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Obesity is the leading cause of health-related diseases in the United States and World.
Previously, we reported that obesity can change gut microbiota using the Zucker rat
model. Metformin is an oral anti-hyperglycemic agent approved by the FDA to treat type
2 diabetes (T2D) in adults and children older than 10 years of age. The correlation of
short-term metformin treatment and specific alterations to the gut microbiota in obese
models is less known. Short-term metformin has been shown to reduce liver steatosis.
Here we investigate the effects of short-term metformin treatment on population of gut
microbiota profile in an obese rat model. Five week old obese (n = 12) female Zucker
rats after 1 week of acclimation, received AIN-93 G diet for 8 weeks and then rats
were randomly assigned into two groups (6 rats/group): (1) obese without metformin
(ObC), or (2) obese with metformin (ObMet). Metformin was mixed with AIN-93G diet
at 1,000 mg/kg of diet. Rats were weighed twice per week. All rats were sacrificed
at the end of metformin treatment at 10 weeks and fecal samples were collected and
kept at −80◦C. Total microbial DNA was collected directly from the fecal samples used
for shotgun-metagenomics sequencing and subsequently analyzed using MetaPlAn
and HUMAnN. After stringent data filtering and quality control we found significant
differences (p = 0.0007) in beta diversity (Aitchison distances) between the ObC vs.
ObMet groups. Supervised and unsupervised analysis of the log-ratios Bacteroides
dorei and B. massiliensis vs. all other Bacteroides spp., revealed that B. dorei and
B. massiliensis were enriched in the ObMet group, while the remaining Bacteroides spp.
where enriched in the ObC group (p = 0.002). The contributional diversity of pathways
is also significantly associated by treatment group (p = 0.008). In summary, in the obese
Zucker rat model, short-term metformin treatment changes the gut microbiota profile,
particularly altering the composition Bacteroides spp. between ObC and ObMet.
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INTRODUCTION

Obesity has been an epidemic in the United States (US) and the
rate of adult obesity continues to grow. Data from the Centers for
Disease Control and Prevention (CDC) indicated that more than
one-third of United States adults are obese (Ogden et al., 2014).
However, recent data from CDC indicate that In 2017–2018,
the age-adjusted prevalence of obesity in adults was 42.4%, and
there were no significant differences between men and women
among all adults or by age group. The age-adjusted prevalence
of severe obesity in adults was 9.2% and was higher in women
than in men (Flegal et al., 2016). Obesity is associated with
several health problems such as type 2 diabetes, cardiovascular
disease, liver disease and certain types of cancers (Hakkak et al.,
2012). Childhood obesity has more than doubled in children,
and obesity has quadrupled in adolescents in the past 30 years
(Angulo, 2007; Ogden et al., 2008; Fryar et al., 2021). In the
United States, the prevalence of obesity is 19.3% and affects about
14.4 million children and adolescents. Obesity prevalence was
13.4% among 2- to 5-year-olds, 20.3% among 6- to 11-year-
olds, and 21.2% among 12- to 19-year-olds (Fryar et al., 2021).
Obesity is often associated with an increased risk of non-alcoholic
fatty liver disease (NAFLD), in which liver steatosis is commonly
observed (Fabbrini et al., 2010).

Non-alcoholic fatty liver disease is the leading cause of liver
disease in adolescents in the United States and world, and the
risk has increased with the rise of obesity (Lazo et al., 2013;
Welsh et al., 2013). Data from our animal studies using the obese
Zucker (fa/fa) rat model reported that obesity increases fatty liver
(steatosis) and that obese Zucker rats can develop fatty liver by
the starting age of 8 weeks (Hakkak et al., 2018, 2021).

The effects of obesity on composition and metabolic activity
of the intestinal microbiota is an active area of study (Ley et al.,
2005; Tremaroli and Bäckhed, 2012; Devaraj et al., 2013; Harsch
and Konturek, 2018; Pascale et al., 2019; Cao et al., 2020; Zhang
and Hu, 2020). Several studies have identified some differences
between the microbiota populations in lean and obese subjects
(Tremaroli and Bäckhed, 2012). Mice homozygous for the leptin
receptor mutation that results in the development of obesity
show a reduction in Bacteroidetes and an increase in Firmicutes
compared to their wild-type siblings when fed the same diet.
This effect is not limited to animals with a genetic predisposition
to obesity. Diet-induced obesity is also linked to changes in
the intestinal microbiota in mice (Turnbaugh et al., 2008). This
connection between adiposity and the gut microbial ecology
appears to apply to humans as well (Turnbaugh et al., 2009). It
is clear that both community composition and discrete bacterial
species can exert either pathogenic effects that encourage disease
development or probiotic effects that maintain health status
(Devaraj et al., 2013).

