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Abstract
Actinobacteria are a major source of novel bioactive natural products. A challenge in the screening of these microorganisms 
lies in finding the favorable growth conditions for secondary metabolite production and dereplication of known molecules. 
Here, we report that Streptomyces sp. MBT27 produces 4-quinazolinone alkaloids in response to elevated levels of glycerol, 
whereby quinazolinones A (1) and B (2) form a new sub-class of this interesting family of natural products. Global Natural 
Product Social molecular networking (GNPS) resulted in a quinazolinone-related network that included anthranilic acid 
(3), anthranilamide (4), 4(3H)-quinazolinone (5), and 2,2-dimethyl-1,2-dihydroquinazolin-4(3H)-one (6). Actinomycins D 
(7) and X2 (8) were also identified in the extracts of Streptomyces sp. MBT27. The induction of quinazolinone production 
by glycerol combined with biosynthetic insights provide evidence that glycerol is integrated into the chemical scaffold. The 
unprecedented 1,4-dioxepane ring, that is spiro-fused into the quinazolinone backbone, is most likely formed by intermo-
lecular etherification of two units of glycerol. Our work underlines the importance of varying the growth conditions for the 
discovery of novel natural products and for understanding their biosynthesis.
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Introduction

Actinobacteria are a major source of bioactive compounds, 
producing some two-thirds of all antibiotics as well as mol-
ecules with a wide variety of activities such as anticancer, 
antifungal and immunosuppressant [2, 4]. Traditionally, 
microbial natural product (NP) discovery has been done via 
high-throughput screening followed by iterative bioassay-
guided fractionation and structure elucidation. While such 
pipelines were extremely successful and delivered a plethora 
of therapeutic agents, in the modern era the large pharma-
ceutical companies moved out of NP-discovery programs 
due to high cost and chemical redundancy [1, 9, 29]. At 
the same time, the power of genome sequencing brought 
the recognition that microorganisms harbor a vast and yet 
untapped biosynthetic potential, and it rapidly became clear 
that the potential for metabolic diversity of even the best-
studied model organisms as producers of natural products 
had been grossly underestimated [3, 11, 19]. How could 
these compounds have been missed by the very extensive HT 
screening campaigns of the twentieth century? The answer 
is that many of the biosynthetic gene clusters (BGCs) dis-
covered by genome mining are poorly expressed or cryptic 
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under laboratory conditions [22, 28]. A drug-discovery pipe-
line that is rapidly gaining momentum involves combining 
genome mining with fluctuating the culturing conditions 
to achieve differential synthesis of NPs, followed by the 
metabolic profiling-based identification of the bioactivity 
of interest [13, 16, 48, 50]. A major challenge thereby lies 
in finding the appropriate chemical triggers or ecological 
cues to elicit the production of cryptic antibiotics (recently 
reviewed in [34, 55, 56]). The use of chemical elicitors is 
thereby a promising approach [10, 42, 56].

Manipulation of fermentation conditions for promis-
ing producer strains, known as the “one strain many com-
pounds” (OSMAC) approach, is an effective way of enhanc-
ing the production of secondary metabolites [5, 33]. The 
regulatory networks that control the production of bacte-
rial natural products respond strongly to changes in car-
bon, nitrogen or phosphate concentration [40, 41]. The re-
isolation of known metabolites is a major bottleneck in the 
discovery of new bioactive natural products. A crucial step 
in this regard is the early identification of already known 
substances, to concentrate the efforts on the discovery of 
new ones, a process known as dereplication [15]. Current 
dereplication strategies include hyphenated techniques, such 
as LC–MS, LC–NMR, LC–NMR–MS, and LC–SPE–NMR. 
Bioactivity fingerprinting has also been used to dereplicate 
natural products based on their biological modes of action 
[36], while molecular networking is a powerful tool for the 
visualization and dereplication of natural products [46, 54]. 
Mass spectrometry-based molecular networking relies on 
clustering of molecules based on similarities in their MS/MS 
fragmentation patterns, which depends on the structural fea-
tures of the ionized molecules. The resulting clusters allow 
scientists to visually explore the metabolites produced by 
a given strain under a specific growth condition, allowing 
rapid dereplication of known compounds by automated spec-
tral library searches, and to visualize their unknown struc-
tural analogues [45].

