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ABSTRACT
As one of the largest plant-specific gene families, the NAC transcription factor gene
family plays important roles in various plant physiological processes that are related
to plant development, hormone signaling, and biotic and abiotic stresses. However,
systematic investigation of the NAC gene family in sea-island cotton (Gossypium
babardense L.) has not been reported, to date. The recent release of the complete
genome sequence of sea-island cotton allowed us to perform systematic analyses of
G. babardense NAC GbNAC) genes. In this study, we performed a genome-wide survey
and identified 270 GbNAC genes in the sea-island cotton genome. Genome mapping
analysis showed that GbNAC genes were unevenly distributed on 26 chromosomes.
Through phylogenetic analyses of GbNACs along with their Arabidopsis counterparts,
these proteinswere divided into 10 groups (I–X), and each contained a different number
of GbNACs with a similar gene structure and conserved motifs. One hundred and
fifty-four duplicated gene pairs were identified, and almost all of them exhibited strong
purifying selection during evolution. In addition, various cis-acting regulatory elements
in GbNAC genes were found to be related to major hormones, defense and stress
responses. Notably, transcriptome data analyses unveiled the expression profiles of
62 GbNAC genes under Verticillium wilt (VW) stress. Furthermore, the expression
profiles of 15GbNAC genes tested by quantitative real-time PCR (qPCR) demonstrated
that they were sensitive to methyl jasmonate (MeJA) and salicylic acid (SA) treatments
and that they could be involved in pathogen-related hormone regulation. Taken
together, the genome-wide identification and expression profiling pave new avenues for
systematic functional analysis ofGbNAC candidates, whichmay be useful for improving
cotton defense against VW.

Subjects Agricultural Science, Bioinformatics, Genomics, Mycology
Keywords NAC transcription factor, Sea-island cotton, Genome-wide survey, Verticillium wilt

INTRODUCTION
The plant-specificNAC genes (NAM, no apical meristem; ATAF, Arabidopsis transcription
activation factor; and CUC, cup-shaped cotyledon) form one of the largest families of
transcription factors (Nuruzzaman, Sharoni & Kikuchi, 2013). Typically, NAC proteins
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harbor a highly conserved NAC domain at the N-terminal and a variable transcriptional
regulatory region (TR) at the C-terminal. The NAC domain can be further divided into
five subdomains (A–E) and functions as DNA binding, nuclear localization, and formation
of homodimers or heterodimers, while the TR region is responsible for transcription
regulation as either an activator or a repressor (Olsen et al., 2005). NAM, the first NAC
gene, was discovered in Petunia and functions in determining positions of shoot apical
meristems and primordia (Souer et al., 1996). Since then, a large number of NAC genes
have been identified from diverse plant species (Nuruzzaman et al., 2010; Liu et al., 2019).

Accumulated evidences indicate that the functions of NAC genes are associated
with almost every biological process in plants, such as leaf senescence (Fan et al., 2015;
Zhao et al., 2016), secondary cell wall formation (Zhang et al., 2018), and hormone
signaling (Takasaki et al., 2015). Notably, a number of NAC genes, especially ATAF
subfamily members, were proven to serve as critical regulators in plant defense against
biotic and abiotic stresses (Nuruzzaman, Sharoni & Kikuchi, 2013; Karanja et al., 2017). In
Arabidopsis, ANAC032 was induced by bacterial pathogen Pst (Pseudomonas syringae pv.
tomato DC3000) infection, and SA and jasmonic acid (JA) treatments. Furthermore,
transgenic Arabidopsis plants overexpressing ANAC032 showed strongly enhanced
resistance to Pst, while the ANAC032 knockout mutant exhibited increased susceptibility
to Pst (Allu et al., 2016). In rice, the expressions of SNAC1 were enhanced under drought,
salt, and cold stresses. Overexpression SNAC1 in rice resulted in increased tolerance to
drought (Hu et al., 2006). Similarly, transgenic OsNAC111 showed improved resistance to
blast fungus in rice by regulating the expression of several defense-related genes (Yokotani
et al., 2014).

Cotton is the most important natural fiber crop, and is also used as a food crop due to
high levels of vegetable oil and protein in cottonseeds (Li et al., 2009). However, cotton
production can be dramatically decreased by the occurrence of VW, a devastating vascular
disease caused by Verticillium dahliae (Sun et al., 2013). Typically, infected plants show
leaf chlorosis, leaf shedding, vascular discoloration, wilting, and plant death. In general,
upland cotton (Gossypium hirsutum), accounting for about 90% of annual world cotton
production, is susceptible to VW, whereas sea-island cotton, accounting for approximately
5% of annual world cotton output, is immune to VW. Thus, extensive efforts have been
made to investigate the molecular mechanism of sea-island cotton resistance to VW
(Zhang et al., 2015). Recently, a NAC gene GbNAC1 was identified from G. barbadense.
Overexpression of GbNAC1 in Arabidopsis can significantly enhance resistance to VW,
implying that G. barbadense NAC genes might play pivotal roles in biotic stress resistance
(Wang et al., 2016). The availability of diploid and tetraploid cotton genomes has allowed
scientists to identify the NAC gene family members at the genome-wide scale, such as 145
genes in G. raimondii (Shang et al., 2013), 141 in G. arboreum (Shang et al., 2016; Fan et
al., 2018), and 283 in G. hirsutum (Sun et al., 2018). However, systematic analysis of NAC
genes in G. babardense has not been completed. G. babardense (AD2) and G. hirsutum
(AD1) are allotetraploids, which evolve from transoceanic hybridization between an
A-genome species immigrated from Africa and a native American D-genome species,
while G. arboreum (A2) and G. raimondii (D5) are diploids resembling the A-genome
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and D-genome progenitor, respectively (Hu et al., 2019). In this study, we performed a
genome-wide survey and identified 270 GbNAC genes in the latest G. babardense genome
released by Wang et al. (2019). These GbNAC genes were classified into 10 groups on the
basis of sequence similarity. Sequence comparison among GbNAC genes revealed the
presence and distribution of duplicated genes. Additionally, to identify GbNAC candidate
genes associated with VW resistance, we analyzed the expression patterns of GbNAC genes
using available transcriptome data of G. babardense cv. 7,124 inoculated with the fungal
pathogen V. dahliae. Subsequently, qPCR-based gene expression profiling demonstrated
that selected GbNAC candidate genes might be involved in MeJA and SA regulation. This
study provides comprehensive information about sea-island cotton NAC genes, as well as
a foundation for in-depth functional analysis of novel GbNAC candidate genes, which may
be useful for the improvement of pathogen resistance in cotton.