We recently reported the effects of obesity on gut microbiota
using a Zucker rat model via amplicon sequencing of the
16S rRNA gene (Hakkak et al., 2017). Several groups of
bacteria were differentially abundant between lean and obese
rats after 60 days. Furthermore, we found that principal
coordinate analysis (PCoA) plots of beta diversity, and LEfSe
analysis (Segata et al., 2011) suggested differences in intestinal

microbiota populations associated with both time point, and
lean or obese status, within the Zucker rat model for obesity
(Hakkak et al., 2017). The scientific community emphasizes
the need to investigate the effects of metformin in conjunction
with gut microbiota (McCreight et al., 2016; Rodriguez et al.,
2018; Pascale et al., 2019; Zhang and Hu, 2020). The gut
microbiota contains a diverse population of obligate and
facultative anaerobic microorganisms that contribute a broad
range of metabolic activities. These microorganisms usually exist
in a symbiotic relationship with the host and are important
in the digestion of dietary components and the metabolism
of nutrients and drugs (Ley et al., 2006; Vázquez-Baeza
et al., 2018; Weersma et al., 2020). The specific population
of organisms comprising the intestinal microbiota in an
individual is relatively stable under normal conditions, but
several factors, such as diet, disease state, antimicrobial use,
etc., can cause changes in the distribution of different bacterial
groups (Turnbaugh et al., 2009; Tagliabue and Elli, 2013). These
population changes can affect the metabolic capabilities of the
total microbiota population, which can affect the health of
the host (Rodriguez et al., 2018; Vázquez-Baeza et al., 2018;
Zimmermann et al., 2019).

Members of the genus of Bacteroides (e.g., B. vulgatus
and B. dorei) are mostly gram-negative anaerobic organisms.
Bacteroides spp. are often characterized as a predominant gut
bacterial species (Wexler and Goodman, 2017). Bacteroides
dorei, was recently isolated and distinguished from Bacteroides
vulgatus (Pedersen et al., 2013). Prior to this, both species were
difficult to disambiguate until the advent of 16S rRNA gene
amplicon sequencing methods (Pedersen et al., 2013). Although
very short-read high-throughput sequencing of the 16S rRNA
gene is unable to differentiate among the two taxa, success
can be achieved by targeting the longer V3V4 region of the
16S rRNA gene (Davis-Richardson et al., 2014). This potentially
explains seemingly contradictory results across ampicon-based
microbiome surveys regarding the identity of Bacteroides spp.
Prior studies have shown that these organisms might improve
the enteric environment and reduce bacterial lipopolysaccharide
(LPS) production (Yoshida et al., 2018). LPS is confirmed as a
potent inducer of hepatic inflammation like NAFLD in obese
subjects (Fukunishi et al., 2014).

Metformin is an oral anti-hyperglycemic agent approved by
the FDA to treat type 2 diabetes (T2D) in adults and children
older than 10 years of age. Several clinical trials have identified
modest improvements following metformin treatment in insulin
sensitivity in obese children with normal glucose tolerance
(Srinivasan et al., 2006; Burgert et al., 2008; Love-Osborne et al.,
2008; Brufani et al., 2013; McDonagh et al., 2014; Lentferink et al.,
2018; Raman and Foster, 2021), as well as a decrease in the BMI
of obese adolescents (Wilson et al., 2010). In addition, metformin
appears to improve lipid profiles in obese children (Kay et al.,
2001; Atabek and Pirgon, 2008). Furthermore, metformin is not
only used for the treatment of diabetes, but also for various
other diseases including cancer, cardiovascular diseases, and liver
steatosis (Lin et al., 2000; Foretz et al., 2014; Madsen et al., 2015;
Wang et al., 2016; Fujita and Inagaki, 2017; Lv and Guo, 2020;
Hakkak et al., 2021).
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Our prior research has also shown that short-term dietary
effects can be observed when obese Zucker rats are fed a diet of
soy protein with high isoflavones that can protect against liver
steatosis. Although these rats have gained more weight compared
to obese casein-fed rats, they had lower liver steatosis and
contained lower blood serum levels aspartate aminotransferase
AST, alanine aminotransferase (Hakkak et al., 2018). Similar
results were observed for obese Zucker rats fed an AIN-93 G
diet during metformin treatment (Hakkak et al., 2021). Prior
research within murine models and human subjects has shown
that short-term metformin treatment was sufficient to reduce
liver steatosis (Lin et al., 2000; Madsen et al., 2015; Wang et al.,
2016; Hakkak et al., 2021).

