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ABSTRACT: Virtually all biological processes depend on the interaction
between proteins at some point. The correct prediction of biomolecular
binding free-energies has many interesting applications in both basic and
applied pharmaceutical research. While recent advances in the field of
molecular dynamics (MD) simulations have proven the feasibility of the
calculation of protein−protein binding free energies, the large conformational
freedom of proteins and complex free energy landscapes of binding processes
make such calculations a difficult task. Moreover, convergence and reversibility
of resulting free-energy values remain poorly described. In this work, an easy-
to-use, yet robust approach for the calculation of standard-state protein−
protein binding free energies using perturbed distance restraints is described.
In the binding process the conformations of the proteins were restrained, as
suggested earlier. Two approaches to avoid end-state problems upon release of
the conformational restraints were compared. The method was evaluated by
practical application to a small model complex of ubiquitin and the very flexible ubiquitin-binding domain of human DNA
polymerase ι (UBM2). All computed free energy differences were closely monitored for convergence, and the calculated binding
free energies had a mean unsigned deviation of only 1.4 or 2.5 kJ·mol−1 from experimental values. Statistical error estimates were
in the order of thermal noise. We conclude that the presented method has promising potential for broad applicability to
quantitatively describe protein−protein and various other kinds of complex formation.

■ INTRODUCTION

Virtually all biological processes rely on the interaction between
macromolecules at some point. While the number of
experimentally determined protein structures grows rapidly, it
has been proven difficult to obtain experimental structures of
protein−protein complexes. Moreover, a single protein might
have multiple interaction partners, which is further increasing the
number of desired complex structures. In the field of drug design,
the computational modeling of macromolecular interactions can
give insight into the mode of action of biological therapeutics like
antibodies and aid the development thereof. Methods like
protein−protein docking attempt to overcome the mismatch
between the number of available complex structures and single
protein structures by the prediction of binding interfaces.
However, the binding free energy estimates given by the scoring
algorithms used in such approaches show only poor correlation
with experimentally determined binding free energies.1 It is
moreover noted that thermodynamic properties are intrinsically
determined by ensembles of microstates and not from single
structures.2 If a precise binding free energy estimate should be
calculated from a complex structure by computational means,
molecular dynamics (MD) simulations are the method of choice,
given the efficient sampling of macromolecular phase-space.
Because of the large phase-space and the possible conformational
changes accompanying binding reactions, different approaches

to the efficient calculation of protein−protein binding free
energies have been proposed.
While more recent approaches all employ methods to enforce

a reaction along a geometrical pathway of some kind, Gohlke et
al. attemptedmore than a decade ago to calculate the binding free
energies of protein−protein complexes by the difference in
solvation free energy of the complex and the single proteins
obtained from implicit solvent models. The binding free energy
estimates obtained by this approach showed poor correlation
with experimentally determined values, and error estimates were
in the order of 15−25 kJ·mol−1, which might be due to rather
short trajectory lengths from today’s viewpoint.3,4 At the same
time, computational studies of protein−protein complexes
employing nonequilibrium simulations were described.5 How-
ever, a more recent attempt to calculate binding free energies
from many nonequilibrium simulations using Jarzynski’s equal-
ity6 largely overestimated the binding strengths of the modeled
proteins.7 Later, stabilities of different amyloid fibers were
studied employing atomistic explicit solvent MD simulations and
a combination of umbrella sampling at different distances of the
molecular center of masses (COMs) and the weighted histogram
analysis method.8−10 Dadarlat and Skeel demonstrated the
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calculation of binding free energies of small proteins that were in
agreement with experimental values using the same general
approach and additional restraints on the relative orientation and
conformations of the proteins.11 The method was later
generalized by Gumbart et al., who successfully calculated the
binding free energy of the Barnase-Barstar complex.12 In a
different approach, restraints on the number of native contacts
between proteins were applied.13 Bidirectional nonequilibrium
simulations using multiple fixed steering centers have also been
used to calculate protein−protein binding free energies.14

Furthermore, coarse-grained models have been employed to
calculate the binding strengths of proteins from MD
simulations,15,16 with a very recent proposal to rank docking
structures employing umbrella sampling in combination with
mean-force integration.17

While the calculation of standard-state protein−protein
binding free energies that are quantitively comparable to
experimentally determined values has already been demon-
strated,11−14 error estimates for the computed values were either
still in the order of 6−9 kJ·mol−1,11,12,14 or lacking completely.13

Moreover, it has been shown that it is important to consider the
dissipation of work that leads to irreversibilities, i.e. hysteresis
effects, also in equilibrium approaches like umbrella sampling.18

Closely related to the phenomenon of hysteresis is the
convergence of thermodynamic properties resulting from
simulations. While in general convergence relies on the sufficient
sampling of phase-space, it has been shown that nonequilibrated
trajectory regions can contribute to poor convergence of
calculated properties,19,20 which in turn leads to hysteresis.
Irreversibility, hysteresis, and convergence of the resulting
binding free energy values have not been thoroughly discussed
in recent literature on protein−protein binding.11−14 For
sufficiently converged free-energy calculations, the accuracy
will be mostly dependent on the force field used to describe the
molecular interactions. However, the lack of a proper discussion
of the convergence, and hence the precision of the methods,
hampers a fair comparison and represents a significant drawback
in recent literature.

■ APPROACH
The aim of this work is to introduce a relatively simple method
with broad applicability for the calculation of protein−protein
binding free energies using perturbed distance restraints with
special emphasis on reversibility and convergence. The general
approach is similar to the work described in refs 11 and 12. The
methodology will be applied to the complex of ubiquitin (UBI)
and the ubiquitin-binding domain of the human DNA polymer-
ase ι (UBM2) and of a mutant (P692A) of the latter protein. The
calculation of the binding free energy was split into three
different steps, as depicted in the thermodynamic cycle given in
Figure 1. For the simulation of binding and unbinding
(calculation of ΔGunbind

res ), both proteins were restrained to a
bound conformation using an elastic network (EN) approach, i.e.
through intramolecular Cα−Cα distance restraints. Moreover, in
the bound state, additional intermolecular Cα−Cα distance
restraints were used to ensure a canonical binding mode of the
proteins during the simulation of binding. The intermolecular
restraints were turned off during unbinding to allow free rotation
of the unbound molecules. To keep the proteins in a defined
volume with respect to each other and to limit sampling of phase-
space in the unbound state, a single distance restraint between
the COMs of both proteins was introduced during unbinding.
Different approaches to restrain the proteins to bound

conformations and orientations during the simulation of binding
and unbinding have already been discussed in recent
literature11−14 and were used to facilitate the simulation of
protein binding and to shift the computationally expensive
sampling of conformational changes accompanying binding
reactions to separate simulations which can be performed in
smaller simulation boxes. The free-energy contributions of
releasing the applied ENs in the unbound state (ΔGen,1

u ,ΔGen,2
u )

were calculated for each protein alone, and the contributions of
releasing the ENs and the intermolecular Cα−Cα distance
restraints in the bound state (ΔGen,dr

b ) were also calculated in a
separate simulation. Following the thermodynamic cycle, the
binding free energy of the unrestrained proteins can be calculated
according to

