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Abstract: In recent decades, image encryption, as one of the significant information security fields,
has attracted many researchers and scientists. However, several studies have been performed with
different methods, and novel and useful algorithms have been suggested to improve secure image
encryption schemes. Nowadays, chaotic methods have been found in diverse fields, such as the
design of cryptosystems and image encryption. Chaotic methods-based digital image encryptions
are a novel image encryption method. This technique uses random chaos sequences for encrypting
images, and it is a highly-secured and fast method for image encryption. Limited accuracy is one of
the disadvantages of this technique. This paper researches the chaos sequence and wavelet transform
value to find gaps. Thus, a novel technique was proposed for digital image encryption and improved
previous algorithms. The technique is run in MATLAB, and a comparison is made in terms of various
performance metrics such as the Number of Pixels Change Rate (NPCR), Peak Signal to Noise Ratio
(PSNR), Correlation coefficient, and Unified Average Changing Intensity (UACI). The simulation and
theoretical analysis indicate the proposed scheme’s effectiveness and show that this technique is a
suitable choice for actual image encryption.

Keywords: digital image encryption; image processing; chaos random sequence; discrete
wavelet transform

1. Introduction

In recent years, image encryption has been an attractive area for research. It is exten-
sively recognized as a useful technique for secure transmission. Every image encryption
algorithm is aimed to generate a noisy image’s top-quality to keep information secret [1,2].
Additionally, image encryption has a preferable part for guaranteeing classified transmis-
sion and image capacity over the web. Digital communication has become broader by
the fast development of Internet technology [3,4]. People can send a digital image on
the Internet anytime and anywhere [5,6]. This has resulted in the development of digital
image encryption. Different methods representing digital image encryption in studies
are connected to the ever-increasing necessity of security. Image encryption based on the
chaos method is a novel encryption method for images where a random chaos sequence is
applied for encrypting the image as an effective way for solving the intractable problems
of highly secure and fast image encryption. Over the last few years, various versions of the
chaos technique have been presented. Presently, four approaches have been adopted for
image encryption, applying various principles individually and achieving the same objec-
tives. The four principles include sharing and secret segmentation, sequential permutation,
chaotic dynamical systems, and modern cryptography, each with unique features [7–13].
Chaos-based effective selective image encryption [14] was introduced by Khan et al. First,
the plaintext image is initially divided by the proposed technique into some blocks. The
correlation coefficients are determined. The block with the highest association coefficients
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is pixel-wise eXclusive OR-2ed (XORed) with the random numbers created from a skew
tent map in terms of a pre-determined threshold value. Ultimately, the entire image is
permuted through two random sequences created from Two Dimensional Ellipse Reflecting
Chaotic System (TD-ERCS) chaotic maps. A novel fast image encryption algorithm ori-
ented by chaos [15] was introduced by Wang et al., oriented by the permutation-diffusion
architecture. In their method, the image is first separated into pixel blocks.