Although various mechanisms by which metformin acts are
still being investigated, the last decade of research has led to
some insightful discoveries on how the gut microbiome responds
to and contributes to the altered metabolic landscape driven
by metformin treatment, as reviewed by Sanz et al. (2015),
McCreight et al. (2016), and Pascale et al. (2019). The ability
of the microbiome to affect many other therapeutic treatments
is well known and of increasing interest (Vázquez-Baeza et al.,
2018; Zimmermann et al., 2019). Investigations on the effects
of metformin on the gut microbiota have shown increasing
evidence that a key factor of metformin action involves the gut
microbiome (Pastor-Villaescusa et al., 2016; de la Cuesta-Zuluaga
et al., 2017; Pascale et al., 2019). The effects of metformin on
murine models through the use of high-fat diet-induced obesity
(Zhang and Hu, 2020) revealed that metformin had significant
effects and changes on the composition of the gut microbiota
(Lee and Ko, 2014; Shin et al., 2014; Cao et al., 2020). However,
the correlation of short-term metformin treatment and specific
alterations to the gut microbiota in obese models and liver
steatosis is less known.

We have previously shown that short-term (10 weeks)
metformin treatment is a useful model for early adolescent
obesity related diseases, using obese Zucker rat model (Hakkak
et al., 2021). In this model, we were able to show that this
short-term metformin treatment can protect against NAFLD.
However, the possible mechanisms of this protection is less
known. Herein we extend our investigations of the gut
microbiome by focusing on the effects of short-term metformin
treatment on obese Zucker rats using shotgun metagenomics
to better resolve the species and strain-level identification
of microbial taxa (Hong et al., 2009; Jovel et al., 2016;
Wasimuddin et al., 2020).

MATERIALS AND METHODS

Experimental Design
All animal care and procedures were approved by the University
of Arkansas for Medical Sciences/Arkansas Children’s Research
Institute Institutional Animal Care and Use Committee and
adhered to the institutional policies and procedures. The
guidelines of the United States Department of Agriculture
(USDA) Animal Welfare Act were followed to ensure that the
care and use of animals were appropriate and humane.

Sampling and Storage
A total of 12 five-week-old female obese (fa/fa) Zucker rats were
purchased from Envigo, (Indianapolis, IN, United States), as
they are sexually mature by this age (Sengupta, 2013). Female
obese Zucker (fa/fa) rats are often used for non-diabetic obesity
studies because they are highly resistant to developing diabetes
unless fed a high fat diet (Corsetti et al., 2000; Gustavsson et al.,
2011), whereby we can investigate obesity and liver steatosis
without the confounding effects of a diabetic phenotype. We
have also shown that both obese male and female rats will
develop obesity and liver steatosis at the same rates and that
there is no difference on between both sexes (Hakkak et al., 2012,
2015, 2018). Rats were housed in an Association for Assessment
and Accreditation of Laboratory Animal Care approved animal
facility that is registered with the USDA and has a fully approved
Letter of Assurance on file with the Office of Laboratory Animal
Welfare of the National Institutes of Health. Rats were housed
one per cage in 12-h light-dark cycles and had ad libitum
access to feed and water. After 1 week of acclimation (age
42 days), rats had ad libitum access to water on semi-purified
AIN-93G diet (Envigo, Indianapolis, IN) for 8 weeks to mimic
obese adolescents (Hakkak et al., 2012, 2015, 2018). Rats were
weighed twice weekly. After 8 weeks on AIN 93-G diet, obese
rats were randomly assigned into two groups (6 rats/group): (1)
obese without metformin (ObC), or (2) obese with metformin
(ObMet), and maintained for 10 weeks. Metformin was mixed
with AIN-93G diet at 1,000 mg/kg of diet (Envigo, Indianapolis,
IN, United States). We used a modified formula of the Reagan-
Shaw approach for obesity to calculate the maximum dose
of metformin in the proposed experiment (Food and Drug
Administration, 2005). All rats were euthanized after treatment
in the 10th week. Fecal samples were collected over a 12-h period
a day before the metformin treatment diet and at the end of the
experiment. Fecal samples were stored at −80◦C until analysis.