Δ = Δ − Δ − Δ − ΔG G G G Gbind en,dr
b

unbind
res

en,1
u

en,2
u

(1)

To compare the resulting binding free energy with experimental
values, a standard-state correction must be added. The standard-
state correction terms used will be discussed in the Methods
section below.
The processes for which the free-energy contributions to the

binding free energy were calculated were defined using perturbed
distance restraint potentials. A harmonic potential energy
restraint function for a distance r with a force constant k was
coupled linearly to a coupling parameter λ. The coupling
parameter can take values between zero and one, thereby
connecting two distinct states A and B:

λ λ λ λ λ= − + − − −U r k k r r r( , )
1
2

[(1 ) ][ (1 ) ]A B A B
2

(2)

The free-energy difference for an arbitrary process involving
both the modification of the force constant and the restrained
distance for multiple restraining potentials can be simply
obtained for such λ-coupled potentials by, for example,
thermodynamic integration (TI)21 or Bennett’s acceptance
ratio (BAR).22 Note that this approach differs from the more
typically used umbrella sampling technique, where a potential of

Figure 1. Thermodynamic cycle of protein−protein binding used for
the calculation of the binding free energy (ΔGbind) in this work. Orange
and blue cartoons represent the binding partners for which a binding
free energy is calculated. Arrows indicate the direction of the considered
reaction for which a free-energy difference is calculated. Restraints used
to keep the molecules in a defined conformation (ENs) are indicated by
circles filled with a cross. Distance restraints are indicated by black lines.
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mean force along a (geometrical) reaction coordinate is
computed.9−14,23 By using perturbed distance restraints, multiple
distance restraints can be coupled elegantly to a single parameter
λ. We do not unbias a set of restrained simulations but compute
the free-energy difference between two end-states in which some
intermolecular restraints remain and compute the free-energy
contribution of the restraints explicitly. However, the introduc-
tion or complete removal of restraining potentials by setting the
force constant of one end-state to zero can be problematic in
practice, as sampling of (almost) unrestrained regions of the
reaction coordinate will be required to cover a very large
conformational space, leading to high numerical errors and
uncertainties. This issue is often referred to as “end-state
problem”. Approaches in which the protein conformation is
restrained through alternative methods (for example RMSD
restraints discussed in refs 11 and 12) will invariably suffer from
similar end-state problems. Different approaches to counteract
this issue for distance restraints have been proposed in the
literature, the first being so-called “hidden restraints” (HR),
where the potential energy function given in eq 2 is modified with
an additional prefactor including two selectable parameters n and
m to smoothen the free-energy contribution near the affected
end-state:24,25

λ λ λ

λ λ λ λ

= −

× − + − − −

+U r

k k r r r

( , ) 2 (1 )
1
2

[(1 ) ][ (1 ) ]

n m n m

A B A B
2

(3)

A second approach proposed very recently aims at “softening”
the harmonic potential energy function toward greater distance
deviations and has been shown to be efficient for the simulation
of chemical bond formation and breaking.26 For this “soft-core”
potential energy restraint (SCR), again a prefactor is introduced
to eq 2, with a selectable parameter α, here given for a restraint
that is being turned off toward state B (i.e., kB = 0):

λ
αλ λ λ

λ λ λ λ

=
+ − − −

× − + − − −

U r
r r r

k k r r r

( , )
1

1 [ (1 ) ]
1
2

[(1 ) ][ (1 ) ]

A B
2

A B A B
2

(4)

While turning off the intermolecular Cα−Cα distance restraints
during the simulation of protein binding and unbinding
(ΔGunbind

res ) was only performed using HR potentials, the
contributions of the intermolecular Cα−Cα distance restraints
in the bound state and the ENs in the bound (ΔGen,dr

b ) and
unbound (ΔGen,1

u ,ΔGen,2
u ) states were both calculated using HR

and SCR potential energy functions. A more detailed description
of the simulation setups is given in the Methods section below.
As discussed above, the convergence of the computed free-

energy values was of major importance for this work. In
particular, both the forward and reverse cumulative average of the
free energies over the trajectories were monitored to identify the
equilibrated region of the trajectory and to increase confidence in
the numerical correctness of the result.19,20

■ METHODS
Simulation Settings. Standard-state binding free energies of

a wild-type (wt) UBI domain to the wt UBM2 domain and to a
mutant (P692A) UBM2 domain were calculated using the
approach described above. All MD simulations were started from
the first complex structure provided in the PDB entry 2KTF,
which was calculated from nuclear magnetic resonance (NMR)

observables.27 Despite a complex structure of wt UBI and P692A
UBM2 also being available in the PDB, for simulations of P692A
UBM2 the structure of the mutated domain was prepared from
the wt complex structure using the mutagenesis wizard of
PyMOL, given the high structural similarity to the complex of the
wt proteins27 and the unequal number of residues in both
structures.
Proteins were parametrized using the GROMOS 54A8 force