MATERIALS AND METHODS
Identification of NAC genes in the sea-island cotton genome
We downloaded the genome sequences (v. HAU) of sea-island cotton from the CottonGen
database (https://www.cottongen.org/, Wang et al., 2019). The Hidden Markov Model
(HMM) profile of the NAC domain (PF02365) was retrieved from the Pfam database
(http://pfam.xfam.org/, Finn et al., 2016). The HMMER program was used to search
NAC protein in the sea-island cotton genome (Finn, Clements & Eddy, 2011). with an
E-value cutoff of e−5. Then, all the putative proteins were confirmed by the Pfam and
SMART database (http://smart.embl-heidelberg.de/, Letunic & Bork, 2018). The MW
(molecular weight) and pI (theoretical isoelectric point) of each NAC protein were
predicted by the online software ExPASy (https://www.expasy.org/, Artimo et al., 2012).
The TMHHM server (v. 2.0, http://www.cbs.dtu.dk/services/TMHMM/) was used to
identify membrane-bound NAC proteins (Krogh et al., 2001). CELLO (v. 2.5, subCELlular
Localization predictor, http://cello.life.nctu.edu.tw/; Yu et al., 2006) was used to predict
the subcellular localization of GbNACs.

Multiple alignments, phylogenetic analysis, gene duplication and
synteny analysis
Multiple sequence alignments were performed with the NAC domain sequences of the
GbNAC proteins using MEGA X (https://www.megasoftware.net/, Kumar et al., 2018).
A phylogenetic tree was constructed by the neighbor-joining method with the following
parameters: Poisson correction, pairwise deletion, and 1,000 bootstrap replicates. Gene
duplications were analyzed with two major criteria, that is, the length of the aligned
sequence covers more than 75% of the longer gene and similarity of the aligned regions is
greater than 75% (Vatansever et al., 2016). Alignment of the coding sequences of duplicated
genes was performed by the Clustal X (v. 2.0) program (Larkin et al., 2007), and the values
of nonsynonymous (Ka) and synonymous (Ks) substitution rates were calculated using
KaKs_Calculator package (Zhang et al., 2006) via model averaging. The approximate date
of duplication events (million years ago, Mya) was estimated using the formula T =Ks/2λ
× 10−6, on the basis of molecular clock rate of 2.6 × 10−9 substitutions/synonymous site
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for cotton (Liu et al., 2015). The relationships of duplicated genes were illustrated with the
Circos program (Krzywinski et al., 2009). MCScanX was used to detect the synteny of NAC
genes between G. barbadense and the other plant species (Wang et al., 2012).

Gene structure, chromosomal mapping, and conserved motif
analysis
The gene structures were determined using the CDS and DNA sequences of GbNAC
genes and visualized by the Gene Structure Display Server (http://gsds.cbi.pku.edu.cn/,
Hu et al., 2015). The positions of these GbNAC genes were determined by using the
nucleotide sequence as a query to search against the G. barbadense genome. In addition,
chromosomal localization map was constructed by using the MapChart (v. 2.32)
program (Voorrips, 2002). In order to identify the conserved motifs among all the
GbNAC genes, their protein sequences were subjected to the online software MEME
(http://meme-suite.org/tools/meme, Bailey et al., 2015) using default parameters with
exception for number of motif. The number of motifs was set to 20.

Cis-acting regulatory element and miRNA target analysis
For cis-acting regulatory element analysis, we retrieved 1,500 bp DNA sequences
up-stream from the transcription start site from the newly released G. barbadense
genome sequences (Wang et al., 2019) and then screened them in the PlantCare
(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, Lescot et al., 2002) and
PLACE (https://www.dna.affrc.go.jp/PLACE/, Higo et al., 1999) databases. For miRNA
target analysis, we downloaded all the mature miRNA sequences of Gossypium from the
miRBase database (v. 22.1) (http://www.mirbase.org/). The online sever psRNATarget
(http://plantgrn.noble.org/psRNATarget/, Dai, Zhuang & Zhao, 2018) was used to predict
the miRNA target.

Gene expression analysis under Verticillium wilt stress
The transcriptome data of sea-island cotton were obtained from the Sequence Read
Archive under accession number SRP03537 at the NCBI website (Chen et al., 2015), where
the plants were inoculated withV. dahliae. Briefly, two-week-old seedlings ofG. barbadense
resistant cultivar 7,124 were inoculated with the high virulence V991 defoliating strain of
V. dahliae (5× 106 spores/mL) by the root-dip method for 2, 6, 12, 24, 48, and 72 h. Then,
the samples, including the mock-inoculated (control) and six inoculated, were collected for
RNA sequencing. We retrieved the expression data of GbNAC genes from the root under
V. dahliae infection (Chen et al., 2015). The hierarchical clustering and the heatmap-based
expression profiles ofGbNAC genes were performed using ClustVis (Metsalu & Vilo, 2015).
The Venn map of differentially expressed GbNAC genes was constructed using the UpSetR
package (Lex et al., 2014).