In this work we analyzed the potential of Streptomyces 
sp. MBT27 as a producer of natural products in response 
to changes in the carbon source. The strain had previously 
been identified as a promising producer of NPs [57]. Exten-
sive fluctuations in the secondary metabolite profiles were 
observed depending on the carbon source used, and statisti-
cal methods combined with GNPS molecular networking 
identified a family of known as well as novel quinazolinone 
compounds, in response to high concentrations of glycerol. 
Quinazolinones are heterocyclic compounds with a wide 
range of medical applications, such as antimicrobial, anti-
viral, antituberculosis, and as enzyme inhibitors (reviewed 
in [17, 20, 24]). Combination of MS and NMR methods 
identified the novel quinazolinones A (1) and B (2), which 
further expands the chemical space of this rich family of 
natural products.

Materials and methods

Bacterial strains and growth conditions

Streptomyces sp. MBT27 was obtained from the Leiden Uni-
versity strain collection and had previously been isolated 
from the Qingling Mountains, Shanxi province, China [57]. 
Cultures were grown in triplicate in 100 mL Erlenmeyer 
flasks with 30 mL of liquid minimal medium (MM; [21]), 
supplemented with various carbon sources, and inoculated 
with 10 µL of 109/mL spore suspension. The carbon sources 
(percentages in w/v) were: 1% mannitol + 1% glycerol, 1% 
mannitol, 2% mannitol, 1% glycerol, 2% glycerol, 1% glu-
cose, 2% glucose, 1% fructose, 1% arabinose or 1% N-acetyl-
glucosamine (GlcNAc). The cultures were incubated in a 
rotary shaker at 30 °C at 220 rpm for 7 days.

General experimental procedures

NMR spectra were recorded in deuterated methanol 
(CD3OD) on a Bruker 600 MHz and were referenced using 
the residual 1H signal of deuterated solvent at 3.30 ppm [49, 
53]. FT-IR was measured on Perkin–Elmer FT-IR Spectrom-
eter Paragon 1000. UV measurements were performed using 
a Shimadzu UV mini-1240. Optical rotations were measured 
on a JASCO P-1010 polarimeter. HPLC purification was 
performed on Waters preparative HPLC system comprised 
of 1525 pump, 2707 autosampler, 2998 PDA detector, and 
Water fraction collector III. The columns used were Sun-
Fire C18 column (5 µm, 100 Å, 10 × 250 mm) and SunFire 
C18 column (10 µm, 100 Å, 19 × 150 mm). TLC was per-
formed using aluminum plates coated with silica gel 60 F254 
(Merck). All organic solvents and chemicals were of analyti-
cal or LCMS grade, depending on the experiment.

Metabolite profiling

Following fermentation, culture supernatants were extracted 
with ethyl acetate (EtOAc) and evaporated under reduced 
pressure. For LC-ESI-QTOFMS analyses, extracts were 
dissolved in MeOH to a final concentration of 1 mg/mL, 
and 1 μL was injected into Waters Acquity UPLC system 
equipped with Waters Acquity HSS C18 column (1.8 μm, 
100 Å, 2.1 × 100 mm), which is coupled to Agilent 6530 
QTOF MS equipped with Agilent Jet Stream ESI source 
(Agilent Technologies, Inc., Palo Alto, CA, USA). For the 
LC, solvent A was 95% H2O, 5% acetonitrile (ACN) and 
0.1% formic acid; solvent B was 100% ACN and 0.1% for-
mic acid. The gradient used was 2% B for 1 min, 2–85% for 
9 min, 85–100% for 1 min, and 100% for 3 min. The flow 
rate used was 0.5 mL/min. As for the MS, the following 
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ESI source parameters were used: capillary voltage 3 kV, 
source temperature 325 °C, drying gas flow rate 10 L/min, 
and fragmentor 175 V. Full MS spectra were acquired in 
positive mode in the range of 100–1700 m/z, in the extended 
dynamic range mode. Internal reference masses of purine 
and Agilent HP-921 were continuously delivered to the ESI 
source through an Agilent 1260 isocratic pump.