The spatiotemporal chaos is then utilized for shuffling the blocks and simultaneously
changing the pixel values. Patidar et al. represented another vigorous pseudorandom
permutation-substitution outline based on chaos for image encryption [16]. It was a loss-
less symmetric block cipher and designed especially for color images. It may also be
utilized for grayscale images. Wang et al. proposed a block image encryption outline
in dynamic random growth and chaotic hybrid maps [17]. Since the cat map is simply
fractured by selected plaintext attack, and it is periodic, in another securer way, they used
the cat map for eliminating the cyclical phenomenon and resisting selected plaintext attack.
Volos et al. presented an image encryption procedure in terms of chaotic synchronization
phenomena [18]. They provided a new image encryption scheme through a chaotic TRBG
(True Random Bits Generator). Image encryption based on synchronizing fractional chaotic
systems [19] was utilized by Xu et al. A DNA sequence and a hybrid genetic algorithm were
used for image encryption by Enayatifar et al. [20]. They presented a new image encryption
algorithm using a hybrid model of a genetic algorithm (GA), deoxyribonucleic acid (DNA)
masking, and a logistic map. Xu et al. introduced a novel bit-level image encryption
algorithm oriented by chaotic maps [21]. Chaos-based Genetic Algorithms are extensively
utilized for image encryption by many researchers [22–26]. Multiple-image encryption
through the robust chaotic map in wavelet transform domains [27] was represented by
Li et al. In this work, first, discrete wavelet transform (DWT) was used to decompose the
original images being used and reassemble the lower frequency components as the direct
images (estimated images). The direct image was then totally scrambled through Arnold’s
cat map. Third, further decomposing the scrambled image and the resulting block images
are employed separately to integrate with the amplitude parameter of the RCM (robust
chaotic map) for generating keystream in each diffusion procedure. Satish et al. presented
an outline to encrypt an image through the Logistic Map [28]. It would scramble the image
pixels. Thus, the resulting cipher image will be XOR encrypted while dividing the output
into various frequency coefficients through Integer Wavelet Decomposition. The Logistic
Map is used to shuffle the resulting low-frequency coefficient wavelet, and all the frequency
coefficient wavelets will be integrated via Inverse Integer Wavelet Transformation. The
main objective of this manuscript provides a new technique based on chaos theory for
digital image encryption. Nevertheless, the chaos-based image encryption technique has
some problems, including limited accuracy. For this reason, in this research, the encryption
of images is divided into spatial and transform domain encryption. Over the last few years,
some image encryption schemes were presented by the frequency domain and spatial
domain. Spatial domain methods directly act on the pixels of the plain image. Because
this method contains high-speed encryption, it is used widely [29,30]. The transform
domain encryption is used, considering some typical properties of digital images as a
strong correlation between high redundancy and nearby pixels.

A method of encryption-decryption employing Rivest–Shamir–Adleman (RSA) algo-
rithm components and topological image protection was suggested by Kovalchuk et al.
The main advantages of the suggested approaches are accomplished by using images with
functional fluctuation intensity [31]. The effect of the noise-adding functions added to the
source picture, and also the different values of simple numbers of the RSA scheme on the
effects of the process were analyzed in another work. These results were set to not give rise
to the presence of contours in the encrypted image [32]. Additionally, other approaches,
such as linear and quadratic fractal algorithms [33,34], projective transformations [35],
and binary linear-quadratic transformations [36], are also used for image encryption and
decryption. A model of image encryption based on a complex chaos-based pseudoran-
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dom number generator and modified advanced encryption standard was proposed by
Hafsa et al. On the Altera Cyclone III board, the overall system was created. The findings
revealed that the cryptographic algorithm was quicker and could withstand attacks of
some kind [37]. A novel grayscale image cryptosystem based on chaotic hybrid maps was
introduced by Kari et al. The proposed scheme has better properties, including broader
chaotic ranges and more dynamic chaotic behavior, based on the results [38].

This paper is oriented by the chaos sequence and wavelet transform value and the
integration of the image encryption algorithm. Such algorithms are simulated through
analyzing the algorithm to discover the gaps. Thus, the algorithm was enhanced. This
method uses two one-dimensional chaotic systems that can use even a fundamental non-
linear equation to display chaotic behavior. Our main aim, as well as the proportion of
taking this kind of map, is to discover a new discrete-time sequence, the same as the chaotic
output of the logistic map with elementary equations with unique parameters.

This paper is presented in the following sections. In the “Introduction” section, the
motivation and the statement of the problem are described. Moreover, the literature review
of the related papers is interpreted in this section. Furthermore, in the “Methods and
Materials,” the basic mathematical concepts and expression of the proposed method are
presented. Moreover, in the “Proposed Algorithm” section, the result of the proposed
model implementation is described using graphical figures and tables. In addition, the
comparison is presented in the “Proposed Algorithm” section. In the “Discussion” section,
the findings are interpreted, and previous studies, hypotheses, limitations and suggested
future works are described. Finally, the “Conclusions” section summarizes the results by
numerical outcomes and perspective concepts.