field28 with the GROMOS++ software package29 followed by a
conversion to the GROMACS topology format. All MD
simulations were performed with the GROMACS 5.1.2 software
package,30 which was modified to allow for the use of the HR and
SCR potential energy functions given in eqs 3 and 4, respectively.
After initial energy minimization for 2000 steps in vacuo using a
steepest descent algorithm, proteins were solvated with SPC
water31 in a 3D PBC rhombic dodecahedral box with a minimum
protein-to-wall distance of 1.0 nm. Sodium and chloride ions
were added to reach a concentration of 0.15 mol·L−1 and to make
the system charge neutral. The ion concentration was chosen to
approximately reproduce the physiological ionic strength and the
ionic strength used in the experimental determination of the
binding affinity in ref 48. Subsequently, systems were energy
minimized again for 2000 steps using a steepest descent
algorithm. For initial equilibration, random velocities from a
Maxwell−Boltzmann distribution at 60 K were assigned to all
atoms, and the system was simulated in a NVT ensemble using a
velocity-rescaling thermostat32,33 with a relaxation time of 0.1 ps
at 60 K for 20 ps. The system was then heated by increasing the
temperature of the external heat bath by 60 K every 20 ps to reach
a final temperature of 300 K. Initial equilibration to a constant
pressure of 1 bar was then performed for 50 ps using a weak-
coupling barostat32 with isotropic pressure scaling, a relaxation
time of 0.5 ps, and an isothermal compressibility of 4.5·10−5

bar−1. Until this point, position restraints with force constants of
1000 kJ·mol−1·nm−2 in the x-, y-, and z-coordinates on all non-
hydrogen protein atoms were used. Constant pressure
equilibration was then continued for 50 ps with the same
parameters but without position restraints. Production runs were
performed in an NPT ensemble using a Parrinello−Rahman
barostat34,35 with isotropic pressure scaling, a relaxation time of
2.0 ps, and an isothermal compressibility of 4.5·10−5 bar−1. For all
MD simulations, a leapfrog integration scheme36 with a time-step
of 2 fs was used, and covalent bonds were constrained to a
constant distance using the LINCS algorithm.37 Neighbor
searching was performed using a group-based cutoff scheme
every 5 steps with a cutoff sphere of 1.4 nm. Calculation of
nonbonded electrostatic and Lennard-Jones interactions was
done within a cutoff sphere of 1.4 nm. For the calculation of
electrostatic interactions, a reaction-field contribution38 with a
relative dielectric permittivity of 6139 beyond the cutoff sphere
was added.
Structures of the bound wt and P692A complexes and of the

individual proteins were simulated for 30 ns in an NPT ensemble
after equilibration. After 5 ns, a snapshot of the wt complex
simulation was taken to define the ENs used for restraining the
proteins to a bound conformation. Before the calculation of the
EN, the structure was energy minimized in vacuo for 2000 steps
using a steepest descent algorithm to remove possible high-
energy conformations. Intramolecular harmonic EN distance
restraints were defined for Cα−Cα distances between a lower
cutoff of 0.4 nm and a higher cutoff of 0.9 nm with the restrained
distance being the Cα−Cα distance in the energy-minimized
snapshot and a force constant of 250 kJ·mol−1·nm−2. For UBI,
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352 unique intramolecular distance restraints and for UBM2, 108
unique intramolecular distance restraints were formulated. While
previous work focused on the tuning of EN parameters,40−42

preliminary simulations revealed that the method is relatively
robust against the use of slightly different definitions of the ENs
regarding the choice of the force constant and the cutoff
distances. The specific intermolecular Cα−Cα distance restraints
and COM−COM distance restraint in the bound state were also
defined from the energy-minimized snapshot taken after 5 ns.
The same distances were used for the complex of UBI with wt
UBM2 and P692A UBM2. In total 12 specific intermolecular
Cα−Cα distance restraints were used to defined the bound,
restrained state.
For the simulation of protein binding and unbinding

(ΔGunbind
res ), complex structures taken from the snapshots of

unrestrained simulations at 5 ns were re-equilibrated in bigger
simulation boxes allowing for the increase of the intermolecular
distance. Minimum protein-to-wall distances were either 2.5 nm
for binding and unbinding in a 3D PBC rhombic dodecahedral
box (radial COM−COM distance restraint, system RS) or 1.0
nm in the x- and y-coordinates based on the dimensions of the
bigger UBI protein and 2.5 nm (system ZS) or 7.5 nm (system
ZL) in the z-coordinate for binding and unbinding in a 3D PBC
rectangular box in which the COM−COM vector was aligned
along the z-coordinate. Different box sizes for the latter were
chosen to test whether the calculation of specific Cα−Cα
distances in the unbound regions, where proteins can freely
rotate, are prone to periodicity effects. Intramolecular EN
distance restraints and specific intermolecular Cα−Cα distance
restraints were already applied during equilibration. For systems
ZS and ZL, additional COM−COM distance restraints to zero
distance in the x- and y-components were applied with a force
constant of 3000 kJ·mol−1·nm−2 to keep the COM−COMvector
aligned along the z-axis. To equilibrate the different simulated λ
points from the bound to the unbound state, the system was
changed from λ = 0 (bound state) to λ = 1 (unbound state) in 54
unequally spaced discrete steps with a simulation time of 100 ps
per λ point. The number and spacing of the used λ points (see
Table S1 in the Supporting Information) was optimized in
preliminary simulations to allow reversible binding and
unbinding of molecules in a Hamiltonian replica exchange
setup and to minimize errors during numerical TI. During
unbinding, the distances of the specific intermolecular Cα−Cα
distance restraints were increased linearly by a maximum of 2.5
nm in the unbound state, while the force constant was turned off
from effectively 250 to 0 kJ·mol−1·nm−2 with hidden restraints
parameters n = 0,m = 2, and kA = 62.5 kJ·mol−1·nm−2. The radial
COM−COM distance restraint in the system RS or the COM−
COM distance restraint in the z-component in the systems ZS
and ZL was also increased linearly during unbinding by a
maximum of 2.5 nm in the unbound state, and the force constant
was increased linearly from 0 to 3000 kJ·mol−1·nm−2. The
dependence of the scaling factors of the restraining potential
functions on λ is given in Figure 2, and a detailed description of
the intermolecular distance restraint parameters is given in Table
S2 in the Supporting Information. For the simulations used for
the free energy calculations, a Hamiltonian replica exchange MD
(HREMD) scheme was employed to enhance sampling.43 Every
20 ps, an exchange of the coordinates and momenta of
neighboring λ points was attempted. The potential energy
difference of the applied λ-dependent restraints between the
original and exchanged coordinates was calculated, and the
exchange was accepted under the Metropolis criterion which

ensures detailed balance. Simulations of all systems were
performed for 50 ns per λ point.
For the calculation of the free energy contributions of the

applied ENs in the unbound state (ΔGen,1
u ,ΔGen,2

u ) and the ENs
and the specific intermolecular Cα−Cα distance restraints in the
bound state (ΔGen,dr

b ), similar simulation setups were used. The
structures of the single proteins were taken from the snapshot of
the free complex simulation at 5 ns and solvated in 3D PBC
rhombic dodecahedral boxes with a minimum protein-to-wall
distance of 1 nm. All structures were then simulated after
equilibration in an NPT ensemble without restraints for 30 ns.
The Cα−Cα distance restraints were subsequently turned on
from λ = 1 (unrestrained state) to λ = 0 (restrained state) in 31
equally spaced steps for 100 ps to generate the starting
configurations of the λ points used in subsequent HREMD
simulations for the calculation of the restraint free energy
contributions. With the HR potential function given in eq 3,
restraints were turned off to λ = 1 from an effective force constant
of 250 kJ·mol−1·nm−2 with hidden restraints parameters n = 0, m
= 2, and kA = 62.5 kJ·mol