Thermo Instruments MS system (LTQ Orbitrap XL, 
Bremen, Germany) equipped with an electrospray ionization 
source (ESI) was used for LC–MS/MS analysis. The Waters 
Acquity UPLC system equipped with Waters Acquity PDA 
was run using a SunFire Waters C18 column (3.5 µm, 100 Å, 
4.6 × 150 mm), at a flow rate of 0.9 mL/min. Solvent A was 
95% H2O, 5% acetonitrile (ACN) and 0.1% formic acid; sol-
vent B was 100% ACN and 0.1% formic acid. The gradient 
used was 2% B for 1 min, 2–85% for 15 min, 85–100% for 
3 min, and 100% for 3 min. As for the MS, the following ESI 
parameters were used: capillary voltage 5 V, spray voltage 
3.5 kV, capillary temperature 300 °C, auxiliary gas flow rate 
10 arbitrary units, and sheath gas flow rate 50 arbitrary units. 
Full MS spectra were acquired in the Orbitrap in positive 
mode at a mass range of 100–2000 m/z, and FT resolution 
of 30,000. Data-dependent MS2 spectra were acquired in 
the ion trap for the three most intense ions using collision 
induced dissociation (CID). The resulting chemical data 
were compared with those in SciFinder and Antibase [25].

Large‑scale fermentation and isolation 
of metabolites (1) and (2)

For large-scale fermentation, Streptomyces sp. MBT27 
was grown in eight 2 L Erlenmeyer flasks, each containing 
500 mL liquid MM supplemented with 2% w/v glycerol at 

30 °C for 7 days. The metabolites were extracted from the 
spent media of culture filtrates using EtOAc, and the sol-
vent was subsequently evaporated under reduced pressure 
at 40 °C. The crude extract (1.4 g) was adsorbed onto 1.4 g 
silica gel (pore size 60 Å, 70–230 mesh, Sigma Aldrich), and 
loaded on silica column, which was eluted using gradient 
mixtures of n-hexane, acetone, and MeOH. The fractions 
eluted with acetone 100% were combined, reconstituted in 
MeOH, and injected into the preparative SunFire column 
(19 × 150 mm), which was eluted with H2O:MeOH gradient 
of 7–100% in 30 min, at a flow rate of 15 mL/min, to yield 
five fractions. Quinazolinones A and B were further puri-
fied on the semi-preparative SunFire column (10 × 250 mm), 
run at 3 mL/min. Fraction 2 was eluted using H2O:MeOH 
gradient of 20–40% in 20 min, to yield Quinazolinone A 
(1, 1 mg). On the other hand, Fraction 3 was eluted using 
H2O:MeOH gradient of 30–40% in 20 min, to yield Quina-
zolinone B (2, 1.5 mg).

Quinazolinone A (1)

Colorless, amorphous powder; [α] D
20 2.3 (c 0.1, MeOH); 

UV (MeOH) λmax (log ε) 224 (4.09), 322 (2.98) nm; IR 
νmax 3334, 2922, 1652, 1475, 1052 cm−1; 1H and 13C NMR 
data, see Table 1; HRESIMS (positive mode) m/z 281.1130 
[M + H]+ (calcd. for C13H17N2O5, 281.1132).