DNA Extraction and Sequencing
Total microbial DNA was collected directly from the fecal
samples using a PowerSoil R© DNA isolation kit (MoBio
Laboratories, Inc., Carlsbad, CA, United States). Isolated
DNA was used for shotgun-metagenomics data collection using
Illumina NextSeq 500 (Supplementary Figure 1). Minimum
Information about a Metagenomic Sequence (MIMS) compliant
data (Field et al., 2007, 2008) are available from the National
Center for Biotechnology Information Sequence Read Archive,
under BioProject PRJNA770726.

Metagenomic Sequencing and Analyses
Shotgun metagenomic reads were first processed through the
metaWRAP (Uritskiy et al., 2018) read_qc module which wraps
FastQC (Andrews, 2010), Trim Galore (Martin, 2011; Krueger,
2015), and BMTagger (Rotmistrovsky and Agarwala, 2017),
to filter and trim low-quality reads, and remove potential
mammalian host sequences downloaded from GenBank (Benson
et al., 2005), i.e., human (Homo sapiens; hg38), mouse (Mus
musculus; mm10), rat (Rattus norvegicus; rn6), and pig (Sus
scrofa; 10.2). The resulting reads were then processed via
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MetaPhlAn and HUMAnN via the bioBakery suite (Beghini
et al., 2020) to determine microbial taxonomy and functional
potential. Data preparation, as well as unsupervised and
supervised microbial compositional analysis were performed
using DEICODE (Martino et al., 2019), songbird (Morton et al.,
2019), Qurro (Fedarko et al., 2020) and Emperor (Vázquez-Baeza
et al., 2013; Supplementary Figure 2). The data were formatted
for these analyses as outlined in Baker et al. (2021).

A taxonomic abundance table (feature-table) was generated
from MetaPhlAn and subsequently filtered to contain only
those bacteria that were identified at the species-level, and
which were present in at least 50% of the samples (6 of 12),
and contained at least 10,000 reads. This helps avoid spurious
log ratios, as reviewed in Baker et al. (2021). Beta-diversity
was calculated with DEICODE, which uses Robust Aitchison
PCA, and visualized via Emperor. DEICODE was run with
the following settings: min-sample-count 500, min-feature-count
1000, min-feature-frequency 0, max-iterations 10. Beta-diversity
significance testing was performed through PERMANOVA.
Upon visual inspection of the PCA plot, the feature-loadings of
Axis 1 (which appeared to separate the control and metformin
treatment groups), were visualized in Qurro. Either log-ratios
of specific microbes (e.g., Bacteroides spp.), or those ranked
above 0 and those equal or less than 0, were exported for post-
hoc significance testing to determine microbiota associated with
treatment group separation. This comprised our unsupervised
analysis of microbial taxa.

The same taxonomy table was then analyzed via Songbird to
rank microbial species that are associated with our metformin
treatment through the use of reference frames. The following
parameters were used: batch-size 3, num-random-test-examples
3, learning-rate 0.0001, epochs 50000, differential-prior 0.5,
min-feature-count 6, summary-interval 1. This comprised our
supervised analysis of microbial taxa.

A functional pathway table was generated with HUMAnN,
which contains the functional potential of each metagenome
sample. This data was analyzed similarly as the MetaPhlAn
data above except in this case DEICODE was used to ordinate
the samples with respect to functional pathway composition as
they relate to the treatment groups, while Songbird was used
to rank the pathways themselves as they relate to metformin
treatment. The HUMAnN pathway table was filtered to keep
pathways that were present in at least 50% of the samples (6
of 12) and contained at least 1,000 reads. The settings used
for DEICODE: min-sample-count 500, min-feature-count 1000,
min-feature-frequency 0, max-iterations 10. The setting used for
Songbird: batch-size 3, num-random-test-examples 3, learning-
rate 0.0001, epochs 100,000, differential-prior 0.5, min-feature-
count 6, summary-interval 1.

RESULTS

Body Weight
The final body weights for ObC vs. ObMet groups was 597.5 ±

41.4 g vs. 573.1 ± 48.1 g, respectively and not significantly
different (P = 0.20).