2. Materials and Methods
2.1. Chaos and Transformation Theories

Nowadays, chaos and transformation theories have emerged as novel currencies in
social sciences. Image transformation is a technique simplifying image processing and
improving the performance of image processing. Image enhancement denotes highlighting
and sharpening definite features. It includes the contours, edges, and contrast of an image
to display, observe, or further analyze and process the image [39–42]. Chaos theory presents
the 1st Transdisciplinary understanding of bifurcation and transformational change. As
a mathematics field, it has focused on the dynamical systems’ behavior with extreme
sensitivity to primary conditions. Numerous attempts exist to apply chaotic signals for
communications. However, there is a lack of a useful way for recovering chaotic signals
from noises larger than the signals.

2.2. Chaotic Sequence Based on Logistic Map

A one discrete-time-dimensional nonlinear system displaying quadratic nonlinear-
ity is called a logistic map. The logistics map is shown with the following function.
f : [0, 1]→< as

f (x) = µx(1− x) (1)

which is stated in state equation form as

xn+1 = f (xn) = µxn(1− x), n = 1, 2, . . . (2)

where xn ∈ (0, 1) and µ ∈ (0, 4) are known as the control parameter or bifurcation parameter.
Here, xn represents the system’s state at time n.xn+1 indicates the following state,

and n shows the discrete-time. By repeated iteration of f, a sequence of points {xn}∞ is
increased, known as an orbit. The performance of the logistic map is sensitive to the value
of µ. For µ ∈ (3.574), the logistic map is chaotic [43]. Now, the diffusion algorithm key is
chosen, for which the actual y, the primary iteration of the logistics, is with parameter µ.
For different primary conditions, two logistic maps are utilized for executing the repetition
operation. Moreover, the values of the state of two logistic maps are measured dynamically.
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With this operation, chaotic sequences are produced. The operation is as follows: place a
grayscale image G with the size of m× n, the two-dimensional data matrix of R, turn R
into the one-dimensional matrix with the length of m× n. Put R1 = {r1, r2 . . . rm×n}, and
put P1 = {p1, p2 . . . pm×n} as the encrypted 1D matrix. The procedure of the encrypted
algorithm will be as follows:

Step NO.1: In the first step, two chaotic sequences, x = {x1, x2 . . . xm×n} are produced
by two one-dimensional logistic maps. Place the two logistic maps system
parameter as a primary value as x1(0) and x2(0), respectively.

Step NO.2: In the second step, for every iteration, compare x1(i), and x2(i), i = 1, 2, m × n
and choose one that is numerically larger.

Step NO.3: In the next step, perform the Exclusive NOR (XNOR) operation for sequences
produced by Step NO.2 with the original image’s pixels.

Step NO.4: In the last step, change the encrypted one-dimensional matrix, namely P, into
a two-dimensional matrix. Set the size of this modified matrix to m × n. In
this process, a two-dimensional data matrix R2 is generated. Thus, a diffused
image is obtained.

2.3. Kinetics of Coupled Map Lattice

One of the most popular classes of models in the theory of space-time chaos is formed
by the coupled map lattice (CML). Coupled map lattices are extensively applied to survey
the dynamics of spatially prolonged logistic map systems. The CMLs are used in cryp-
tography, physics, economics, steganography, and biology. They have a significant role
in image encryption algorithms [44–46]. Then, we used a two-dimensional hyper-chaotic
map CML to try pixel location. It can effectively and efficiently extend the keyspace. It
increases the capability of anti-decryption. CML statement is as:

xn+1 = 1− a
(

x2
n + y2

n

)
(3)

yn+1 = −2a(1− 2b)xnyn (4)

The digital images possess the digital matrix features for scrambling the location of
pixels; thus, considering a random image, the impact of confidentiality is accomplished.
The procedure of the encrypted algorithm will be as follows:

Step NO.1: In the first step, the chaotic sequences x1, x2 = {x1, x2 . . . xm} are produced with
the length of m, and y1, y2 = {y1, y2 . . . yn} with the length of n similar to CML
chaos mapping.