Quinazolinone B (2)

colorless, amorphous powder, UV (MeOH) λmax (log 
ε) 226 (4.18), 347 (3.03) nm; IR νmax 3350, 2950, 1649, 
1526, 1049, 751 cm−1; 1H and 13C NMR data, see Table 1; 

Table 1   1H and 13C NMR data 
for compounds 1 and 2

1 and 2 were recorded in CD3OD, at 298 K. All chemical shift assignments were done on the basis of 1D 
and 2D NMR techniques

NO. 1 2

δC δH (mult., J in Hz) δC δH (mult., J in Hz)

2 79.0 73.3
4 166.1 166.7
4a 121.8 114.5
5 128.8 7.88 (dd, J = 7.8, 1.2) 128.5 7.66 (dd, J = 7.8, 1.2)
6 123.0 7.07 (t, J = 7.8) 118.5 6.69 (td, J = 7.8, 1.2)
7 134.6 7.46 (td, J = 7.8, 1.2) 135.3 7.26 (td, J = 7.8, 1.2)
8 122.3 7.23 (brd, J = 7.8) 115.8 6.73 (brd, J = 7.8)
8a 143.7 148.6
1′ 73.9 4.43 (d, J = 9.0); 4.24 (d, J = 9.0) 64.5 3.67 (d, J = 10.8); 3.62 (d, J = 10.8)
2′ 64.6 3.59 (d, J = 11.4); 3.47 (d, J = 11.4) 64.5 3.67 (d, J = 10.8); 3.62 (d, J = 10.8)
1″ 65.7 3.86 (d, J = 12.6); 3.80 (d, J = 12.6)
2′’ 102.9
3′’ 61.9 3.66 (d, J = 3.0)
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HRESIMS (positive mode) m/z 209.0915 [M + H]+ (calcd. 
for C10H13N2O3, 209.0921).

Computation of mass spectral networks

MS/MS raw data were converted to a 32-bit mzXML file 
using MSConvert (ProteoWizard) [6] and spectral net-
works were assembled using Global Natural Product Social 
molecular networking (GNPS) (https​://gnps.ucsd.edu) as 
described [45]. For both parent and MS/MS fragment ions, 
the mass tolerance was set to 0.5 Da, while the minimum 
cosine score was set to 0.7. The data were clustered using 
MSCluster with a minimum cluster size of three spectra. 
The spectra in the network were also searched against 
GNPS spectral libraries. A minimum score of 0.5 was 
set for spectral library search, with at least two fragment 
peaks matching. Cytoscape 3.5.1 was used for visualiza-
tion of the generated molecular networks [38]. The edge 
thickness was set to represent the cosine score, with thicker 
lines indicating higher similarity between nodes. LC–MS/
MS data were deposited in the MassIVE Public GNPS data 
set (MSV000082988). The molecular networking job in 
GNPS can be found at https​://gnps.ucsd.edu/Prote​oSAFe​/
statu​s.jsp?task=8fd1f​cfa0f​f744a​9808e​80bc7​be121​15. The 
annotated MS/MS spectra were deposited in the GNPS spec-
tral library for quinazolinone A (CCMSLIB00004684355), 
and B (CCMSLIB00004684354).

Statistical analysis

Prior to statistical analysis, mzXML files were imported into 
Mzmine 2.31 [30] for data processing. Mass ion peaks were 
detected using the exact mass algorithm with a noise level 
set to 1.0 × 104. Afterwards, chromatograms were built for 
the detected masses with a minimum time span of 0.05 min, 
m/z tolerance of 0.001 m/z and minimum height of 1.0 × 104. 
Chromatogram deconvolution was then performed using 
local minimum search algorithm (search minimum in RT 
range 0.1 min, chromatographic threshold 90%, minimum 
relative height 1%, minimum absolute height 1.0 × 104, 
minimum ratio of peak top/edge two and peak duration 
range 0.05–3 min). In the generated peak lists, isotopes 
were identified using isotopic peaks grouper (m/z tolerance 
0.001 m/z and retention time tolerance 0.1 min), and vari-
ations in retention time were reduced using retention time 
normalizer (m/z tolerance 0.001 m/z and retention time tol-
erance 1 min). All the peak lists were subsequently aligned 
using join aligner (m/z tolerance 0.001 m/z, m/z weight 20, 
retention time tolerance 0.1 min, and retention time weight 
20), and missing peaks were detected through gap filling 
using peak finder (intensity tolerance 1.0%, m/z tolerance 
0.001 m/z, and retention time tolerance of 0.2 min). Finally, 

the aligned peak list was exported as a comma-separated file 
for statistical analysis.