−1·nm−2. With the SCR potential energy
function given in eq 4, restraints were turned off from a force
constant of kA = 250 kJ·mol−1·nm−2 with a soft-core parameter
α = 5 nm−2. All production simulations were performed again in a
HREMD setup with a time interval between exchange attempts
of 100 ps. Simulations were run for 50 ns per λ point and in
selected cases continued for another 50 ns per λ point.

Standard-State Corrections. To compare binding free
energies calculated according to the scheme given in Figure 1 and
eq 1 with experimentally determined values, the restrained
unbinding free energy (ΔGunbind

res ) needs to be corrected for the
fact that in the unbound state, the protein molecules are not
present at a standard-state concentration for solutes of 1 mol·L−1.
The correction term describes the free-energy contribution of
bringing one molecule from the available volume in the unbound
state to the standard-state volume of V⊖ = 1.661 nm3. For a radial
unbinding coordinate as used in system RS, the unbound volume
is the volume of the hollow sphere given by the difference in the

Figure 2. Scaling prefactors f(λ) for the potential energy functions of the
different intermolecular distance restraints along λ used for the
simulation of protein binding and unbinding. The potential energy
f un c t i on s u s ed in eq s 2 and 3 a r e f o rmu l a t ed a s

λ λ λ λ= − − −U r f k r r r( , ) ( ) [ (1 ) ]1
2 A B

2. The scaling factor for the

intermolecular Cα−Cα distance restraints are indicated with a red line
(HR, f(λ) = 4(1− λ)3) and the linear scaling factor for the radial COM−
COM distance restraint or linear COM−COM distance restraint in the
z-component is indicated with a violet line ( f(λ) = λ).
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minimum and maximum COM−COM distance sampled in the
unbound state, ru

min and ru
max, and the correction reads

π
Δ = −Δ +

−
⊖

⊖⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G G RT

V
r r

ln
[( ) ( ) ]bind

,res
unbind
res

4
3 u

max 3
u
min 3

(5)

If protein binding and unbinding is simulated only in one
component of the Cartesian coordinate system (as done for
systems ZS and ZL), the unbound volume is the volume of the
cuboid given by the minimum and maximum COM−COM
distances in the x-, y-, and z-components in the unbound state
(Δrx,u, Δry,u, and Δrz,u).44 Furthermore, an additional correction
term has to be introduced to account for the rotational restriction
of the complex in the bound state. This term describes the change
in the bound area available to the restrained and unrestrained
complexes, respectively. The bound area of the restrained
complex is calculated from the maximum deviations of the
COM−COM restraints in the x- and y-components in the bound
state (Δrx,b and Δry,b). The bound area of the unrestrained
complex is calculated from the average radial COM−COM
distance in the unrestrained state ( ̅rb) of the simulation used to
calculate the free-energy contribution of the ENs and
intermolecular distance restraints in the bound state. Note that
it would also be possible to calculate the free-energy contribution
of the rotational restriction from the ratio of the angular volume
in the unrestrained state and the restrained (cuboid) volume in
the restrained state. However, both approaches can be
considered almost equivalent as in the restrained state, the
protein−protein distance fluctuates mainly in the z-component,
and the freedom in this dimension would approximately cancel
with the freedom of the radial protein−protein distance in the
unrestrained state.

π

Δ = −Δ +
Δ Δ Δ

− ̅
Δ Δ

⊖
⊖⎛

⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

G G RT
V

r r r

RT
r

r r

ln

ln
4

x u y u z u

x y

bind
,res

unbind
res

, , ,

b
2

,b ,b (6)

For simulation setups RS, eq 5 was used to obtain a standard-
state binding free energy, and for simulation setups ZS and ZL,
eq 6 was used. The standard-state binding free energy of the
proteins accordingly becomes

Δ = Δ + Δ − Δ − Δ⊖ ⊖G G G G Gbind bind
,res

en,dr
b

en,1
u

en,2
u

(7)

Trajectory Analysis and Evaluation. All free-energy
differences of the processes given in Figure 1 were computed
using the BAR program of the GROMACS software package.
Error estimates were calculated using the same program: The
trajectories were split into 5 blocks, and error estimates for the
free-energy differences were calculated from standard errors of
the mean of the individual free-energy differences of those
blocks, which were assumed to be independent. All calculated
free energies were closely monitored for convergence, i.e. the
forward and reverse cumulative averages over the trajectories
were calculated and compared. If both forward and reverse
cumulative averages were constant and equal, the calculations
were considered converged. Moreover, nonequilibrated data
from the beginnings of the trajectories were discarded to improve
convergence.19,20 Additionally, diffusion of the different replicas
in HREMD simulations through the reaction coordinate λ was

monitored as a measure for reversibility of the simulated
reactions. In particular, the average number of uniquely visited λ-
points per replica, the number of full-trips (all λ-points were
visited at least once by one replica), and the number of round-
trips (after all λ-points were visited at least once, the replica
diffused to its starting λ-point again) were calculated for each
trajectory. Example replica trajectories that were classified as
round-trip, full-trip, or none of those are given in Figure 3.

