knockout strains exhibited higher and lower average growth levels at 2 h (blue) and 3 h (red)
postinoculation compared with wild-type strains of both A and a mating types (wt-A and wt-a).
Phenotyping was performed on paired knockout and wild-type strains. Measurements of growth were
conducted for three replicates of 20 randomly picked conidia for each strain. A high standard deviation
value is evident, arising primarily as a consequence of a high variance in the starting time of germination.

TABLE 1 Functional annotation for 13 genes that exhibited knockout phenotypes in
conidial germination from previous studiesa

Gene ID Functional annotation at NCBI and FungiDB

NCU00795 Cation transporter
NCU02126 Isovaleryl-CoA dehydrogenase
NCU04343 Ergothioneine-1
NCU04583 Acetyltransferase
NCU05429 Alpha-glucan branching enzyme
NCU05620 Proteasome activator
NCU05980 Carboxypeptidase S1
NCU06112 Glutamate decarboxylase
NCU06261 Uracil phosphoribosyltransferase
NCU06687 Lycogen synthase-1
NCU07044 Metallo-beta-lactamase
NCU07064 L-Galactonate dehydratase
NCU09855 Nicotianamine synthase
aID, identifier; FungiDB, The Fungal and Oomycete Genomics Resource (81); Isovaleryl-CoA, isovaleryl-
coenzyme A.
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available natural nutrient source enabling investigation of diverse stages of N. crassa
development, including conidial germination.

Fungal spores prepare for flexibility instead of efficiency. Nutrients represent a
major factor influencing the onset of N. crassa colonization, and extended maintenance
on a singular formulation of artificial medium is known to lead to degeneration of
strains (50–52). Natural environments of N. crassa can be very diverse in terms of carbon
level and nitrogen level, and this fungus has often been found to flourish in high-
carbon environments, in particular, in the noncharred, sappy, woody remains of plants
after forest fires. N. crassa has also been suggested to propagate as a plant endophyte
(53); MSM resembles the nutrition accessible to the fungus within the environment of
the living plant. While epigenetic regulation based on parent-of-origin expression from
fungal species has been reported previously (54–56), our data exhibited no impact of
parental nutrient conditions on conidial germination. Although the tested wild-type
strains had been maintained on BM for multiple generations, the delayed germination
of their conidiospores on BM is evidence that the conidia are equipped with germina-
tion surveillance that has evolved calibration toward a more natural environmental
setting.

Genetic associations between development and the metabolism of nutrition.
Our observations are consistent with previous research on the impact of levels of fixed
nitrogen on sexual development and further suggest that these effects begin in the
very early stages of asexual growth, during conidial germination. Nitrogen, in the form
of nitrate, is the primary source of nitrogen nutrition and is often a limiting resource in
natural environments (57). Therefore, fungal growth and development on a low-
nitrogen natural medium likely represent a good model for most fungal colonization of
natural environments. Several standard media have been developed for studying N.
crassa (58). Natural media such as carrot medium (59) have also been widely used in
fungal research, especially to study pathogens whose growth conditions are challeng-
ing to mimic with artificial media (60, 61). While these media are useful for investigating
specific stages in Neurospora growth and development, they all have limitations with
respect to the study of growth stages that require quick changes in nutrients under
laboratory conditions. BM and MSM provide different nutrition profiles (see Table S1 in
the supplemental material), especially in nitrogen levels and carbon resources. MSM
represents one of the likely environments for Neurospora, which has been reported to
sometimes persist as a plant endophyte (53). Low nitrogen levels in MSM induced the
initiation of sexual development even at very early stages of conidial germination, and
key regulatory genes in sexual development were activated in MSM cultures (Fig. 3 and

A B

FIG 8 Phenotypes of knockouts of NCU08095 on BM at the stages of (A) polar growth and (B) doubling of the
longest axis, exhibiting dumbbell-like conidial extension (arrows) before formation of the germ tube. Images of
controls (representing wild-type germination on each medium) are shown in Fig. 1.
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4; see also Fig. S1, S2, and S4). Our results also call for further investigation of the
involvement of G-proteins in nitrogen metabolism regulation in N. crassa. Upregulation
of gna-1 on MSM is consistent with previous suggestions indicating an additional
function of gna-1 in sexual development (62). Expression of gna-1 was downregulated
in cultures on BM, where sexual development is repressed. Gpr-5 and Gpr-6 are
homologs of Stem1, a transmembrane protein in yeast that signals upon nitrogen
starvation (6, 38, 63). Their roles as nitrogen sensors in N. crassa growth and develop-
ment have not yet been confirmed (64).