Statistical analysis was performed using MetaboAnalyst 
[7], where log transformation and pareto scaling was ini-
tially applied to the data. A heat map of all detected masses, 
among the different growth conditions, was generated in 
MetaboAnalyst, to which additional hierarchical clustering 
analysis (HCA) was performed using Euclidean distance 
measure and Ward clustering algorithm. Student’s t-tests 
with multiple testing correction (Benjamini–Hochberg-false 
discovery rate or FDR) were used to determine significant 
differences in the intensities of the metabolites, under two 
different growth conditions. The thresholds set for statisti-
cally significant differences were a fold change ≥ 4, together 
with FDR corrected p value ≤ 0.05. Based on these criteria, 
a volcano plot was generated. To identify the difference in 
intensity of a single mass feature among multiple growth 
conditions, one-way ANOVA was performed, followed by 
a post hoc Tukey’s honest significant difference (HSD) test.

Results and discussion

The influence of carbon sources on secondary 
metabolite production

Previous screening of our in-house actinomycete collec-
tion, obtained from remote mountain soils, showed it is 
a promising source of new bioactive compounds [57]. 
Under specific growth conditions, these isolates exert 
potent inhibitory activity against the so-called ESKAPE 
pathogens [31] Enterococcus faecium, Staphylococcus 
aureus, Klebsiella pneumoniae, Acinetobacter bauman-
nii, Pseudomonas aeruginosa and Enterobacter spp. In 
the current study, the potential of one of the Streptomyces 
strains in our collection, namely Streptomyces sp. MBT27, 
was analyzed to study the effect of carbon sources on its 
metabolite profile. Traditional approaches, such as changes 
in fermentation conditions, are known to induce significant 
changes in the microbial metabolome. Culture medium 
components, and particularly the carbon source, have 
major effects on the production of secondary metabolites 
[5, 26, 35, 43]. The differential production of small mole-
cules is ideal for metabolomics studies, whereby metabolic 
variations are correlated statistically to bioactivity, thus 
facilitating the identification of the bioactive molecule of 
interest [48, 51, 52]. To establish the potential of Strep-
tomyces sp. MBT27, the strain was grown in liquid mini-
mal media containing different carbon sources, namely 
(percentages in w/v): 1% of both mannitol and glycerol, 
1% mannitol, 2% mannitol, 1% glycerol, 2% glycerol, 1% 
glucose, 2% glucose, 1% fructose, 1% arabinose, or 1% 
N-acetylglucosamine (GlcNAc). The latter is an elicitor 

https://gnps.ucsd.edu
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8fd1fcfa0ff744a9808e80bc7be12115
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8fd1fcfa0ff744a9808e80bc7be12115
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of antibiotic production, via metabolic interference with 
the global nutrient sensory network controlled by DasR 
[32, 39]. Phosphate buffer was omitted from the MM as 
it repressed the production of secondary metabolites by 
Streptomyces sp. MBT27 (data not shown). To identify the 
secondary metabolites in the cultures, supernatants were 
extracted with EtOAc, and the resulting crude extracts sub-
jected to LC–MS analysis. Using the LC–MS data, a heat 
map with added hierarchical clustering was generated, to 
visualize the production of different metabolites under dif-
ferent culture conditions (Fig. 1). Hierarchical clustering 
analysis of the LC–MS data allows effective comparative 
analysis of metabolomics data, and the heat map revealed 
major differences in the metabolic profiles of Streptomyces 
sp. MBT27, whereby different groups of metabolites were 
enhanced depending on the carbon source used. Interest-
ingly, not only the type of carbon source, but especially 
also the concentration resulted in large changes in the 
metabolic profiles. Doubling the concentration of either 