Microbial Diversity
No significant differences in alpha diversity were found between
the control and metformin treated groups. However, significant
differences in beta diversity were observed between these groups,
as measured by Bray-Curtis (p < 0.011) and DEICODE (Figure 1;
p < 0.002), but not Jaccard. DEICODE was further used as an
unsupervised approach to detect differentially abundant ratios
of microbiota. The log-ratio rankings of individual bacterial taxa
were found to be significantly different (p < 0.0025) between the
control and metformin groups after post-hoc analysis (Figure 1).
This signal was still present when either the top feature-rankings
were selected (Figure 2A), or only the feature rankings of
Bacteroides taxa (Figure 2B). The most notable finding is the
differential ratios of Bacteroides species present in each of the
treatment groups, i.e., increased B. dorei and B. massiliensis
(numerator taxa) in the metformin group relative to the control
group, while the opposite is observed for (denominator taxa)
B. xylanisolvens, B. vulgatus, B. uniformis, and B. intestinalis
(Figure 2B). The above patterns were also observed through a
supervised approach with Songbird (Supplementary Figure 3).

These results were generally consistent with LEfSe analyses
(strict all-vs.-all setting; Figure 3), B. dorei is enriched in ObMet
(Figures 3A,B) while B. intestinalis is enriched in the ObC
(Figures 3A,C), with other taxa also enriched in the control
group (Figures 3A,D–F).

Contributional Pathway Diversity
The observed contributional diversity of microbial taxa was also
significantly associated with the treatment group (p < 0.012),
as observed through unsupervised analysis via DEICODE
(Figure 4A). The majority of all pathways were contributed
by Bacteroides (Figure 4B). Although identical pathways can
be contributed by all the Bacteroides, the specific species from
which they are contributed, differs between the metformin and
control groups. This can be exemplified through the differential
contributional pathway diversity plots generated by HUMAnN,
using some of the top-ranked pathways as determined by
DEICODE (Figure 5 and Supplementary Figure 4). These
results were confirmed using the supervised approach of
Songbird (Supplementary Figure 5).

DISCUSSION

In this study, we examined the role of metformin, an anti-
hyperglycemic agent, on the gut microbiome of obese female
Zucker rats (fa/fa) during short-term treatment. This animal
model is the most widely used model for non-diabetic obesity
related research, unlike the Zucker Diabetic Fatty rat model.
The primary cause for obesity in Zucker (fa/fa) rats is due to
the mutation in the leptin receptor gene (fa) which is inherited
by the rats as an autosomal recessive trait. The rats become
noticeably obese by the age of 3–5 weeks, and by 14 weeks, >40%
of their body is composed of lipids (Zucker, 1972; Bray et al.,
1989). Furthermore, clinical studies and murine model systems
have shown that short-term metformin treatment was sufficient
to reduce liver steatosis (Lin et al., 2000; Madsen et al., 2015;
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FIGURE 1 | (A) Robust Aitchison PCA plot of metagenome samples processed through MetaPhlAn 3 and DEICODE and visualized with qurro. Bacterial species not
present in at least 50% of samples were removed from the analysis. Separation of Control and Metformin treated groups was significant (p-value 0.002).
(B) Corresponding log-ratio rankings for individual bacterial taxa oriented to Axis 1 (right). Numerator (red) / Denominator (blue) ratios of these taxa were computed to
generate a box-whisker plot (left), p-value 0.0025. These results were corroborated with songbird analyses.
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FIGURE 2 | DEICODE feature rankings. (A) Same plot as in Figure 1, with only the top-feature rankings selected (left), and their ratios plotted as a box-whisker-plot
(right). (B) Only Bacteroides spp. selected (left) and their ratios plotted as box-whisker plot (right).

Wang et al., 2016; Hakkak et al., 2021). Zucker rat models have
also significantly contributed to the study of the function and role
of microbiota in the gastrointestinal tract and its association with
diseases such as metabolic disorder besides obesity (Gawler et al.,
1989; Hakkak et al., 2017; Sui et al., 2019).

It is well established that the gut microbiota co-evolves with
the host and the modified gut microbiome has been strongly

linked with host obesity and associated therapeutics (Devaraj
et al., 2013; Harsch and Konturek, 2018; Whang et al., 2019).
Studies have shown that a high-fat diet for obesity, facilitates
metabolic disorders, like Type 2 diabetes mellitus (T2DM) which
may alter the gut microbiome (Pascale et al., 2019; Zhang and Hu,
2020). We reported the effects of obesity on the gut microbiome
of Zucker rats using amplicon sequencing of the 16S rRNA gene.