RNA isolation and qPCR analysis
G. barbadense cv. 7,124 seeds were cultivated in commercial soil at 28 ◦Cwith a photoperiod
of 16 h light/8 h dark. Two-week-old seedlings were gently uprooted, rinsed and cultivated
in Hoagland solution for two days. Then these seedlings were treated with Hoagland
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solution containing 0.1 mM MeJA and 1 mM SA, respectively. Roots were sampled from
three biological replicates after treatment for 1, 2, 6, and 12 h, then immediately immersed
in liquid nitrogen and stored at −80 ◦C for qPCR.

The total RNA from the root samples treated with MeJA and SA and the control (roots
from Hoagland solution without hormone) was extracted using Trizol (Invitrogen). The
first strand cDNA was generated from 1 µg of total RNA using a PrimerScriptTM 1st Strand
cDNA Synthesis Kit (Takara, Dalian, China). qPCR was performed with three replicates
using an ABI QuantStudio 5 Real-Time PCR System (Thermo Fisher Scientific, Waltham,
MA, USA) and SYBR Premix Ex TaqTM (Takara, Dalian, China). The amplification
procedure was as follows: one cycle at 95 ◦C for 3 min; then 40 cycles at 95 ◦C for 15
s, 60 ◦C for 15 s. The cotton actin (AF059484) was selected as the internal reference
gene (Zhang et al., 2013). Gene expression levels were calculated according to the 2−11CT

method described by Livak & Schmittgen (2001). The primers used for qPCR are listed in
Table S1.

RESULTS
Identification and phylogenetic analysis of NAC family members in
Gossypium barbadense
A total of 270 NAC proteins were identified from G. barbadense and named as GbNAC001
to GbNAC270. All of the 270 GbNACs contained the NAC domain (PF02365) based on
Pfam and SMART tests. The lengths of GbNAC proteins ranged from 154 (GbNAC059)
to 959 (GbNAC175) amino acids with MW from 17.65 to 107.75 kDa, and pI from 4.67 to
9.79. Subcellular localization of GbNACs was predicted using the online software CELLO
(http://cello.life.nctu.edu.tw/). Among the 270 GbNAC proteins, three were predicted to
be mitochondrial proteins (GbNAC031, 032, and 255); five were located in the chloroplast
(GbNAC014, 036, 116, 174, and 249); 10 were extracellular; 23 were cytoplasmic, and the
rest were localized in the nucleus. These results are similar to those of cucumber (Liu et al.,
2018). Detailed information including gene locus, chromosome location, exon number,
sequence length, MW, pI, Arabidopsis orthologous locus and subcellular location of all
identified GbNAC proteins is provided in Table S2.

The NAC domain sequences of GbNAC proteins were used to construct a neighbor-
joining phylogenetic tree. As a result, the 270 GbNACs were classified into 10 groups
which were named as I to X (Fig. 1). Group VI contained the most NAC members with 47
GbNACs, followed by group I with 39 GbNACs. Group III had the least NAC members
with only ten GbNACs. Additionally, 35 GbNACs with high similarity to Arabidopsis
ATAF members were clustered in group IV. Arabidopsis ATAF members play pivotal
roles in the responses to biotic and abiotic stresses. These results suggest that NAC
members in group IV may have similar functions with Arabidopsis ATAF members.
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Figure 1 Phylogenetic tree of the 270 GbNAC proteins.Multiple sequence alignment of NAC domain
sequences of G. barbadense and Arabidopsis was performed using ClustalW. MEGA X was used to con-
struct the neighbor-joining (NJ) tree with 1000 bootstrap replicates. Various colors indicate different
groups of GbNACs.

Full-size DOI: 10.7717/peerj.7995/fig-1

Chromosomal locations, duplications, and synteny analysis of the
GbNAC genes
To determine the chromosomal distribution of the GbNAC genes, we searched the sea-
island cotton genome database using blastn and the DNA sequence of each GbNAC gene.
The results suggested that 263 GbNAC genes (97.4%) were mapped to 26 chromosomes.
Specifically, 132 GbNAC genes were distributed in the A-subgenome, and 131 were located
in the D-subgenome (Fig. 2). In addition, five genes (GbNAC011, GbNAC012, GbNAC049,
GbNAC050, andGbNAC069) were anchored in four A-subgenome scaffolds, and two genes
(GbNAC148 and GbNAC262) were found in two D-subgenome scaffolds. The number of
GbNAC genes distributed on each chromosome was uneven. Chromosome D11 contained
the highest number of NAC genes, with 15 GbNAC genes. In contrast, chromosome A10
contained the least number ofNAC genes, with only five genes. Interestingly, manyGbNAC
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genes were clustered within a short distance, such as the top of A11 andD11 and the bottom
of A08 and D08.

Gene duplication including tandem duplication, segmental duplication, and whole-
genome duplication (WGD) is a major driving force in the evolution of plants. The
origin of multigene family is due to gene duplication that arose from region-specific
duplication or WGD (Du et al., 2012). To reveal the expansion mechanism of the GbNAC
gene family, gene duplication analysis was performed using blastn and the coding
sequences (cds) of all GbNAC genes. In all, we identified 148 pairs (212 GbNAC genes)
of segmental duplications, three pairs of tandem duplications (GbNAC011/GbNAC012,
GbNAC024/GbNAC025, andGbNAC082/GbNAC083), and one triplicate repeat of tandem
duplications (GbNAC212/GbNAC213/GbNAC214) (Fig. 3). One hundred and thirty-two
duplication gene pairs occur between the A-subgenome and the D-subgenome, while only
12 and 10 duplication gene pairs occur within the A-subgenome and the D-subgenome,
respectively. These genes represent approximately 81.9% (221 of 270) of theGbNAC genes,
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Figure 3 Circos diagram of theGbNAC duplication pairs inG. barbadense. 143 GbNAC duplication
pairs are linked with green lines. Scale bar marked on the chromosome indicating chromosome lengths
(Mb).