For structural analysis of the generated trajectories of the
bound complexes, the number of intermolecular hydrogen bonds
and the buried surface area of the proteins were calculated.
Hydrogen bonds were defined using a geometric criterion, with a
maximum hydrogen−donor−acceptor angle of 30° and a
maximum donor−acceptor distance of 0.35 nm. The buried
surface area was defined by the difference in the surface area45 of
both single proteins and the bound proteins. Additionally, the α-
helical and β-strand secondary structure content of both the
simulated bound and unbound proteins was monitored using the
DSSP algorithm.46

In addition to the structural analyses described above,
ensembles generated in the end-states of the simulations of
both the bound and unbound wt proteins were tested for
agreement with experimentally determined hydrogen−hydrogen
distances using NMR nuclear Overhauser effect spectroscopy
(NOESY). As many ambiguous NOE assignments were present
in the available NOESY data downloaded from the PDB,
⟨r−3⟩−1/3 averaged distances from the generated trajectories were
compared with experimental upper bounds for interatomic
distances that were not violated in the first structure of the
respective structure bundle. NOE analyses were performed both
for the whole trajectories and for trajectory blocks with a length
of 1 ns to investigate the time-dependence of NOE upper bound
violations.

■ RESULTS AND DISCUSSION
Calculation of Standard-State Binding Free Energies

and Convergence. For the calculation of the unbinding free
energy of the proteins restrained to their bound conformations
(ΔGunbind

res ), the binding and unbinding process was simulated in a
HREMD setup with 54 unequally spaced replicas. While the
distance of all restraints was increased by up to 2.5 nm in the

Figure 3. Examples for classifications of replica trajectories along the
coupling parameter λ: round-trip (red line), full-trip (violet line), and no
special classification (brown line).
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unbound state, specific intermolecular distance restraints, used to
restrain the proteins to a canonically bound orientation in the
bound state, were turned off in the unbound state (λ = 1) with
hidden restraints, while a single distance restraint connecting
both COMs of the proteins was turned on linearly toward the

unbound state. The exact definitions of the distance restraints in
the bound and unbound states are given in Table S2 in the
Supporting Information, and the dependence of the scaling
factors of the distance restraint potential functions on λ is given
in Figure 2.

Figure 4. Forward (black lines) and reverse (red lines) cumulative averages along the trajectories of the free-energy differences calculated with BAR for
protein binding and unbinding (ΔGunbind

res ) in system RS of the wt UBM2 domain (A) and the P692A UBM2 domain (B), for the free-energy
contribution of the ENs and specific intermolecular distance restraints in the bound state (ΔGen,dr

b ) of the wt complex (C) and the complex involving
P692A UBM2 (D), for the free-energy contributions of the ENs in the unbound state (ΔGen,1

u ,ΔGen,2
u ) of wt UBM2 (E), P692A UBM2 up to 50 ns total

simulation time (F), P692A UBM2 up to 100 ns total simulation time (H) and UBI (G). Simulations of the processes used to obtain (C−H) were
performed using SCR potential energy functions. Note that in panel F the forward cumulative average falls off the scale of the plot.
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Forward and reverse cumulative averages of ΔGunbind
res of both

the complex involving wt UBM2 and P692A UBM2 calculated
with BAR for systems RS (radial COM−COM distance
restraint) are given in Figure 4 (panels A and B). It can be
seen that, both for the wt complex (panel A) and the complex
with P692A UBM2 (panel B), calculated ΔGunbind

res values
converged very well within the given simulation time of 50 ns
after small regions at the beginning of the free-energy trajectories
were discarded as nonequilibrated region (the first 3 ns for the wt
complex and the first 1 ns for the complex with P692A UBM2).
Figure S2 in the Supporting Information shows the λ-dependent
free energy profiles for all performed simulations. To ensure
sufficient orientational sampling in the unbound state, the
average order parameter ⟨cos θαβ⟩was computed. Here, θαβ is the
angle between two vectors α and β, of which three were defined
in each protein to construct a system of orthogonal axes that were

parallel in the two bound proteins. The computed order
parameters indicated that both proteins sample random
orientations with respect to each other in the unbound state, as
all nine order parameters had values close to zero in the unbound
state (see Figure 5, panels A and B). Also inspection of the
sampled COM positions of one protein with respect to the other
protein showed that both proteins sample almost the complete
spherical shell around the other protein in the unbound state.
The sampled relative COM positions of both UBI and wt UBM2
in the unbound state are given in Figure 5, panels C and D.
Resulting values for ΔGunbind

res for all simulated systems
including setups ZS and ZL are given in Table 1 together with
the standard-state corrections ΔGcorr

⊖ and the resulting standard-
state restrained binding free energies, ΔGbind

⊖,res. The values of
ΔGbind

⊖,res should be the same for all simulations of the wt complex
or the complex involving the P692AUBM2 domain, respectively.

Figure 5. Order parameters ⟨cos θαβ⟩, where θαβ is the angle between two vectors α and β, anchored to each protein. Three orthogonal vectors were
defined in each protein to construct a system of orthogonal axes that were parallel in the bound proteins. (A) shows the development of all nine order
parameters along λ for the simulation of protein binding and unbinding with the wt UBM2 domain and system setup RS. (B) shows the values of the
same order parameters in the unbound state (λ = 1) for all performed simulations of protein binding and unbinding. (C) COM positions of wt UBM2
sampled around UBI shown in gray cartoon representation and (D) COM positions of UBI sampled around wt UBM2 shown in gray cartoon
representation in the simulation of protein binding and unbinding with the wt UBM2 domain and system setup RS. In (C) and (D), the sampled COM
positions are colored according to their λ point: λ = 0 (bound state) corresponds to blue, λ = 1 (unbound state) corresponds to red.
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It is noted that the same ΔGcorr
⊖ values were used for systems RS

and ZL or ZS, respectively, as they are expected to be the same
but also expected to converge slowly, as they depend on the
extreme distances sampled during the simulations. For both the
wt and the P692A complex, resulting ΔGbind

⊖,res were within the
associated error estimates, indicating that the geometry of the
used simulation box and the chosen reaction coordinate has no
influence on the resulting free-energy value. However,
simulations with setup RS had generally lower error estimates
and seemed to converge better than simulations with setups ZS
or ZL. Forward and reverse cumulative averages of ΔGunbind

res

calculated from systems ZS and ZL are given in Figure S2 in the
Supporting Information. While the difference in convergence
behavior cannot be explained by a difference in replica diffusion
properties (see Table 2), we suspect that the different reaction

coordinate geometries (radial COM−COM distance restraint
versus COM−COM distance restraint linear in the Cartesian
coordinates) can lead to differently sampled binding and
unbinding paths that are sampled with different efficiencies.
The calculation of the free energy contributions of the applied