Although expression was dynamically regulated in response to available carbon and
nitrogen levels in both BM and MSM, the spores appear to take longer to physiologi-
cally adapt to BM than to MSM. To illustrate the metabolic responses, consider the
expression of cyn-1 (encoding cyanate lyase, a key enzyme in transforming cyanate as
an alternative nitrogen resource), which was upregulated in cultures in nitrogen-poor
MSM. Expression of invertase (encoded by inv)—which catalyzes degradation of su-
crose to glucose—was, conversely, downregulated in glucose-rich BM (Table S2). In
fact, two frequent expression patterns were identified on BM: continuous stage-to-
stage upregulation and downregulated expression during germ tube formation fol-
lowed by upregulated expression in subsequent stages. In contrast to these relatively
homogeneous expression patterns, which are attributable to the presence of a high
number of genes in BM cultures, expression patterns identified in MSM cultures were
more multifarious, indicating more intricacy of function and developmental dynamism.

Response of conidial germination to various environmental factors. We ob-
served greater upregulation of early light-induced genes (ELIG) in cultures on MSM than
on BM. ELIG are controlled by the light-activated white collar complex (WCC) and
regulate activities of late light-induced genes (LLIG) in growth, conidiation, and sexual
development in N. crassa (47, 65–68). The upregulation of ELIG in MSM cultures is likely
associated with boosted sexual development of N. crassa on MSM. Knocking out early
light-induced gene NCU01870 yields a female sterile phenotype (68). This gene is
expressed in a steady stage-to-stage increase in MSM cultures but is significantly
downregulated stage to stage on BM, on which sexual development is inhibited. Using
MSM helped us to reveal different aspects of gene regulation during the asexual-sexual
switch by light-responsive WCC and metabolic pathways, which have been obscured
on nitrogen-rich artificial media such as BM.

Our analysis illustrates that with respect to the adaptively tuned decision to engage
in asexual or sexual development, metabolic pathways, sensory responses to environ-
mental stimuli, and developmental pathways are tightly associated even early during
conidial germination. The asexual-to-sexual switch is an integrative process, linking the
asexual and sexual modes of reproduction—modes that respond to nearly opposite
environmental attributes (11, 49). In many ascomycetes, asexual reproduction is pro-
longed by high temperatures and by high levels of nutrition, oxygen, ROS (reactive
oxygen species), and light exposure, and sexual reproduction can be induced by low
temperature, low levels of nutrition and oxygen, and reduced light intensity (69).

Although our experiment profiled expression only during the very early stages of
conidial germination and hyphal extension, genes modulating the asexual-sexual
switch showed the presence of regulatory networks that diverged between the two
culture conditions. Bayesian networks based on coexpression illustrated that both
asexual reproduction regulation and sexual reproduction regulation were highly mod-
ular in both BM and MSM cultures. However, nitrate transporters were modular in the
expression network inferred from BM cultures, in line with intensive activation of
nitrogen intake and metabolism. Multiple interactions between nitrogen metabolism
and a similarly modular conidiation pathway suggest coordinated responses of nitro-
gen metabolism and conidiation to high-nitrogen media such as BM that are associated
with the promotion of asexual growth and inhibition of sexual development. The more
diffuse organization of these gene interactions could be a consequence or a cause of
the more labile balance of the asexual-sexual switch in MSM.
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Complex genetic regulation of conidial germination implied by KO pheno-
types. Genes with critical roles in conidial germination were identified on the basis of
comparative transcriptomics and focused knockout phenotyping. Of 23 genes identi-
fied for knockout phenotyping, 22 encoded knockout mutants that showed quantita-
tive phenotypes with respect to germination ratio and growth rate. Knocking out
NCU08095 (cdg) yielded a germination phenotype resembling yeast budding morphol-
ogy—and this gene is not present in yeast genomes. Morphological transitions from
filamentous growth to yeast-form growth have occurred many times in fungal evolu-
tion (70), and such physiological transformations are known to be associated with
pathogenesis for some fungal species (71, 72).