Full-size DOI: 10.7717/peerj.7995/fig-3

indicating their origin may be from sea-island cotton genome duplication events. Using
the Ka and Ks of each duplicated GbNAC gene pair, we found that the Ks values of all gene
pairs were between 0.008 and 0.912. Specifically, the Ks values of 87 (58.78%) gene pairs
were less than 0.05. Additionally, the Ka/Ks value of each gene pair was calculated and the
Ka/Ks values of 140 gene pairs (94.59%) were less than 1, which indicated these genes had
evolved under strong purifying selection. Furthermore, eight gene pairs (Ka/Ks >1) may
evolve under strong positive selection after duplication. Moreover, we also calculated the
approximate date of duplication events. The duplication events of GbNAC genes occurred
from 1.58 Mya (Ks = 0.008) to 175.29 Mya (Ks = 0.912), with a mean of 59.31 Mya (Ks
= 0.154). Detailed information including duplication gene pairs, chromosome location,
duplication type, Ka, Ks, Ka/Ks and approximate duplication date (Mya) of all identified
duplicated GbNAC genes is provided in Table S3.
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To detect the synteny of NAC genes, we performed a collinearity analysis between
G. barbadense and the other four plant species (Arabidopsis thaliana, G. arboretum,
G. raimondii and G. hirsutum) using MCScanX. Previously, 117, 141, and 145 NAC genes
were revealed in A. thaliana (AtNAC, Nuruzzaman et al., 2010), G. arboretum (GaNAC,
Shang et al., 2016), and G. raimondii (GrNAC, Shang et al., 2013), respectively. For NAC
genes in G. hirsutum (GhNAC), we identified 272 GhNAC genes in the upland cotton
genome that was released recently (Wang et al., 2019). Totally, 945 NAC genes were used
to evaluate synteny relationship in this study. As a result, we found 421 paired collinearity
relationships between 247 GbNAC and 234 GhNAC genes, 241 pairs between 241 GbNAC
and 133 GrNAC genes, 181 pairs between 120 GbNAC and 54 AtNAC genes, and 142 pairs
between 141 GbNAC and 81 GaNAC genes (Fig. 4 and Table S4). Notably, 69 GbNAC
genes are collinear with NAC genes from the other four species (Table S4).

GbNAC gene structures and conserved motifs
To better understand the relationship between gene function and evolution among the
GbNAC genes, the exon/intron organization and conserved motifs were analyzed (Fig. 5).
The number of exons ranged from 1 to 10. Most GbNAC genes (182/270, 67.41%) had
three exons (Fig. 5), although GhNAC059, GhNAC105, and GhNAC238 contained only
one exon, and GhNAC129 and GhNAC175 contained 10 exons, the highest number of all
genes. We also found that GbNAC genes in the same group had a similar gene structure.
For example, all 12 members in group IX had three exons. Among the 39 members in
group I, all had three exons except GbNAC060 and GbNAC145 (Fig. 5).

Twenty conserved motifs were identified among the 270 GbNAC proteins (Fig. S1
and Table S5). As a result, all GbNAC proteins contain a conserved NAC domain at the
N-terminal, which includes five subdomains (A–E, Fig. 6). Notably, the members with high
similarity in the same group shared a commonmotif composition. For example, GbNAC213
and GbNAC214 were found to contain the same three motifs (Fig. 5). This finding indicates
that these genes may have similar functions. Most GbNAC proteins (257/270, 95.19%)
contain 2–5 conserved motifs. However, seven GbNAC proteins (GbNAC033, GbNAC068,
GbNAC092, GbNAC109, GbNAC200, GbNAC226, and GbNAC242) contain only one
motif and six GbNAC proteins (GbNAC017, GbNAC020, GbNAC074, GbNAC160,
GbNAC206, and GbNAC253) contain six motifs. Additionally, we found that subdomains
A (246/270), and/or C (200/270), and/or D (250/270) are present in most GbNAC proteins.
Furthermore, we found that 231GbNACproteins contained the conserved histidine residue
in subdomain D, which influences homodimerization and DNA binding of NAC proteins
(Kang et al., 2018).

Membrane-bound NAC proteins feature a distinctive transmembrane motif (TM)
at either the C terminal region or the N terminal region and play vital roles in plant
defense against abiotic stresses (Kim et al., 2010; Li et al., 2016; Sun et al., 2018). In the
sea-island cotton genome, 22 membrane-bound GbNAC proteins were identified (Table
S2). Notably, 20 membrane-bound GbNAC proteins contain one TM at the C terminal and
two GbNAC members (GbNAC110 and GbNAC243) contain one TM at the N terminal.

Liu et al. (2019), PeerJ, DOI 10.7717/peerj.7995 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.7995#supp-7
http://dx.doi.org/10.7717/peerj.7995#supp-7
http://dx.doi.org/10.7717/peerj.7995#supp-1
http://dx.doi.org/10.7717/peerj.7995#supp-8
http://dx.doi.org/10.7717/peerj.7995#supp-5
http://dx.doi.org/10.7717/peerj.7995#supp-5
http://dx.doi.org/10.7717/peerj.7995


At

Gb

1 5 3 2 4

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

Ga

Gb

1 2 3 4 5 6 7 8 9 10 11 12 13

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

Gr

Gb

1 2 3 4 5 6 7 8 9 10 11 12 13

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

Gh

Gb

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13

A

B

C

D

Figure 4 Synteny analysis of NAC genes between Gossypium barbadense and other plant species. At,
Ga, Gr, Gb, and Gh indicate Arabidopsis thaliana, G. arboreum, G. raimondii, G. barbadense, and G. hirsu-
tum, respectively. (A) Collinearity between At and Gb; (B) Collinearity between Ga and Gb; (C) Collinear-
ity between Gr and Gb; (D) Collinearity between Gh and Gb. Gray lines in the background represent the
collinear blocks within the genomes of G. barbadense and other plant species, while the red lines show the
collinear NAC gene pairs.