glycerol or glucose from 1 to 2% had a profound effect 
on the metabolic profile. Thin layer chromatography 
(TLC) was conducted to compare metabolic profiles of 
the 1% and 2% glycerol-grown cultures. Interestingly, this 
revealed that several fluorescent compounds were differen-
tially produced in the extracts of 2% glycerol-grown cul-
tures relative to those produced in 1% glycerol (Fig. 2a). 
In order to provide statistical relevance to the data, the 
metabolic profiles of 1% and 2% glycerol-grown cultures 
were compared using a volcano plot (Fig. 2b). The vol-
cano plot was then searched for the mass features which 
increased in production in 2% glycerol as compared to 1%. 
A mass of m/z 281.1151 (1) stood out as its intensity had 
increased by around 7000 fold (p value = 0.002) in cultures 
fermented in 2% glycerol as compared to 1%.

Global Natural Product Social (GNPS) molecular net-
working [45] was employed to detect the MS/MS structural 
relatedness among molecules in an automated manner; the 
software generates a molecular network wherein molecules 
with related scaffolds cluster together [45]. A network rep-
resenting the ions detected in the crude extract of Strepto-
myces sp. MBT27 grown with 2% glycerol was constructed, 
revealing 183 nodes clustered in 19 spectral families (Fig. 3). 
GNPS dereplication based on matching with its MS/MS 
spectral database highlighted some known metabolites. 
These included anthranilic acid (3), anthranilamide (4) 
[37], actinomycin D (7), and actinomycin X2 (8) [44]. The 
annotation of the compounds was supported by comparison 
of the exact mass, fragmentation pattern, and UV spectra, 
with reference data. Moreover, crude extracts of MBT27 
possessed antimicrobial activity against B. subtilis, which 
was most likely due to the expression of actinomycins (data 
not shown). Additional metabolites could be dereplicated 
through manual comparison of their spectral data against the 
microbial natural products database Antibase. These previ-
ously described metabolites were 4(3H)-quinazolinone (5) 
[23] and 2,2-dimethyl-1,2-dihydroquinazolin-4(3H)-one (6) 
[8].

Besides known molecules, the network also contained 
many mass features that could not be assigned to any of the 
previously identified metabolites. One of these was an ion 
with an m/z value of 281.1151 (1), which was very highly 
increased in intensity (7000-fold, p value = 0.002) when the 
glycerol concentration was increased from 1 to 2%. It was 
closely connected (cosine score 0.91) to another upregulated 
ion with an m/z value of 209.0915 (2), which was also not 
previously reported. Both ions were part of the large spectral 
family comprising the annotated anthranilic acid (3), anthra-
nilamide (4), and the 4-quinazolinones 5 and 6, suggesting 
that they are structurally related metabolites. It is important 
to note that the concentrations of quinazolinones A and B 
did not change significantly when the concentration of either 
mannitol or glucose was doubled from 1 to 2%, or when 
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mannitol was added as additional carbon source to glycerol 

(Fig. S1). This strongly suggests that the effect of glycerol is 
not due to increased availability of the carbon source.

The relationship between the increase in glycerol con-

centration and the strong increase in the production of the 
compounds 1 and 2, was investigated further by expand-
ing the range of glycerol concentrations and analyzing the 
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Fig. 3   GNPS molecular network of the ions detected in the crude 
extract of Streptomyces sp. MBT27 grown in MM with 2% glycerol. 
Orange nodes represent all the ions detected in the extract. Green 

nodes represent the dereplicated metabolites, while blue nodes repre-
sent the novel molecules 1 and 2 that were upregulated when glycerol 
concentration was increased from 1 to 2%
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metabolic profiles. For this, Streptomyces sp. MBT27 was 
cultured in glycerol concentrations ranging from 1 to 4% 
(w/v). ANOVA, followed by a post hoc Tukey’s HSD test, 
was performed to trace the variation in the production of 1 
and 2 among the different culturing conditions. A box plot 
was used to visualize such variation (Fig. S2). As observed 
earlier, the production of 1 and 2 was significantly increased 
when the glycerol concentration was increased from 1 to 2%. 
However, further increase in glycerol concentration (3% and 
4%) did not lead to any significant increase in the production 
of 1 and 2. Accordingly, MM with 2% glycerol was used 
to culture the bacteria, for the purpose of purification and 
identification of the new metabolites 1 and 2.