Interestingly, no knockout strains showed distinct phenotypes on different media,
despite differential expression on BM and MSM. One explanation for this homogeneity
of knockout phenotypes across environments is that expression differences are largely
associated with differential developmental timing on BM and MSM rather than being
attributable to operatively different expression programs. In other words, most genes
that we chose based on their expression differences between the cultures on different
media likely represent quantitative regulators of developmental change, leading to
quantitative differences in development pace, rather than qualitative differences in
development, between cultures on BM and MSM.

Our results call for greater attention to isoforms of genes and their distinct functions
during fungal development. For example, isoforms of the gene sub-3, which is essential
for sexual reproduction, exhibited 2-fold downregulation when cultured on BM. In
contrast, isoforms of sub-3 exhibited 2.5-fold upregulation when cultured on MSM, on
which sexual development can be expected to occur within a week after inoculation.

Conclusion. Synchronous metabolic and developmental processes underlying
conidial germination, a rapid process that occurs in response to environmental signals,
including carbon and nitrogen nutrition as well as light signals, were revealed by
transcriptomics analyses performed with synthetic or natural nutrition. Results indicat-
ing modularity among elements of early sexual development, asexual growth, and
nitrogen metabolism were detected in conidial germination, with a more diffuse set of
network interactions in natural medium than in nitrogen-rich laboratory medium. The
implication is that a more tentative balance of asexual and sexual development is
typical during growth and development of N. crassa colonies in natural environments
than has been previously implied by analyses relying on culture in media that suppress
activation of the asexual-sexual switch. Nine genes that were previously unannotated
with respect to function and that we have now identified as contributing to asexual
growth after conidial germination may contribute significantly to modulating this
balance and provide targets for future fungal growth control in prevention of pathogen
infection, in biochemical fermentation optimization, and in bioenergy generation.

MATERIALS AND METHODS
Strains and culture conditions. Germination studies were performed with N. crassa mat A

(FGSC2489) macroconidia, harvested from 5-day cultures on solid (2% agar) Bird medium (24). Macro-
conidia were collected with deionized distilled water containing Tween 20 (0.1%). They were washed
with autoclaved distilled water and filtered through a three-layer Mira cloth. Spores (1 � 105) were placed
on top of cellophane-covered medium in petri dishes. MSM was composed of maple sap (Vertical;
Feronia Forests) with agar (2%). Conidia were incubated on media at 25°C under constant white light, a
protocol that avoids the dynamic expression regulation known to arise from changes of light color and
intensity (47). Germination was monitored at 0, 15, 60, 120, 180, 240, 300, and 360 min. Cellophane
membranes with fungal tissues were collected at 15, 120, 240, and 360 min, when the majority (51% to
92%) of active spores on BM were at one of the following stages and beyond: fresh spores, spores
showing evidence of polar growth, spores having doubled their long axis, and spores having com-
menced their first hyphal branching. The same time points were used for sampling tissues on MSM.
Tissue samples were flash frozen in liquid nitrogen and stored at �80°C. All tissues that were collected
from multiple plates in one collection process were counted as one biological replicate. Three temporally
segregated biological replicates were prepared for each sampled time point on both BM and MSM.

RNA isolation and preparation. Total RNA was extracted from homogenized tissue with TRI reagent
(Molecular Research Center) as described previously by Clark et al. (73). Preparation of cDNA used N6

primers following the Illumina mRNA sequencing sample preparation guide. The quality of the cDNA
samples was verified with an Agilent 423 Technologies Bioanalyzer to ensure an insertion size of between
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150 to 225 bp and by quantitative PCR (qPCR) (Kapa Biosystems) to ensure an RNA concentration of
�0.5 ng/�l. Sequencing libraries were produced by the use of the Illumina TruSeq stranded-RNA
protocol.