Step NO.2: In the second step, x, y chaotic sequences are arranged in rising sequences,
producing position sequences w2, w3.

Step NO.3: In the last step, the pixel confusion is performed, using w2, w3 as the row, and
column sequences of the data matrix R.

R(i, 1) = R(w2(i, w3(j))). (5)

2.4. Wavelet Transform

A valuable instrument for analyzing the signal’s frequency components is called the
Fourier transform. Taking the Fourier to convert over the whole-time axis, it is impossible
to determine the exact instant of increasing a specific frequency. The Fourier transform
and the wavelet transform are the same with a completely various merit function. The
wavelet transforms mainly aimed at only allowing changes by transforming the time
extension rather than the shape. The main difference between these two is that the signal
is decomposed by the Fourier transform into cosines and sine’s; however, the wavelet
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transform utilizes the functions localized in both the Fourier and real space. Commonly,
the wavelet transform is stated as follows:

f (a, b) =
∫ −∞

∞
f (x)Ψ∗(a, b).x.d(x) (6)

in which * represents the complex conjugate symbol and function ϕ is a function which can
be arbitrarily selected if it follows definite rules. The wavelet transform can have a signal
into time, space, and frequency as independent space. It also focuses on the specific signal
of any local details. Thus, further information can be extracted effectively from the signals
much by wavelet transform.

Numerous types of wavelet transforms exist for particular purposes. We used continu-
ous and discrete wavelet transforms to extract further information from the signals. Similar
to the Fourier transform, inner products are used by the continuous wavelet transform
for measuring the similarity between a signal and an analyzing function. Theoretical
analysis is one of the areas for using a continuous wavelet transform. Within the particular
realization on computers as a functional area of research, a continuous wavelet must be
discretized [47–50]. Running the wavelet transformation through a discrete set of wavelet
scales and translations following some determined rules is known as the discrete wavelet
transform. The signal is decomposed by transforming into the mutually orthogonal group
of wavelets as the necessary variation from the continuous wavelet transforms.

Moreover, the implementations for the discrete-time series are occasionally determined
as the discrete-time continuous wavelet transforms. It is the most significant point to select
the wavelet utilized for time-frequency decomposition. Through this selection, we can
affect the frequency and time resolution of the results. This way cannot replace Wavelet
Transformation (WT)’s basic features (low frequencies possess a wrong time resolution
and true frequencies; higher frequencies possess a wrong frequency resolution and a good
time). However, it is somehow possible to increment the total time resolution’s total
frequency. It is straightly proportional to the utilized wavelet’s width in the Fourier and
real space. Using the Morlet wavelet, we can presume high-frequency resolution as a very
well-localized wavelet in frequencies. In reverse, utilizing a Derivative of Gaussian wavelet
will lead to the right time localization but lower frequencies.

3. Proposed Algorithm

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

Figure 1 represents the proposed algorithm. The steps for implementing the suggested
algorithm are:

Step NO.1: In the first step, a grayscale image G is arranged. The image’s size is set to
m × n. Moreover, data matrix R is placed. By evaluating two logistic maps,
a chaotic sequence is generated. Making XNOR with the primary image, the
diffusion is terminated.

Step NO.2: In this step, for the diffused image in step NO.1, the wavelet decomposition is
performed and then the wavelet coefficient is extracted, registered as ca1.

Step NO.3: Utilizing a two-dimensional hyper-chaotic map CML, the chaotic sequence
is produced, and with ca1 established in step NO.2, the position confusion
is performed.