Full-size DOI: 10.7717/peerj.7995/fig-4

Liu et al. (2019), PeerJ, DOI 10.7717/peerj.7995 10/24

https://peerj.com
https://doi.org/10.7717/peerj.7995/fig-4
http://dx.doi.org/10.7717/peerj.7995


GbNAC113
GbNAC246
GbNAC119
GbNAC252
GbNAC017
GbNAC157
GbNAC104
GbNAC237
GbNAC133
GbNAC266
GbNAC021
GbNAC159
GbNAC060
GbNAC191
GbNAC074
GbNAC206
GbNAC020
GbNAC160
GbNAC127
GbNAC259
GbNAC078
GbNAC209
GbNAC080
GbNAC211
GbNAC145
GbNAC064
GbNAC196
GbNAC108
GbNAC241
GbNAC120
GbNAC253
GbNAC016
GbNAC158
GbNAC071
GbNAC203
GbNAC095
GbNAC225
GbNAC128
GbNAC260
GbNAC067
GbNAC199
GbNAC111
GbNAC244
GbNAC065
GbNAC197
GbNAC075
GbNAC207
GbNAC003
GbNAC140
GbNAC032
GbNAC179
GbNAC008
GbNAC146
GbNAC049
GbNAC173
GbNAC005
GbNAC142
GbNAC136
GbNAC269
GbNAC116
GbNAC249
GbNAC053
GbNAC184
GbNAC087
GbNAC218
GbNAC103
GbNAC235
GbNAC124
GbNAC257
GbNAC107
GbNAC240
GbNAC114
GbNAC247
GbNAC132
GbNAC265
GbNAC084
GbNAC215
GbNAC091
GbNAC222
GbNAC165
GbNAC231
GbNAC232
GbNAC092
GbNAC002
GbNAC139
GbNAC014
GbNAC150
GbNAC051
GbNAC182
GbNAC046
GbNAC164
GbNAC006
GbNAC143
GbNAC029
GbNAC180
GbNAC088
GbNAC219
GbNAC096
GbNAC227
GbNAC036
GbNAC270
GbNAC137
GbNAC115
GbNAC248
GbNAC023
GbNAC152
GbNAC122
GbNAC255
GbNAC034
GbNAC167
GbNAC055
GbNAC186
GbNAC040
GbNAC172
GbNAC135
GbNAC268
GbNAC007
GbNAC144
GbNAC028
GbNAC181
GbNAC043
GbNAC177
GbNAC048
GbNAC162
GbNAC099
GbNAC230
GbNAC042
GbNAC176
GbNAC105
GbNAC238
GbNAC019
GbNAC161
GbNAC073
GbNAC205
GbNAC126
GbNAC262
GbNAC102
GbNAC234
GbNAC013
GbNAC149
GbNAC050
GbNAC175
GbNAC061
GbNAC192
GbNAC093
GbNAC223
GbNAC070
GbNAC201
GbNAC112
GbNAC245
GbNAC079
GbNAC210
GbNAC134
GbNAC267
GbNAC012
GbNAC148
GbNAC011
GbNAC001
GbNAC138
GbNAC027
GbNAC155
GbNAC118
GbNAC251
GbNAC018
GbNAC156
GbNAC010
GbNAC147
GbNAC033
GbNAC009
GbNAC062
GbNAC194
GbNAC089
GbNAC220
GbNAC054
GbNAC185
GbNAC097
GbNAC229
GbNAC022
GbNAC151
GbNAC131
GbNAC264
GbNAC045
GbNAC085
GbNAC216
GbNAC057
GbNAC188
GbNAC058
GbNAC189
GbNAC004
GbNAC141
GbNAC030
GbNAC178
GbNAC069
GbNAC193
GbNAC031
GbNAC081
GbNAC212
GbNAC082
GbNAC213
GbNAC083
GbNAC214
GbNAC072
GbNAC202
GbNAC094
GbNAC224
GbNAC101
GbNAC233
GbNAC015
GbNAC129
GbNAC261
GbNAC038
GbNAC170
GbNAC090
GbNAC221
GbNAC066
GbNAC198
GbNAC076
GbNAC109
GbNAC242
GbNAC110
GbNAC243
GbNAC204
GbNAC063
GbNAC195
GbNAC086
GbNAC217
GbNAC106
GbNAC239
GbNAC123
GbNAC256
GbNAC052
GbNAC183
GbNAC037
GbNAC169
GbNAC121
GbNAC254
GbNAC039
GbNAC171
GbNAC056
GbNAC187
GbNAC024
GbNAC153
GbNAC025
GbNAC035
GbNAC168
GbNAC236
GbNAC044
GbNAC166
GbNAC068
GbNAC200
GbNAC098
GbNAC228
GbNAC026
GbNAC154
GbNAC117
GbNAC250
GbNAC130
GbNAC263
GbNAC047
GbNAC163
GbNAC041
GbNAC174
GbNAC125
GbNAC258
GbNAC226
GbNAC077
GbNAC208
GbNAC100
GbNAC059
GbNAC190

0 200 400 600 800 1000
5' 3'

0 1000 2000 3000 4000 5000 6000 7000
5' 3'

Motif 13

Motif 4

Motif 9

Motif 18

Motif 19

Motif 2

Motif 3

Motif 14

Motif 12

Motif 17

Motif 7

Motif 5

Motif 6

Motif 8

Motif 1

Motif 16

Motif 10

Motif 20

Motif 11

Motif 15

UTR

Exon

I

II

III

IV

V

VI

VII

VIII

IX

X

A CB

Figure 5 Putative conserved motifs and gene structures of theGbNAC genes. (A) Phylogenetic tree.
Multiple sequence alignment of NAC domain sequences of G. barbadense was performed using ClustalW.
The neighbor-joining (NJ) tree was constructed using MEGA X with 1,000 bootstrap replicates. (B) Con-
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the right denote 20 motifs. (C) Gene structure. The yellow boxes, black lines, and green boxes represent
exon, intron, and UTR (untranslated region), respectively.