ENs in the unbound state (ΔGen,1
u ,ΔGen,2

u ) and the ENs and the
specific intermolecular Cα−Cα distance restraints in the bound
state (ΔGen,dr

b ), i.e. the simulations of turning off the restraints to

λ = 1, were performed either using HR or SCR potential energy
functions. The processes were simulated as well using a HREMD
setup, here using 31 equally spaced replicas.
Forward and reverse cumulative averages of the free-energy

differences of the processes simulated with SCR potential energy
functions are given in Figure 4. For both the bound wt complex
(panel C) and the complex with P692A UBM2 (panel D), the
first 20 ns of the trajectories were identified as nonequilibrated
region and discarded. However, both calculations then
converged reasonably well up to a total simulation time of 50
ns per λ-point. While for the unbound wt UBM2 domain (panel
E) and unbound UBI (panel G), no data from the beginning of
the trajectories were discarded and calculations converged very
well, the calculation of the EN contribution in unbound P692A
UBM2 did not converge within 50 ns simulation time, and no
distinct equilibrated region was found (panel F). The simulation
was therefore continued for another 50 ns per λ-point. From the
total trajectory with a length of 100 ns, the first 30 ns were
discarded as nonequilibrated region, and convergence of the
calculated free-energy difference was reached (panel H).
The free energy contributions of the applied ENs in the

unbound state (ΔGen,1
u ,ΔGen,2

u ), the ENs and the specific
intermolecular Cα−Cα distance restraints in the bound state
(ΔGen,dr

b ), and the final calculated values for the standard-state
binding free energy of the unrestrained proteins (ΔGbind

⊖ ) are
given in Table 3 for both HR and SCR potential energy
functions. Calculations of the free-energy contributions
performed with HR potential energy functions converged to
similar values as obtained with SCR potential energy functions
for the complex with wt UBM2. For the bound complex with
P692A UBM2 and unbound P692A UBM2 however, calculated
free-energy differences between the restrained and unrestrained
state did not converge with HR, neither within a simulation of 50
ns nor within a total simulation time of 100 ns as seen from the
agreement between the forward and reverse cumulative free-
energy differences. Where sufficiently converged data was
available, the calculated values of ΔGbind

⊖ for both the complex
with the wt UBM2 domain and the complex with the P692A
UBM2 domain were compared to the two sets of experimental
data that were available (Table 3). The agreement with the
experimental data of ref 27 was excellent, with a mean unsigned
error of only 1.4 kJ·mol−1 over the 9 different calculations that
were converged. For 8 of these calculations, the small statistical
uncertainty was larger than the deviation from the experiment,
while for simulation ZS/wt with HR it was 0.3 kJ·mol−1 smaller.
The agreement with experimental data reported in ref 48 was
very similar, with a mean unsigned error of 2.3 kJ·mol−1 and 7 of
the calculations showing a deviation from experiment that was
within the statistical uncertainty. Compared to recently
published calculations of protein−protein binding free energies,
deviations from experimentally determined binding free energy
values were comparable or lower, with previously reported errors
being in the range of 2.1 to 8.4 kJ·mol−1.11−14 Moreover, our
statistical uncertainties of 2.2 to 3.5 kJ·mol−1 are lower than the
previously reported values of 5.9 to 8.8 kJ·mol−1.11,12,14

Structural Trajectory Analysis. Different structural anal-
yses and tests for agreement with experimentally determined
NOE distances of the ensembles generated in the simulations
were performed to demonstrate the similarity of configurational
ensembles generated in different simulations at the same
thermodynamic state. In particular, the structural ensembles
generated in free MD trajectories without applied restraints and
in the unrestrained state of the simulations used to calculate the

Table 1. Restrained Unbinding Free Energies, Standard-State
Corrections, and Resulting Restrained Standard-State
Binding Free Energies for wt UBM2 and P692A UBM2
Binding to UBI in Systems RS, ZS, and ZL, Respectivelya

system ΔGunbind
res ΔGcorr

⊖ ΔGbind
⊖,res

RS/wt 27.0 ± 1.1 −9.2 −36.2 ± 1.1
ZS/wt 27.2 ± 2.8 −5.4 −32.6 ± 2.8
ZL/wt 30.1 ± 2.1 −5.4 −35.5 ± 2.1
RS/P692A 24.0 ± 0.6 −9.2 −33.2 ± 0.6
ZS/P692A 26.2 ± 1.8 −5.4 −31.6 ± 1.8
ZL/P692A 28.5 ± 1.9 −5.4 −33.9 ± 1.9

aAll free-energy values are in kJ·mol−1.

Table 2. Number of Round-Trips, Full-Trips and Average
Number of Unique λ-Point Visits of the Replica Trajectories
of All Performed HREMD Simulations

free-
energy
term simulation

no. of
round-trips

no. of
full-trips

average
unique visits

ΔGbind
⊖,res RS/wt 0 4 37.1

ZS/wt 2 12 39.9
ZL/wt 2 11 39.1
RS/P692A 2 15 41.8
ZS/P692A 3 6 40.1
ZL/P692A 0 6 39.2

ΔGen,dr
b complex/HR/wt 0 3 19.7

complex/HR/P692A 0 3 21.2
complex/SCR/wt 0 1 22.4
complex/SCR/P692A 1 2 21.1

ΔGen,1
u UBM2/HR/wt 0 3 20.0

UBM2/HR/P692A 0 2 19.6
UBM2/SCR/wt 0 4 24.3
UBM2/SCR/P692A 1a 4a 22.6a

ΔGen,2
u UBI/HR 12 19 27.7

UBI/SCR 3 11 28.6
aTotal simulation time of 100 ns instead of the 50 ns considered by
default.
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free-energy contribution of the specific intermolecular distance
restraints and ENs are expected to be similar. Moreover, also the
ensembles of the unbound state of the binding and unbinding
simulation and the restrained state of the simulations used to
calculate the free-energy contribution of the specific intermo-
lecular distance restraints and ENs are expected to be similar for
the single proteins. Where applicable, the number of
intermolecular hydrogen bonds, the buried surface area, the
number of NOE distance upper bound violations, and the
secondary structure content of the proteins were calculated.
The results of the analyses for the bound complexes with the

wt UBM2 domain or the P692A UBM2 domain are given in
Table 4. It can be seen that the structural properties of the
simulated complexes were similar where expected. Only the α-
helical content of the wt complex in the unrestrained state of the
simulation to compute ΔGen,dr

b seems to be somewhat reduced,
compared to the other simulations. Comparable structural
properties of the unbound proteins in simulations that represent
the same thermodynamic states were also obtained (see Table S3
and Table S4 in the Supporting Information), except for the
unrestrained wt and P692A UBM2 domains, where larger
differences were present. Especially in the simulation used to
calculate the free-energy contribution of the EN in the unbound
state, very diverse sets of conformations of UBM2 and P692A
UBM2 were sampled, and partial unfolding of the wt UBM2 and
P692A domains was observed. Figure 6 depicts the number of