Data acquisition and analysis. The 24 libraries (3 replicates per condition) underwent 76-bp
paired-end sequencing on an Illumina HiSeq 2500 system at the Yale Center for Genomics Analysis
(YCGA). Adapter sequences, empty reads, and low-quality sequences were removed. For each read, we
trimmed the first six nucleotides and the last nucleotides at the point where the Phred score of an
examined base fell below 20 using in-house scripts. Any read that was less than 45 bp in length after
trimming was discarded. The remaining trimmed reads were aligned to the N. crassa OR74A v12 genome
(6) using Tophat v.2.0.12 with default settings (74). Only reads that mapped to a single unique location
within the genome, with �2 mismatches in the anchor region of the spliced alignment, were tallied by
alignment to exons using HTSeq v0.6.1p1. We also used HiSat2 and StringTie (54, 75, 76) to perform
spliced alignments of the reads against the reference genome. Tallies were statistically analyzed with LOX
v1.6 (55), yielding relative gene expression levels across the germination time points. For statements
involving the statistical significance of multiple genes, P values were determined using conservative
Bonferroni adjustment (56). We analyzed the differential expression of 800 genes predicted to have
isoforms (http://genome.jgi.doe.gov/Neucr2/) using CuffDiff v 2.2.1 (77). We applied the fragment bias
correction and strand-specific parameters, leaving other options at the default settings.

Knockout strains and phenotype identification. Knockout strains for more than 9,600 genes (43)
were acquired from the Fungal Genetic Stock Center (FGSC; 48); those acquired included deletion
cassettes for genes in either or both of the two mating types, mat A and mat a, that regulate mating and
sexual development in heterothallic N. crassa (40). Knockout strains of genes that showed a significant
(LOX, P � 0.01) expression difference in the two stage-to-stage expression wild-type strains and a
difference in the direction of expression change under the two medium conditions were examined for
altered phenotypes during conidial germination. For each investigated strain, 3,000 to 5,000 conidia were
plated onto 90-mm diameter plates and monitored. Strains of genotype mat A were assayed when
available; otherwise, mat a strains were used. Genotype mat a strains were also assayed in parallel when
mat A strains exhibited a distinct phenotype. Wild-type strains were monitored alongside each knockout
strain on BM and MSM with three replicates under constant white light at 25°C. Germination and growth
rates of 20 conidia picked at random were recorded. The knockout strain for NCU08095 that exhibited
a significant morphological phenotype was crossed with the wild-type strain, and cosegregation of the
observed phenotype with deletion of the gene in the offspring was verified to ensure that the intended
deletion was responsible for the mutant phenotype (30, 61, 78).

Functional enrichment analyses. The statistical significance of overrepresentation of gene groups
in functional categories relative to the whole genome was quantified by calculating P values via the
hypergeometric distribution using FungiFun (79). To evaluate each functional category, results indicating
whether the genes in each functional category were differentially expressed between stages at a higher
frequency than expected were assessed in comparison to the genome (FungiFun’s exact P) and were
based on background gene sets (FungiFun’s adjusted P). To achieve significance, we required both an
exact P value of �0.01 and an adjusted P value of �0.05. Where appropriate, further functional
annotation was carried out via the biochemical pathway and annotation data in the Kyoto Encyclopedia
of Genes and Genomes (KEGG; 80). Functional annotations were also obtained from FungiDB (81).

Bayesian network reconstruction. Biological networks were modeled using the Bayesian network
Web server (82) supplied with conidial germination expression data for each culture condition. Input files
contained fold changes reflecting differences between adjacent sample points across the experiment
[(Xt�1 � Xt)/min(Xt, Xt�1)]. Global structure learning settings were retained at default settings. The
network models depicted are the 50% majority consensuses of 100 models (edge-selection threshold,
0.5; the 100 highest-scoring networks were averaged), calculated without imposition of any structural
constraints.
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