Step NO.4: In the last step, the confused image can be rebuilt by wavelet. After all, the
encrypted image is obtained. The inverse operations of the encryption are
known as the decryption algorithm. System parameters and the primary
value of the chaotic sequences in the image encryption and image decryption
are consistent.
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Figure 1. The proposed algorithm for image encryption: CWT: Continuous Wavelet Transform; DWT: Discrete Wavelet
Transforms.

3.1. Encryption Assessments Metrics

We measured our cryptography scheme’s performance by selecting some basic pa-
rameters to assess the algorithm. Visual inspection is one of the main parameters for
assessing the encrypted images [51–53]. The characteristic diffusion survey is another pa-
rameter [54,55] determined for judging the randomization algorithm. Through inspection,
the deviation of a product from a definite set of features is determined. Human operators
usually accomplish the inspection; nevertheless, machine vision is utilized for automat-
ing this procedure [56–58]. By the excellent diffusion of an algorithm, the association
between the original image and the encrypted image becomes too complicated and cannot
be predicted simply. Here, we studied the Peak Signal to Noise Ratio (PSNR) computation
metrics, the association between the encrypted image and the key-image. Ultimately, we
assessed the specification diffusion by calculating two parameters of the Unified Average
Changing Intensity (UACI) and the Number of Pixels Change Rate (NPCR).

3.2. Peak Signal to Noise Ratio (PSNR)

Peak Signal to Noise Ratio (PSNR) is an engineering formulation determined through
mean square error (MSE). It is generally utilized for image quality evaluation as follows [59]:

PSNR = 10 log
(

2552

MSE( f , f ′)

)
(7)

where f (x; y) and f ’(x; y) denote the pixel values of m× n original and reconstructed images.

3.3. Number of Pixels Change Rate (NPCR)

Diffusion is represented by the number of the most essential parameters for judging
the encryption algorithm randomization. NPCRs are used to examine the image encryption
algorithm’s security. Considering C1 and C2 as the two images with N ×M size, we defined
an array, D, with the sizes similar to images C1 and C2 as:

D(i, j) =
{

0i f C1(i,j)=C2(i,j)
1i f C1(i,j) 6=C2(i,j)

(8)

The NPCR determines the percentage of pixels within two different images, and it can
be calculated as follows [31]:

NPCR =
∑N×M

ij−1 D(i, j)

N ×M
× 100% (9)

3.4. Unified Average Changing Intensity (UACI)

UACI determines the average intensity of the difference within the two encrypted
images (C1 and C2), using the below expression [60]. It is applied to evaluate the encryption
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method’s strength. Its value is based on the image’s format and size [61,62]. Through UACI,
the average variation in intensity between the ciphered and original images is assessed.
The greatest UACI indicates that the suggested technique has resistance against various
attacks. UACI is determined for the grayscale image of size M × N as follows:

UACI =
1

N ×M

[
N×M

∑
ij−1

C1(i, j)− C2(i, j)
MAX(C2)

]
× 100% (10)

3.5. Correlation Coefficient

Digital Image Correlation (DIC) is a key and extensively utilized non-contact method
to measure material deformation. In recent years, there has been a significant development
in developing novel experimental DIC methods and in improving the relevant computa-
tional algorithms’ performance [63,64]. Thus, a relation is indicated among the same pixels
of the encrypted and the original images as follows:

NC =
∑ m×∑ n

(
Amn −

−
A
)(

Bmn −
−
B
)

√
(Amn −

−
A)

2

(Bmn −
−
B)

2
(11)

where A and B, respectively, denote the original image and the encrypted one, as well as
their means. The lower correlation coefficient value is optimal.