NOE violations and secondary structure along the trajectories of
unbound wt UBM2 for simulations employing SCR or HR
potential energy functions. It can be seen that the number of
NOE violations increases, and the secondary structure elements
are highly dynamic. The α-helical secondary structure content of
the protein in the unrestrained trajectory was roughly 32%,
compared to a secondary structure content in the experimentally
determined structure of about 59%. These findings agree with the
findings of a recent computational study in which the
conformational entropy of the bound and unbound UBM2
domain was calculated. The authors of this study described the
unbound wt UBM2 domain to be behaving similar to an
intrinsically disordered protein (IDP) in simulations with time
scales of several μs.47 Moreover, in the P692A domain, the
secondary structure content was even reduced to 12%. A more
flexible behavior of the P692A domain could be explained by the
replacement of the rigid proline in the kink between the two α-
helices of UBM2 by a more flexible alanine residue. While
experimentally determined structures of bound P692A UBM2
domains are very similar to the bound structures of wt UBM2,27

there is no structural data available of unbound P692A UBM2.
These findings also provide a reasonable explanation for the
necessity of simulating the restraining process of unbound
P692A UBM2 to a bound conformation for the determination of
ΔGen,1

u for a longer time, as the sampling of very diverse
conformations requires a longer simulation time. The difficulty of

Table 3. All Calculated Free-Energy Contributions of Restrained Standard-State Binding (ΔGbind
⊖,res), of the Applied ENs in the

Unbound State (ΔGen,1
u ,ΔGen,2

u ) and the ENs and the Specific Intermolecular Cα−Cα Distance Restraints in the Bound State
(ΔGen,dr

b ) to the Calculated Unrestrained Standard-State Binding Free Energy ΔGbind
⊖ a

simulation system

restraint setup
free-energy

term RS/wt ZS/wt ZL/wt RS/P692A ZS/P692A ZL/P692A

HR ΔGbind
⊖,res −36.2 ± 1.1 −32.6 ± 2.8 −35.5 ± 2.1 −33.2 ± 0.6 −31.6 ± 1.8 −33.9 ± 1.9

HR ΔGen,dr
b −180.7 ± 1.5 −180.7 ± 1.5 −180.7 ± 1.5 n/a n/a n/a

ΔGen,1
u −76.5 ± 1.0 −76.5 ± 1.0 −76.5 ± 1.0 n/a n/a n/a

ΔGen,2
u −115.4 ± 0.5 −115.4 ± 0.5 −115.4 ± 0.5 −115.4 ± 0.5 −115.4 ± 0.5 −115.4 ± 0.5

ΔGbind
⊖ −25.0 ± 2.2 −21.4 ± 3.4 −24.3 ± 2.8 n/a n/a n/a

SCR ΔGen,dr
b −186.1 ± 2.0 −186.1 ± 2.0 −186.1 ± 2.0 −203.8 ± 0.7 −203.8 ± 0.7 −203.8 ± 0.7

ΔGen,1
u −78.0 ± 0.7 −78.0 ± 0.7 −78.0 ± 0.7 −97.0 ± 2.1b −97.0 ± 2.1b −97.0 ± 2.1b

ΔGen,2
u −118.2 ± 0.5 −118.2 ± 0.5 −118.2 ± 0.5 −118.2 ± 0.5 −118.2 ± 0.5 −118.2 ± 0.5

ΔGbind
⊖ −26.1 ± 2.4 −22.5 ± 3.5 −25.4 ± 3.0 −21.8 ± 2.3 −20.2 ± 2.9 −22.5 ± 3.0

experiment ΔGbind
⊖ −25.1,27 −2848 −20.4,27 −2148

aExperimentally determined standard-state binding free energies are given for comparison from two different references. All free-energy values have
units [kJ·mol−1]. bTotal simulation time of 100 ns instead of the 50 ns considered by default.

Table 4. Different Structural Properties and Number of NOE Distance Upper Bound Violations of the Generated Ensembles or
Experimentally Determined Structures of the Bound Complexes

no. of interprotein
H-bonds

buried surface area
[nm2]

no. of NOE
violations > 0.0 nm/> 0.3 nm

% DSSP α-helix/
β-sheet

wt complex straight MD 7.4 13.8 245/9 26.1/20.9
bound, unrestrained 6.4 11.7 299/22 22.7/21.0
bound, restrained 4.6 13.4 353/36 27.6/20.7
bound, binding (restrained) 5.2 11.9 367/42 27.8/20.6
experimental bundle (PDB-ID 2KTF) 3.5 15.5 4/0 29.3/23.8

P692A straight MD 7.6 12.1 n/a 24.6/20.7
complex bound, unrestrained 8.6 12.9 n/a 24.3/20.7

bound, restrained 5.7 12.2 n/a 27.1/20.6
bound, binding (restrained) 4.9 11.7 n/a 27.4/20.7
experimental bundle (PDB-ID 2L0F) 4.0a 14.2a n/a 29.5/23.2a

aAs experimental structures contained additional N- and C-terminal residues in P692A UBM2 that were not simulated but were expected to
influence the calculated properties, additional residues were removed prior to analysis.
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calculating ΔGen,1
u for P692A UBM2 is also reflected by the fact

that the restrained standard-state binding free energies ΔGbind
⊖,res

for both the wt and the P692A UBM2 domain are very similar
(the same EN was used to restrain both proteins to a bound
conformation), but the unrestrained standard-state binding free
energies ΔGbind

⊖ are not.
Continuation of Restraining Simulations up to 100 ns.