Full-size DOI: 10.7717/peerj.7995/fig-5

Liu et al. (2019), PeerJ, DOI 10.7717/peerj.7995 11/24

https://peerj.com
https://doi.org/10.7717/peerj.7995/fig-5
http://dx.doi.org/10.7717/peerj.7995


Figure 6 Conserved subdomains in the NAC domain at the N-terminal of GbNAC proteins. A–E indi-
cate five conserved subdomain A–E, respectively.

Full-size DOI: 10.7717/peerj.7995/fig-6

These membrane-bound GbNAC proteins are distributed in three groups: seven in group
V, 11 in group VII, and four in group VIII.

Cis-acting regulatory element and miRNA target analysis
To better understand the transcriptional regulation mechanisms of GbNAC genes, we
characterized the cis-acting regulatory elements within a 1,500 bp upstream region
from the transcription start site using PlantCARE and PLACE database (Table S6). A
large number of cis-acting regulatory elements were identified in promoter sequences
of 270 GbNAC genes (Fig. S3 and Table S7). Common regulatory elements such as
TATA-box and CAAT-box were present in all GbNAC genes. Meanwhile, we identified
11 cis-acting regulatory elements related to hormone responses. Among these, AuxRR-
core and TGA-element, auxin-responsive element; ABRE, MYB, and MYC, cis-element
involved in abscisic acid (ABA) responsiveness; GARE, P-box, and TATC-box, involved
in gibberellin responsiveness; ERE, ethylene responsive element; CGTCA-motif, MeJA
responsive elements; and TCA-element, involved in SA responsiveness. Notably, all of the
270 GbNAC genes contained at least one hormone-responsive element (Fig. S3). MYB,
MYC, and ERE were available in at least 80% of the GbNAC genes. Additionally, promoter
sequences of some GbNAC genes also contained several elements involved in biotic and
abiotic stress responses, including pathogen defense (AT-rich and TC-rich repeat), drought
(MBS), cold (DRE and LTR), anaerobic stress (ARE), and wounding (WUN-motif). Thus,
GbNAC genes could be regulated by diverse hormone and environmental changes.

Recent reports have defined a subset of genes from the NAC-domain gene family as
potential targets of miRNAs. To determine the involvement of miRNAs in regulating
the expression of GbNAC genes, putative miRNA targets were determined in the 270
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GbNAC genes using the online sever psRNATarget with the default parameters except
Expection (≤3.0). Totally, 43 GbNAC genes were predicted as the targets of 21 known
miRNAs (Table S8). Seven GbNAC genes were each predicted to be the targets of two
miRNAs and GbNAC007 was the target of three miRNAs (gra-miR8634, gra-miR8786a
and gra-miR8786b). Specifically, miR164 targets 14 GbNAC genes, which are all from
group II (Table S8). In Arabidopsis, the miR164 family (ath-miR164a/b/c) guides the
cleavage of the transcripts of five NAC genes (NAC1/At1G56010, CUC1/At3g15170,
CUC2/At5g53950, ANAC080/At5g07680, and ANAC100/At5g61430) that function in the
regulation of plant growth and development such as lateral root emergence, formation
of vegetative and floral organs, and age-dependent cell death (Fang, Xie & Xiong, 2014;
Hernandez & Sanan-Mishra, 2017). The 14 miR164-targeted GbNAC genes and the five
Arabidopsis NAC genes were clustered into group II, indicating that these genes have high
sequence identity and may have a similar function.

Expression profile of GbNAC genes in response to Verticillium wilt
and hormones
We used publicly available transcriptome data to assess expression of GbNAC genes in
roots under VW stress. As a result, 239 (88.52%) GbNAC genes were identified to be
expressed in infected root samples (Fig. 7). Three patterns (Pattern I–III) of expression
were revealed. Genes from Pattern I have low expression levels in the control and then
were up-regulated gradually during VW infection. Genes from Pattern II, in contrast to
Pattern I, were highly expressed in the control and then were subsequently down-regulated
during VW infection. Genes from Pattern III showed high expression levels in the control,
then were down-regulated at the early stages (2, 6 and 12 h) of inoculation, and finally
up-regulated at the late stages (24, 48 and 72 h) of inoculation. There are 130 duplicated gene
pairs among the 239 GbNAC genes. Most duplicated gene pairs (80.77%) demonstrated
similar expression patterns, suggesting that duplicated genes are functionally redundant.
However, some duplicated genes have a divergent expression. For example,GbNAC082 and
GbNAC083 are tandem duplication genes. GbNAC082 had considerably high expression in
the control and was up-regulated by VW stress at 2 h, while GbNAC083 had low expression
in the control and was down-regulated remarkably by VW stress at 2 h.