4. Experimental and Numerical Results

The results of the presented algorithm steps are indicated in Figure 2. In the first step,
the input grayscale image with a size of m × n is imported. Based on Figure 2, a chaotic
sequence is created with the two logistic maps used. Finally, in the diffusion step, the
secure key is generated for encryption. For the encryption of the input image, the secure
key must be inserted between the wavelet decomposition sub band. The sub bands of the
DWT method are indicated in Figure 2. Upper to lower and left to right images in the
DWT sub-bands are Low-Low, Low-High, High-Low and High-High sub bands. Utilizing
a two-dimensional hyper-chaotic map CML, the chaotic sequence is produced and the
confusion is performed. In the final step, the confused image is generated. Finally, the
image consists of an encrypted matrix with the use of an input image and secure key.

Evaluating the suggested algorithm with numerical results indicates that this algorithm
is robust. Numerical results for the proposed algorithm are displayed in Table 1.

Table 1. The numerical results of the proposed algorithm.

Image Type of Image PSNR NPCR UACI NC

Lena Image Jpg 42.612 99.757 33.120 0.9548
Peppers Image Jpg 39.220 99.787 33.621 0.9934
Barbara Image Jpg 36.841 99.626 33.126 0.9809
Baboon Image Jpg 39.134 99.881 33.415 0.9137

Boat Image Jpg 38.223 99.625 33.671 0.9001

First, the diffusion operation is performed for the encryption of the primary image
(original image). The primary key value is taken from Table 2; then, the confusion op-
eration is performed while taking the primary key value from Table 2. The findings of
encryption are the same as the noise (Figure 3). No information on the original image
is acquired from the encrypted image. A decrypted image is acquired via the key for
decrypting the encrypted image, followed by diffusion and confusion operations (Figure 3,
decrypted image).
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Table 2. Key initial value for diffusion and confusion operations.

x1(1) x2(1) µ 1 µ 2
0.5 0.5 4 3.9

x3(1) y3(1) µ 1 µ 2
0.3 0.3 4 3.9
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(original image). The primary key value is taken from Table 2; then, the confusion opera-

tion is performed while taking the primary key value from Table 2. The findings of en-

cryption are the same as the noise (Figure 3). No information on the original image is 

acquired from the encrypted image. A decrypted image is acquired via the key for de-

crypting the encrypted image, followed by diffusion and confusion operations (Figure 3, 

decrypted image). 

Table 2. Key initial value for diffusion and confusion operations. 

x1(1) x2(1) µ  1 µ  2 

0.5 0.5 4 3.9 

x3(1) y3(1) µ  1 µ  2 

0.3 0.3 4 3.9 

Figure 2. Results of the proposed method steps.
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4.1. Histogram Analysis

The first test is the histogram analysis of the encrypted, decrypted, and original
images. Here, respective images’ image histograms represent the vast differences between
encrypted and original images, while they are the same. With the evaluation of the
histogram of the test image and histogram after encryption, it is observed that the encrypted
image is distributed uniformly in the entire interval of the histogram. Therefore, the original
image’s distribution regularity is covered. Hence, the encryption is implemented effectively
(see Figure 4).

4.2. Complexity

Using the proposed algorithm, by encrypting an image A of M × N, the algorithm
using the chaotic map should produce an M × N number of random numbers R1. Hence,
the complexity to produce M × N numbers of the random number is O (n). By increasing
the time using the same chaotic map, the algorithm should produce a random chaos
sequence of M × N bits. Hence, the complexity is repeated to produce M × N numbers of
random bits as O (n). Afterward, it builds series (M × N) of chaos sequence additions or
subtractions with a complexity of O (n). Lastly, it builds a chain XOR of operations as O (n).
Thus, the algorithm’s whole complexity is O (n).

4.3. Robustness

We evaluated the correlation between two vertically, two horizontally, and two diago-
nally adjacent pixels in the input image and encrypted image in addition to the histogram
analysis in Figure 5. The values of two adjacent pixels in the image are represented by the
x- and y-axes. In both the input and cipher images, Figure 5 depicts the correlation distri-
bution of two horizontally adjacent pixels. Both the plain image and the cipher image have
correlation coefficients of 0.99 and 0.02, respectively. The diagonal and vertical directions
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both yield similar results. The simple picture has a high correlation of two neighboring
pixels.
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images (Right) in Lena image.