Because a total simulation time of 100 ns was necessary to reach
convergence of the calculation of the free-energy contribution of
the EN of P692A UBM2 in the unbound state, also all other
simulations were continued for another 50 ns up to a total
simulation time of 100 ns. The forward and reverse free-energy
cumulative averages of the continued simulations employing
SCR potential energy functions are given in Figure S3 in the
Supporting Information. While the free-energy contributions of
the restraints remained constant and converged for the unbound
proteins, the calculated free-energy values diverged for both the
wt complex and the complex involving the P692A UBM2

domain. The effect of nonconverged calculated free-energy
differences was even more pronounced for the simulation of the
wt complex with the HR potential energy function (see Figure S4
in the Supporting Information). For this simulation, an obvious
shift of the UBM2 domain to a noncanonically bound orientation
was observed (panel D in Figure S4). It is noted that unbinding of
the proteins in the unrestrained state of the simulation is allowed,
since the proteins are free to sample the entire available phase-
space and may even be expected to do so for a process with a
binding free energy of approximately 10 kT, as the probability
ratio of the bound to the unbound state is 2.2·104. However, an
ensemble in which the unrestrained proteins unbind is not
desired, as the thermodynamic cycle requires the proteins to
remain in the bound state. Clearly, any method that (correctly)
includes extensive simulations of the unrestrained state runs the
risk of observing deviations from a defined bound state.
Therefore, only the trajectories up to a total simulation length
of 50 ns were used for the calculation of ΔGen,dr

b .
Comparison of SCR and HR Potential Energy Func-

tions. The calculation of the free-energy contributions of the
specific intermolecular distance restraints and the ENs in the
bound state (ΔGen,dr

b ) and the ENs in the unbound states (ΔGen,1
u

and ΔGen,2
u ) were performed both with SCR and HR potential

energy functions. As already mentioned previously, the
calculation of the contributions of the restraints for the bound
complex with P692AUBM2 and unbound P692AUBM2 did not
converge for simulations employing HR potential energy
functions. In contrast, it was possible to calculate ΔGen,dr

b and
ΔGen,1

u for P692A UBM2 using SCR potential energy functions.
The difference in convergence behavior can possibly be

explained by the nature of the “soft” potential energy function of
the SCR. As discussed above, the unbound UBM2 domains
sample a very diverse set of conformations in the unbound and
unrestrained state, similar to the behavior of an IDP. Hence, it
can be expected that the intramolecular distances sampled in the
trajectories are very diverse and the distributions of the distances
difficult to converge. In BAR or TI however, restrained energies
(or derivatives) are computed from the unrestrained snapshots,
leading to noise in the calculations. In contrast to the HR
potential energy function, different intramolecular distances will
lead to the same restrained potential energy if distance deviations
are large if the SCR potential energy function is used. The SCR
potential energy function therefore makes the calculation of the
EN free-energy contribution easier, as sampling of the
completely unrestrained state is less important for the calculation
of the free-energy contribution. The diversity in the structural
ensembles for wt UBM2 is shown in Figure 6. While the
structural ensemble of unbound UBM2 in the simulation
employing SCR violates experimentally determined NOE
distances more than the structural ensemble generated in the
simulation employing HR and the domain partially unfolds, the
calculation of the free-energy contribution is still converged well
as can be seen in Figure 4. From Figure S1, it can be seen that the
largest contribution to the work of releasing the EN restraints
takes place at different values of λ for HR or SCR.

Total Simulation Time. The total simulation times spent for
the calculation of the presented standard-state binding free
energies were 7.4 μs for the complex of wt UBM2 and UBI and
8.9 μs for the complex of P692A UBM2 and UBI. Other
published calculations of protein−protein binding free energies
employing MD simulations used simulations times of less than 1
μs.11,12,14 While the aim of this work was not to optimize the
simulation protocol for computational efficiency but to

Figure 6. (A) Percentages of NOE upper bound violations of structural
ensembles of trajectory windows with a simulation length of 1 ns for the
unrestrained state of unbound wt UBM2 of the simulation employing
SCR potential functions (red line), for the unrestrained state of
unbound wt UBM2 of the simulation employing HR potential functions
(violet line), and the restrained state of unbound wt UBM2 of the
simulation employing SCR potential functions (brown line). (B)
Secondary structure trajectory (blue: α-helical, red: β-strand, yellow:
turn, green: bend, black: β-bridge, gray: 3-helix, white: coil) calculated
with the DSSP algorithm46 for the unrestrained state of unbound wt
UBM2 of the simulation employing SCR potential functions.
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demonstrate convergence and reliability of the calculated free-
energy values, the complex nature of protein−protein binding
reactions obviously still requires extensive simulation time in the
order of μs to sample the phase-space of such reactions
sufficiently, especially if extensive conformational changes
accompany the binding reaction.

■ CONCLUSION
While the calculation of protein−protein binding free energies
that are comparable with experimentally determined values has
been reported previously, the lack of discussed convergence and
reversibility of the described processes represents a significant
drawback in previous literature. We introduced a relatively
simple approach employing perturbed distance restraints for the
simulation of reversible protein−protein binding and the
calculation of the standard-state free energy of the binding
process. The method was demonstrated at the hand of
calculation of the binding free energy of UBI and the wt
UBM2 domain or the P692A mutant UBM2 domain. The
calculated standard-state binding free energies of both protein
complexes were converged and in very good agreement with
experimentally determined values. Moreover, error estimates of
the computed binding free energies were in the order of thermal
noise, and the reversibility of the simulated processes was
illustrated with the replica diffusion properties of the performed
HREMD simulations.
Furthermore, we discussed the use of two different potential

energy functions for the calculation of the free-energy
contributions of conformational changes associated with the
binding processes. It was only possible to calculate the free-
energy of the EN corresponding to the bound conformation in
the unbound state of P692A UBM2, which is very flexible and
behaves like an IDP in the simulations, with the SCR potential
energy function26 proposed very recently. Hence, we think that
SCR are better suited for such free-energy calculations.
While the calculation of the EN free-energy contributions was

found to be difficult in some cases, also given the necessity to
monitor the unrestrained, bound states of the complex
simulations for possible noncanonically bound configurations,
we demonstrated the applicability of the methodology for
proteins which at least partially unfold in the unbound state and
sample a very diverse conformational ensemble. Hence, we are
confident that our proposed method has broad applicability
which, however, remains to be further demonstrated in practice.
We are planning to extend the application of the protocol not
only to other protein complexes but also to complexes involving
other macromolecular species like small peptides, carbohydrates,
and DNA.
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