The expression of 192 GbNAC genes was significantly altered (|log2Fold| ≥1) in roots
inoculated with V. dahliae as compared to the control in at least one time point (Fig. S2).
103, 130, 123, 135, 130, and 128 GbNAC genes were significantly induced at 2, 6, 12, 24,
48, and 72 h after inoculation, respectively, which indicates the number of differentially
expressed GbNAC genes was similar among different time points. Additionally, the
expression of 62 GbNAC genes including 15 up-regulated and 47 down-regulated genes
were significantly altered at all of the six time points (Fig. S2 and Table S9). Eighteen
duplicated gene pairs were revealed among the 62 GbNAC genes. Notably, GbNAC
genes in each duplicated gene pair had similar expression patterns. The expression of
previously reported sea-island cotton NAC gene GbNAC1 (GbNAC220 in this study) was
also altered. GbNAC1, a positive regulator involved in cotton resistance to V. dahliae, was
down-regulated in infected roots compared to the control, which is consistent with qPCR
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Pattern I
Pattern II

Pattern III

Figure 7 Expression profiles ofGbNAC genes in roots under Verticillium wilt infection. The heat map
was generated by ClustVis software. The expression data were gene-wise normalized and hierarchically
clustered with average linkage. The bar on the right of the heat map indicates relative expression values.
Values 2, 0,−2 represent high, intermediated, and low expression, respectively.

Full-size DOI: 10.7717/peerj.7995/fig-7

results reported by Wang et al. (2016). These results imply that GbNAC genes could play
crucial roles in the defense of cotton against VW.

Phytohormones, such asMeJA and SA, regulate plant defenses against diverse pathogens.
In order to identify hormone-responsive GbNAC genes, G. barbadense cv. 7124 seedlings
were treated with MeJA and SA, and the changes in transcript abundance of 15 genes
selected from the 62 differentially expressed GbNAC genes were analyzed by qPCR. As
shown in Fig. 8, all the GbNAC genes tested were sensitive to the hormones MeJA and SA,
but the levels of sensitivity were substantially different at the four time points. In general,
most tested GbNAC genes were up-regulated under MeJA treatment, but down-regulated
under SA treatment. Specifically, the expression of two GbNAC genes (GbNAC014 and
GbNAC164) from group IV were up-regulated at all the four time points, and had at least
186-fold and 225-fold increase at 6 h compared with control, respectively (Fig. 8).

DISCUSSION
Characterization of GbNAC genes
In this study, we performed a genome-wide analysis of the sea-island cotton GbNAC
gene family to investigate their potential functions in response to VW. As a result,
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Figure 8 Expression profiles ofGbNAC genes in response to hormoneMeJA and SA. qPCR was used to analyze the expression profiles of 15
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270 GbNAC genes were revealed in the G. barbadense genome, which is similar to
that found in G. hirsutum (283 NAC members, Sun et al., 2018), but is about twice
as much as that found in G. raimondii (145, Shang et al., 2013) and G. arboreum (141,
Shang et al., 2016; Fan et al., 2018). The difference in the size of NAC genes is because
the genomes of tetraploid species possess more NAC genes than the diploid species,
presumably because an allopolyploidization event occurred in G. babardense and G.
hirsutum approximately 1.7–1.9 Mya (Hu et al., 2019). GbNAC genes were unevenly
distributed on 26 chromosomes, and a number of GbNAC genes were clustered on the
top or bottom of specific chromosomes (Fig. 2). These results are similar to those of the
two diploid cotton species, G. raimondii, and G. arboreum (Shang et al., 2013; Shang et al.,
2016).

According to themultiple sequence alignment, all theGbNACproteins contain the highly
conserved NAC domain with 150–160 amino acids, which can be further divided into five
distinct subdomains (A–E) at the N-terminal. However, a number of GbNAC proteins
have an atypical NAC domain pattern. For example, three GbNAC proteins (GbNAC068,
GbNAC200, and GbNAC226) have only conserved subdomain A, while four GbNAC
proteins (GbNAC033, GbNAC092, GbNAC109, and GbNAC242) have only subdomain D.
In addition, the previously reported GbNAC1 lacks the conserved subdomains B, C, and
E (Wang et al., 2016). NAC proteins lacking one to four subdomains were also observed
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in Arabidopsis, rice, and radish (Ooka et al., 2003; Nuruzzaman et al., 2010; Karanja et al.,
2017). Thus, the atypical NAC domain pattern appears to be common amongNACproteins
from diverse plant species. Previous studies revealed that subdomains A, C, and D have
higher levels of conservation than subdomains B and E, and play important roles in the
function of NAC genes (Ooka et al., 2003). Subdomain A has the ability to form a helical
structure and is involved in the formation of homodimers or heterodimers with other NAC
domain proteins (Jensen et al., 2010). Subdomain D contains the nuclear localization signal
and subdomain C is associated with DNA binding activity (Hernandez & Sanan-Mishra,
2017). In this study, most GbNAC proteins (196/270) contain subdomains A, C, and D,
whereas only 48 GbNAC proteins have subdomain B (Fig. 5). Furthermore, we found
231 GbNAC proteins contained a conserved histidine residue in subdomain D. A recent
study revealed that the conserved histidine residue is present in 80% of Arabidopsis NAC
members and functioned as a switch to regulate both pH-dependent homodimerization
and DNA binding (Kang et al., 2018). Thus, the subdomain D may function not only in
nuclear localization but also in the formation of functional dimers and DNA-binding.

NAC gene duplication was investigated in sea-island cotton genome. One hundred and
fifty-four duplicated NAC gene pairs including 148 segmental duplication pairs and 6
tandem duplication pairs were revealed in sea-island cotton (Fig. 3). Therefore, it can be
concluded that segmental duplication dominates the expansion of the NAC gene family in
theG. barbadense genome. Furthermore, most duplicated gene pairs had undergone strong
purifying selection during evolution, indicating that purifying selection played pivotal roles
in the confinement of the GbNAC gene functions, which was further confirmed by the
similar expression pattern of most duplication gene pairs. Previous studies have showed
that the A and D ancestor genomes diverged approximately 6.2–7.1 Mya (Hu et al., 2019).
In this study, about half of the duplication events occurred after the divergence of the two
diploid progenitors (Table S3). Synteny analysis indicated that the collinearity of NAC
genes for the four Gossypium species is highly conserved. However, the level of collinearity
is different. G. barbadense and G. hirsutum have the highest level of collinearity, while G.
barbadense and G. arboretum have the lowest level of collinearity (Table S4). The difference
is probably attributed to the genomic characteristics and evolution history of cotton. G.
barbadense and G. hirsutum evolved from a common tetraploid ancestor and diverged
approximately 0.4–0.6 Mya (Hu et al., 2019), which leads to high collinearity for the two
tetraploid species. Nevertheless, the A subgenome of G. barbadense has large chromosome
inversions in comparison with G. arboretum due to chromosomal rearrangement after
allopolyploidization (Wang et al., 2019), which results in relatively low collinearity between
G. barbadense and G. arboretum.