To evaluate the proposed approach’s robustness, the test images are tested against
four types of image processing attacks: rotation, Gaussian noise, median filtration, and
histogram equalization. The results show that the proposed design is associated with
higher robustness and normalized correlation. Based on the results, input attack does
not affect image encryption and decryption. Regarding the Normalized Correlation (NC)
value for different types of images, median filter, rotation, and Gaussian noise have higher
NC values. This means that the robustness of the presented method resists these types of
attacks. However, the impact of histogram equalization is remarkable (see Table 3).
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Table 3. The NC value of the proposed algorithm with different types of attack.

Image Median Filter Histogram Equalization Rotation Gaussian Noise

Lena Image 0.984 0.987 0.999 0.999
Peppers Image 0.704 0.280 0.923 0.964
Barbara Image 0.914 0.497 0.980 0.991
Baboon Image 0.960 0.629 0.991 0.996

Boat Image 0.976 0.746 0.995 0.998

5. Discussion

Here, a novel algorithm was presented for image encryption oriented by chaos. The
provided algorithm in this paper has the following benefits in comparison with other
chaos-based algorithms. The chaotic sequence system structure is more complicated
than the low-dimensional one, producing an integration of multivariate or univariate
chaotic sequences [65]. This algorithm uses two one-dimensional chaotic systems. One-
dimensional chaotic maps became an attractive field with the first detection of the Logistic
Map in 1976. A very simple map by May [66] indicated that chaotic behavior could
be exhibited using even a very simple nonlinear equation (a one-dimensional quadratic
equation). Hence, our primary objective, as well as the ratio of taking this kind of map,
is to discover a novel discrete time-series, the same as the logistic map exhibiting chaotic
performance for unique parameters with elementary equations. The proposed method, in
comparison with a low-dimensional chaotic sequence, is very secure for generating the
chaotic sequence.

Moreover, compared to the high-dimensional chaotic sequence, this algorithm has a
smaller calculation burden. The reason is that through the chaos model reconstruction, a
low-dimensional chaotic sequence is simply attacked. Low-dimensional chaos was utilized
for image encryption; however, its chaotic orbit was simple and might be simply predicted
through the methods such as regression mapping, nonlinear prediction, and phase space
reconstruction. Thus, the image encryption scheme utilizing low-dimensional chaos is sim-
ply exposed to the attacks [67]. However, the proposed method can transform the dynamic
performance of the original chaotic system through dynamic comparison while completely
resisting the model reconstruction attack, therefore developing its security. Compared to a
high-dimensional chaotic sequence, the one-dimensional sequence has a lower amount of
calculation. The reason is that the low-dimensional chaotic system is usually demonstrated
with an algebraic equation, and it has a rapid solution. However, the high-dimensional
chaotic system is a complex differential equation with relatively more considerable com-
plexity and calculation burden. Utilizing the high-dimensional chaotic systems in some
image encryption algorithms, the encryption procedure was straightforward. Moreover,
the encryption algorithm was not sensitive to the secret keys and plain image alterations
exposed to selective plaintext attacks or plaintext attacks [68]. By performing confusion
encryption after diffusion encryption, we can develop the capability against the confusion
encryption attack. Since the diffusion outcome becomes hidden by confusion encryption,
the cipher is impractical through gathering the specific image. Classical encryption is
commonly used just in the frequency-domain or air-domain. Our research, air-domain, and
frequency-domain simultaneously perform encryption to improve the effects of encryption
and enhance the encryption intensity.