Isolation and structure elucidation of novel 
quinazolinones

To elucidate the structure of 1 and 2, large-scale fermenta-
tion was done to obtain larger quantities of the compounds. 
For this, Streptomyces sp. MBT27 was fermented in a total 
of 4 L of liquid MM supplemented with 2% glycerol, and the 
supernatant was extracted with EtOAc. Following repeated 
chromatographic isolation, compounds 1 and 2 were 
obtained as pure, colorless, amorphous powders. Both com-
pounds were fluorescent, showing UV absorption maxima 
at 224 and 322 nm and at 226 and 347 nm, respectively. The 
final structures of 1 and 2 were determined by the combina-
tion of NMR and high-resolution MS (Fig. 4).

The high-resolution mass of m/z 281.1130  for an 
[M + H]+ established a molecular formula of C13H16N2O5, 
with seven degrees of unsaturation, for 1 (yield 0.25 mg/L). 
The deduced molecular formula was corroborated by the 13C 
NMR attached proton test (APT) spectrum that exhibited 13 
carbons in total. On the other hand, the 1H NMR spectrum 
of 1 (Table 1) presented four coupling aromatic signals at 
δH 7.88 (dd, J = 7.8, 1.2, H-5), 7.07 (t, J = 7.8, H-6), 7.46 
(td, J = 7.8, 1.2, H-7), and 7.23 (brd, J = 7.8, H-8), indicat-
ing an o-disubstituted aromatic benzene system. The HMBC 
correlation (Fig. 5) from H-5 to C-4 (δC 166.1) confirmed 
one of substituents on the benzene ring to be an ester/amide 
carbonyl group, while the downfield chemical shift of C-8a 
at δC 143.7 indicated it was nitrogenated. Four O-bearing 

methylene groups at δH 4.43 (d, J = 9.0, H-1′a) and 4.24 (d, 
J = 9.0, H-1′b); 3.59 (d, J = 11.4, H-2′a) and 3.47 (d, J = 11.4, 
H-2′b); 3.86 (d, J = 12.6, H-1″a) and 3.80 (d, J = 12.6, 
H-1″b); and 3.66 (d, J = 3.0, H2-3″) were resolved by HSQC 
experiments. Three of these methylene groups were part of 
a 1,4-dioxepane ring system, which was established based 
on the HMBC correlations observed from H-1′ to C-2 (δC 
79.0) and C-2′ (δC 64.6), from H-2′ to C-1″ (δC 65.7), and 
from H-1′ to the hemiacetal C-2″ (δC 102.9). The remaining 
oxymethylene group CH2-3′’ was connected to C-2″ based 
on the HMBC correlations observed from H2-3″ to C-1″ 
and C-2″. The two substructures obtained accounted for all 
of the oxygens and six out of the seven degrees of unsatura-
tion required by the molecular formula of 1. Accordingly, an 
additional ring including two nitrogen atoms was deduced 
to connect the two substructures, forming a 4-quinazolinone 
ring. Consequently, compound 1 was identified to be a di-
glycerolated 4-quinozolinone, and was named quinazolinone 
A.

The [M + H]+ molecular ion at m/z 209.0932 in the 
ESI-HRMS spectrum resulted in a molecular formula of 
C10H12N2O3 for 2 (yield 0.3 mg/L). The 13C NMR spectrum 
presented 10 signals, which was consistent with the molecu-
lar formula (Table 1). The 1H NMR spectrum of 2 resembled 
that of 1 in the downfield aromatic region, and the major 
difference is the absence of a set of signals for the additional 
glycerol unit. Further HMBC experiment confirmed 2 is a 
mono-glycerolated 4-quinazolinone (Fig. 5). Compound 2 
was named quinazolinone B.