Frontiers in Microbiology | www.frontiersin.org 6 March 2022 | Volume 13 | Article 834776

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-834776 March 24, 2022 Time: 17:7 # 7

Robeson et al. Short-Term Metformin Alters Bacteroides Composition

FIGURE 3 | Differentially abundant bacterial taxa as determined by LEfSe analysis on MetaPhlAn 3 output. (A) Linear discriminant analysis (LDA) score plot of
differential taxa associated with the Control and Metformin groups. Differential feature plots for the respective taxa are shown across samples: (B) Bacteroides dorei,
(C) Bacteroides intestinalis, (D) Bifidobacterium pseudolongum, (E) Parasutterella excrementihominis, and (F) Turicimonas muris.

We found that obese rats showed higher ratios of the Firmicutes
to Bacteroidetes phyla than the lean rats within a given timeframe,
even though the rats were fed same high-fat diet. Gut microbiota
populations appeared to shift with both the time point and
observed phenotype (Hakkak et al., 2017).

Metformin is primarily administered alone or in combination
with other hypoglycemic drugs to effectively control the blood
glucose level of diabetic individuals, particularly to obese or
overweight patients (Maruthur et al., 2016; Thomas and Gregg,
2017). Subsequently, evidence from multiple studies underscores
the ability of metformin to reshape the gut microbiome in
rat models induced by high-fat diet and in T2DM individuals
(Zhang et al., 2015; Zhang and Hu, 2020). One of the studies
reported that metformin exerts hypoglycemic effects by affecting
the gut microbiome, which maintains intestinal barrier function,
increases the production of short chain fatty acids, regulates
bile acid metabolism, and affects glucose homeostasis. Hence,
it is important to understand the relationships between obesity
and the intestinal microbiota in correlation with the effects of
metformin in obese Zucker rats significantly in their widespread
use as a model disease system (Zhang et al., 2015).

Our study herein, PCA plots of beta-diversity showed
the separation of each test group (ObC and ObMet) into
different bacterial populations by unsupervised clustering
through Aitchison distances. The dominating taxa that are
associated with the separation of the metagenomic samples
include Bacteroides, Akkermansia, Bifidobacterium (Figure 1).
Previous studies related to metformin treatment on high-fat diet
induced obese rats have also reported the alterations of similar
taxa, particularly Bacteroides, Bifidobacterium (Zhang et al., 2019;
Zhang and Hu, 2020). In one such study, Zhang and Hu (2020)

has shown that metformin modulates the gut microbiota by
enriching short chain fatty acid (SCFA) producing bacteria, like
Bacteroides spp. We’ve observed similar taxonomic alterations
through the analysis of log-ratios, based on MetaPhlAn output.
Not only are Bacteroides spp. enriched HFD Zucker rats
in general, but our shotgun metagenomics analysis revealed
differences in the Bacteroides spp. that are differentially enriched
between the treatment groups. For example, we observed that
B. dorei, and B. massiliensis are enriched in ObMet, while
B. vulgatus, B. uniformis, B. intestinalis, and B. xylanisolvens are
enriched in ObC. The enrichment of D. dorei in the metformin-
treated Zucker rats was also observed in rats with T2D (Yoshida
et al., 2018; Zhang et al., 2020). Other studies in murine and
human models often observe the co-enrichment of B. vulgatus
and B. dorei across various disease states (Yoshida et al., 2018).
However, we observe that B. dorei is enriched in ObMet while
B. vulgatus is enriched in ObC (Figure 2 and Supplementary
Figure 3). This pattern, where the ratio of B. dorei to B. vulgatus
differs with respect to treatment groups, was also observed
in blockade treatments in metastatic melanoma (Usyk et al.,
2021) and with host epigenomic alterations of inflammatory
bowel disease (Ryan et al., 2020). It was proposed by Ryan
et al. (2020), that this pattern may be indicative of colonic-
crypt species-specific colonization and competition (Sonnenburg
et al., 2010; Lee et al., 2013) due to differences in metabolic
capabilities (Gutiérrez and Garrido, 2019). Whether this, or other
similar phenomenon, is occurring in our study system remains
to be determined.