Differential expression of GbNAC genes in response to Verticillium
wilt
Cotton VW is a destructive soil-borne fungal disease and dramatically reduces the yield
and quality of cotton. VW was first reported in Virginia, USA, in 1914 and now occurs
worldwide. Over the past century, substantial efforts have been made to develop ways
to control VW, and a number of genes, such as Gh_A10G2076, GhATAF1, GbERF1,
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GbWRKY1, and GbRLK, have been revealed to be associated with VW resistance (Li et al.,
2017;He et al., 2016; Guo et al., 2016; Li et al., 2014; Jun et al., 2015). However, whether the
NAC genes could play possible role in response to VW in G. barbadense is still in question.
In this study, 62 GbNAC genes were identified to be significantly up- or down-regulated in
roots inoculated withV. dahliae at all six time-points (Fig. S2 and Table S9). These genes are
all from the 10 phylogenetic groups, except group V, and contain at least one cis-regulatory
element involved in stress responses (Table S7). We also found that GbNAC genes in each
duplicated gene pair had similar expression patterns in response to VW infection. The
functional redundancy of duplicated genes may be related to their similar gene structure,
motifs, and cis-regulatory elements. In Arabidopsis, fiveNAC genes (ANAC016, ANAC036,
ANAC037, ANAC061, ANAC081, and ANAC091) were significantly up-regulated after
chitin treatment (Libault et al., 2007). Chitin is an elicitor of plant defense responses and
its elicitation plays important role in plant defense to fungal pathogens. Among the 62
GbNAC genes, 10 genes clustered with ANAC081 are from group IV; 13 genes along with
ANAC036 and ANAC061 belong to group VI; 4 genes and ANAC091 are from group VII,
and 3 genes and ANAC037 are from group I (Table S9).

Previously, an upland cotton ATAF subfamily NAC gene, GhATAF1 (DT549350),
was reported to be up-regulated by V. dahliae inoculation. Cotton plants overexpressing
GhATAF1 increased susceptibility to pathogen V. dahliae (He et al., 2016). In our study,
GbNAC164, an ortholog to GhATAF1, was down-regulated by V. dahliae infection. The
different expression pattern may be caused by cotton genotypes and/or V. dahliae strains.
GbNAC164 was investigated in G. barbadense cv. 7,124 treated with a highly virulent V.
dahliae strain V991, while GhATAF1 was analyzed in G. hirsutum cv. YZ1 treated with a
moderately aggressive V. dahliae strain ICD3-2. Sea-island cotton GbNAC1 (GbNAC220
in this study) belongs to the Tobacco elicitor-responsive gene encoding NAC-domain
protein (TERN) subgroup and was down-regulated by VW. Cotton plants silencing
GbNAC1 reduce resistance to VW, whereas transgenic Arabidopsis lines overexpressing
GbNAC1 enhance resistance to VW compared to wild type (Wang et al., 2016). GbNAC220
was also down-regulated by VW in our study. In addition, MeJA and SA are important
pathogen-related hormonal regulators. Among the 62 GbNAC genes, 31 and 22 genes
contain MeJA- and SA-responsive elements, respectively, and 12 genes contain both MeJA-
and SA-responsive elements (Table S7), indicating the expression of these genes may be
regulated by MeJA and/or SA. These results were further verified by qPCR analysis. The
qPCR results indicated GbNAC003, GbNAC137, GbNAC140, GbNAC215, and GbNAC248
were sensitive to MeJA and SA treatments (Fig. 8), which was in agreement with the results
of cis-regulatory element analysis (Table S7). GbNAC164 was up-regulated by MeJA and
SA treatment. Moreover, GbNAC164 keeps high expression level more durable by SA than
by MeJA (Fig. 8). This result was consistent with GhATAF1 (He et al., 2016). Thus, these
findings suggest that up-regulating of the 62 GbNAC genes may result in increased or
decreased VW resistance in cotton and these genes can be candidate genes for in-depth
study on VW resistance.

Interestingly, GhATAF1 was also up-regulated by ABA, cold, and salt treatments.
Overexpression of GhATAF1 confers transgenic cotton improved salt tolerance (He et al.,
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2016). Similarly, TransgenicGbNAC1 results in enhanced drought tolerance in Arabidopsis
(Wang et al., 2016). TheNAC genes ANAC019, ANAC055 and ANAC072 from Arabidopsis
were up-regulated by drought, salt, and ABA treatments. Transgenic either ANAC019,
ANAC055 or ANAC072 conferred Arabidopsis plants enhanced drought tolerance. The
finding suggests that the 62 GbNAC genes may play role in response to abiotic stresses.

CONCLUSIONS
In this study, the plant-specific NAC gene family in sea-island cotton was characterized
with particular focus on their responses to VW infection. A total of 270 GbNAC genes
were identified and characterized in sea-island cotton. The gene structure, chromosomal
distribution, gene duplication, conserved motif, cis-elements, and expression profiles of
the GbNAC genes were analyzed. Furthermore, expression profile analyses revealed that
62 GbNAC genes may play crucial role in response to VW infection. However, further
functional data are required to evaluate each GbNAC gene. Overall, our results will provide
new insights for plant engineering programs so that economically important traits for
cotton can be developed, including improved resistance to VW.
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