The 4-quinazoline alkaloids represent an important class 
of nitrogen-containing heterocyclic compounds [27], which 
have highly diverse biological activities, such as antitumor, 
anti-inflammatory, antihypertensive, antimicrobial, anti-
convulsant and antifungal activities [18]. Though the basic 
bicyclic core (the fused benzene ring and pyrimidine ring) is 
normally conserved in most of naturally occurring 4-quina-
zoline derivatives [27], a variety of structural substitutions 
have oftentimes been found on the pyrimidine ring of the 
4-quinazolinone. The chemical structures of quinazolinones 
A and B and the glycerol-dependent production suggest 
that glycerol participates in the construction of the ring sys-
tem. We propose that quinazolinones A and B form a new Fig. 4   Chemical structures of quinazolinones A (1) and B (2)

Fig. 5   Key COSY () and HMBC () correlations for 1 and 2 
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sub-branch in the family of the quinazolines. Particularly, 
quinazolinone A contains an exciting seven-membered ring 
that we believe may be formed by intermolecular etheri-
fication of two units of glycerol, and this ring is further 
linked with the quinazolinone backbone by a spiro atom at 
C-2, which is unprecedented. Antimicrobial activities of 
compounds 1 and 2 were tested against B. subtilis and E. 
coli. None of the compounds showed antimicrobial activity 
against these indictor strains (data not shown).

Biosynthesis of quinazolinones A and B

In our study, the production of 1 and 2 was dramatically 
enhanced in the cultures with 2% glycerol. Elicitation 
by glycerol is an indication that glycerol may play a key 
role during their biosynthesis. The aromatic ring sys-
tem of quinazoline alkaloids is known to be derived from 
anthranilic acid, which in turn is biosynthesized through the 
shikimate pathway [12]. Detection of anthranilamide in the 
extract of Streptomyces sp. MBT27 leads to the assumption 
that the biosynthesis of the isolated quinazolinones starts 
from anthranilic acid, which is then converted to anthra-
nilamide (Fig. 6). Further successive attachments of two 
molecules of glycerol then results in the formation of 2, 
followed by 1. However, multiple biosynthetic routes have 
been proposed for quinazolinones, because the C-2 residue 
of the quinazoline ring may originate from various precur-
sors. For example, the C-2 and the remaining non-aromatic 
part of the quinazolinone alkaloid chrysogine, produced by 
Penicillium chrysogenum, are biosynthesized from pyru-
vic acid via an NRPS system [47], while the non-aromatic 
part of the quinazoline alkaloid peganine, produced by the 
plant Peganum harmala, is derived from ornithine [12]. 
Furthermore, fumiquinazoline F originates from a fungal 

nonribosomal peptide synthetase (TqaA) and is biosynthe-
sized from anthranilic acid, l-tryptophan and l-alanine [14].

In conclusion, the metabolic potential of Streptomyces sp. 
MBT27 was analyzed under different nutritional conditions, 
showing major changes in the metabolome, depending on 
the carbon source used. In particular, the relatively unspec-
tacular change from 1% to 2% glycerol resulted in a sur-
prisingly global change in the secondary metabolome, with 
some compounds changing by almost four orders of mag-
nitude. The use of GNPS molecular networking, together 
with LC–MS based dereplication, allowed us to annotate 
a cluster of quinazolinone-family molecules that connects 
to anthranilic acid and anthranilamide. Isolation and struc-
ture elucidation revealed the novel alkaloid natural products 
quinazolinone A and B. Based on the structures, the biosyn-
thesis of the compounds most likely involves the conversion 
of anthranilic acid to anthranilamide, which is subsequently 
attached to two glycerol units, to produce compounds 1 and 
2. Identification of the biosynthetic gene cluster and subse-
quent analysis of the individual enzymatic reactions should 
reveal the precise biosynthetic pathway for these exciting 
novel molecules.
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