Moreover, it is difficult to break in the frequency-domain or air-domain. Since the
two-dimensional hyper-chaotic map is utilized in confusion encryption, there is a more
considerable calculation burden for this algorithm. The findings obtained from the ex-
perimental values for the various standard images obtained by applying some existing
methods, including our presented model, are shown in Table 4. These findings indicate
that our approach is highly vulnerable to the alteration of the plain image bit, thereby
making void differential attacks. In the presented model, input images consist of a 2D
matrix of grayscale images. The main advantage of these types of images is to reduce both
process time and storage volume. However, there are some disadvantages. Sometimes, the
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encryption should be implemented on a color image or video. In color pictures, video files,
and voice files, encryption plays an important role. Therefore, the main limitation of this
method is incompatibility with other types of files. For future hypotheses and research, we
suggest extending the presented method and testing on other types of presentative files.

Table 4. The numerical results of the proposed algorithm in comparison with state-of-the-art methods.

Reference Image NPCR UACI

Presented model Lena Image 99.757 33.120
Presented model Peppers Image 99.787 33.621
Presented model Barbara Image 99.626 33.126
Presented model Baboon Image 99.881 33.415
Presented model Boat Image 99.625 33.671
Amina et al. [69] Lena Image 99.646 33.625
Amina et al. [69] Peppers Image 99.632 33.507
Amina et al. [69] Baboon Image 99.602 33.629
Yavuz et al. [70] Lena Image 99.620 33.410

Zhang and Zhao [71] Lena Image 99.605 33.411
Assad and Farajallah [72] Lena Image 99.607 33.463
Assad and Farajallah [72] Boat Image 99.615 33.465

Kari et al. [38] Lena Image 99.646 33.625
Kari et al. [38] Peppers Image 99.713 33.541
Kari et al. [38] Baboon Image 99.623 33.416
Kari et al. [38] Boat Image 99.619 33.556

The suggested scheme’s encrypted picture has a uniform histogram, a near-to-zero
correlation coefficient, and entropy close to the full entropy. All of this shows that the
scheme can withstand statistical attacks very well. The NPCR scores are appropriate
for avoiding differential attacks, and the UACI scores are similar to the optimal result.
Furthermore, the processing time for encryption and decryption is strictly proportional
to the magnitude of the original image’s correlation coefficient. A simple image with a
lower correlation coefficient takes less time to encrypt and decode, and vice versa. The
proposed scheme has a broad chaotic regime for a wide variety of parameters, provides
good security, and can withstand typical attacks, according to the dynamical analysis and
assessment findings.

6. Conclusions

Recently, various chaos-based image cryptosystems have been presented. The present
work deals with a chaotic-based algorithm using characteristics of the chaotic map and
wavelet transform. The encryption process in this algorithm includes two stages. At
first, we performed the image diffusion operation. Moreover, by performing the wavelet
transform, the calculation amount in confusion was considerably reduced by hyper-chaotic
sequences. The simulation results with the standard metrics show that the proposed algo-
rithm has a high dependence on keys. This algorithm includes a decent encryption effect.
Moreover, it can resist noise and cut attacks. We have tested the presented method for
Lena, Peppers, Barbara, Baboon, and Boat Images from benchmark MATLAB test images.
Moreover, the histograms of both input images and encrypted images are depicted. In
addition, the encryption performance analysis criteria such as PSNR, NPCR, UACI and
NC are recorded. Based on the results, the correlation value for Lena, Peppers, Barbara,
Baboon, and Boat is 95.48%, 99.64%, 98.09%, 91.37% and 90.01%, respectively. To evaluate
the proposed approach’s robustness, the test images are tested against four types of image
processing attacks: rotation, Gaussian noise, median filtration, and histogram equalization.
The results show that the proposed design is associated with higher robustness and nor-
malized correlation. Based on the results, input attack does not affect image encryption and
decryption. Regarding the NC value for different types of images, median filter, rotation,
and Gaussian noise have higher NC values. It means that the robustness of the presented
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method resists these types of attacks. However, the impact of histogram equalization is
remarkable. For future work, we suggested implementing the presented method for other
types of files such as voice, video, and color 3D images.
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