The most abundant bacteria reported in our study is
Bacteroides dorei. Which is capable of metabolizing many drugs
(Zimmermann et al., 2019), and could potentially be doing
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FIGURE 4 | (A) Robust Aitchison PCA plot of metagenome samples processed through HUMAnN and DEICODE and visualized with qurro. Pathways not present in
at least 50% of samples were removed from the analysis. These values Separation of Control and Metformin treated groups was significant (p-value 0.012).
(B) Corresponding log-ratio rankings for Pathways oriented to Axis 1 (right), displaying only pathways contributed by Bacteroides spp. Numerator (red)/Denominator
(blue) ratios of these pathways were computed to generate a box-whisker plot (left), p-value 0.008. These results were corroborated with songbird analyses.
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FIGURE 5 | Differential contributional pathway diversity of top-ranked pathways, determined by DEICODE and qurro from HUMAnN analysis.

so with metformin. LEfSe analysis (Segata et al., 2011), also
confirmed that Bacteroides dorei was enriched in metformin
treated obese rats compared to the control group (Figure 3).
Bacteroides intestinalis, Bifidobacterium pseudolongum,
Parasutterella excrementihominis, and Turicimonas muris
were found to be abundant in non-metformin treated obese rats.

A subsequent pathway ranking analysis revealed similar
results about the taxa contributing functional pathways. The
Bacteroides sp. described above were found to be contributing to
the pathways from both test groups. Some taxa are reportedly
found exclusively in mouse models like Turicimonas sp.
(Lagkouvardos et al., 2016), while others may be present in both
rat models and humans.

Recent evidence has shown that individuals who are
genetically susceptible to various autoimmune diseases, like
T2DM have substantial differences in gut microbial composition
than non-genetically susceptible individuals (Bakir et al., 2006).
Davis-Richardson et al. (2014) reported in their study about
the role of Bacteroides dorei dominating the gut microbiome
in Finnish children likely susceptible to type 1 diabetes
mellitus (T1D). Significantly higher composition of B. dorei
and B. vulgatus was found in the autoimmune susceptible
children than in the control group with the help of metagenomic
sequencing. The study also suggested the potential involvement
of B. dorei in autoimmune disorders like T1D.

Bacteroides vulgatus has been associated with the reduced risk
of immune-related adverse events (Usyk et al., 2021), including
dermatological skin toxicity (where B. dorei anti-correlated)
(Zhang et al., 2021). Furthermore, B. vulgatus has been shown

to be protective against Escherichia coli induced colitis of
interleukin-2-deficient gnotobiotic mice (Waidmann et al., 2003).
In contrast, several studies revealed that B. vulgatus is generally
viewed as a pathobiont (Ó Cuív et al., 2017), often associated
with colitis in murine (Bloom et al., 2011) model systems, as well
as human ulcerative colitis (Mills et al., 2022), irritable bowel
disease (Ryan et al., 2020), and celiac disease (Schippa et al.,
2010; Bloom et al., 2011; Wu et al., 2021). It has also been shown
that B. vulgatus has an increased protease activity compared to
other Bacteroides spp., and can cause barrier dysfunction (Riepe
et al., 1980; Mills et al., 2022). We are unable to determine if this
is at all related to the observed patterns described herein. This
highlights the importance of ecological context when considering
where a particular microbe lies on the “parasitism (pathogen)–
mutualism” spectrum (Drew et al., 2021).

The major differences in this current study with previously
related studies is the reliance of obese animals fed with same
diets compared to high-fat diet for inducing obesity (Zhang
et al., 2015). Also, the emphasis of metformin treatment and
subsequent examination of the gut microbiota for compositional
changes is less known in the scientific community. Thereby, the
relationship between obesity, gut microbiome and the role of
B. dorei demands further investigation in the Zucker rat model.
Sample size is a major limiting factor in this study, a larger sample
size applying short-term metformin treatment may strengthen
the weight/power of the data.

Subsequently, the development of different chronic diseases is
linked to obesity and also the host’s gut microbiome, where the
relationship between the two plays a vital role in development
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of autoimmune diseases, cardiovascular disease, kidney disease
and certain types of cancers (Wang et al., 2017; Vázquez-Baeza
et al., 2018; Hobby et al., 2019; Kazemian et al., 2020; Sepich-
Poore et al., 2021). Consequently, future investigations may be
conducted on the relationship between obesity, metformin or
other related drug, gut microbiota and several related diseases can
be based on the standard data from provided by our study on the
interaction and role of metformin correlated with obesity and the
gut microbiome in Zucker rats.
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