
Received: 5 October 2022 - Revised: 9 November 2022 - Accepted: 17 November 2022

https://doi.org/10.1016/j.rpth.2022.100023
S T A T E O F TH E AR T R E V I EW
Bloodclot contraction:Mechanisms, pathophysiology, anddisease
Rustem I. Litvinov MD, PhD | John W. Weisel PhD
Department of Cell and Developmental

Biology, University of Pennsylvania

Perelman School of Medicine, Philadelphia,

Pennsylvania, USA

Correspondence

Rustem I. Litvinov, Department of Cell and

Developmental Biology, University of

Pennsylvania Perelman School of Medicine,

421 Curie Blvd., Room 1116, Philadelphia,

PA 19104-6058, USA.

Email: litvinov@pennmedicine.upenn.edu

Handling Editor: Dr Y Senis
Rustem I. Litvinov and John W. Weisel contributed equally

© 2022 THE AUTHORS. Published by Elsevier Inc. o

NC-ND license (http://creativecommons.org/licens

Essentials

• Platelet-driven contraction (retraction) o

• The contraction causes a redistribution

• Contraction in (pro)thrombotic states is

• Contraction of thrombi affects obstruct

Res Pract Thromb Haemost. 2023;7:e100023

https://doi.org/10.1016/j.rpth.2022.100023
Abstract

A State of the Art lecture titled “Blood Clot Contraction: Mechanisms, Pathophysiology,

andDisease”was presented at the International Society on Thrombosis andHaemostasis

(ISTH) Congress in 2022. This was a systematic description of blood clot contraction or

retraction, driven by activated platelets and causing compaction of the fibrin network

along with compression of the embedded erythrocytes. The consequences of clot

contraction include redistribution of the fibrin-platelet meshwork toward the periphery

of the clot and condensation of erythrocytes in the core, followed by their deformation

from the biconcave shape into polyhedral cells (polyhedrocytes). These structural sig-

natures of contraction have been found in ex vivo thrombi derived from various locations,

which indicated that clots undergo intravital contraction within the blood vessels. In

hemostatic clots, tightly packed polyhedrocytes make a nearly impermeable seal that

stems bleeding and is impaired in hemorrhagic disorders. In thrombosis, contraction fa-

cilitates the local blood flow by decreasing thrombus obstructiveness, reducing perme-

ability, and changing susceptibility to fibrinolytic enzymes. However, in (pro)thrombotic

conditions, continuous background platelet activation is followed by platelet exhaustion,

refractoriness, and impaired intravital clot contraction, which is associated with weaker

thrombi predisposed to embolization. Therefore, assays that detect imperfect in vitro clot

contraction have potential diagnostic and prognostic values for imminent or ongoing

thrombosis and thrombotic embolism. Collectively, the contraction of blood clots and

thrombi is an underappreciated and understudied process that has a pathogenic and

clinical significance in bleeding and thrombosis of various etiologies. Finally, we have

summarized relevant new data on this topic presented during the 2022 ISTH Congress.
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F I GUR E 1 Clot contraction (retraction) is the macroscopic

volumetric shrinkage of a blood clot driven by activated platelets.

A freshly formed uncontracted blood clot (on the left) undergoes

visual contraction followed by the expulsion of liquid blood serum
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1 | INTRODUCTION

Mechanobiology is a rapidly developing area of research and practice

in thrombosis and hemostasis. Within this broad and booming field,

one of the most intriguing aspects is the platelet-driven compaction of

blood clots and thrombi, which had undeservedly mostly been ignored

but now has started attracting the attention of clinicians and re-

searchers. The phenomenon of clot contraction had been used pre-

dominantly to obtain blood serum for laboratory studies. Yet, there

are forcible arguments to consider that clot contraction occurs not

only in a test tube but also in wounds and inside the blood vessels, if,

respectively, a hemostatic clot or obstructive thrombus has been

formed. There is increasing evidence for this perception that the

contraction of a blood clot or thrombus has practical implications.

Despite the potential importance of blood clot contraction, the num-

ber of systematic studies and overviews of this phenomenon is limited

[1–7], partly due to deficiencies in existing methods for quantifying

this process, and most importantly, due to the underestimation of its

pathogenic and clinical roles. The purpose of this review is to provide

an up-to-date summary of platelet-driven mechanical remodeling of

blood clots and thrombi and to emphasize the importance of this

mechanism for hemostasis and thrombosis.
2 | TERMINOLOGY

Soon after their formation, in vitro blood clots begin to shrink in vol-

ume and expel liquid serum; this process is called clot retraction or

contraction (Figure 1). Although these 2 terms are close in meaning

and “clot retraction” has traditionally been used more often, we think

that the term “contraction” reflects more accurately the decrease in

volume of a blood clot under the action of the contractile protein

machinery of activated platelets. In addition, the term “contraction”

helps to define platelet-driven blood clot shrinkage as a particular case

of the more general phenomenon of non-muscle cell contractility.
3 | MOLECULAR AND CELLULAR

MECHANISMS OF BLOOD CLOT

CONTRACTION

Shrinkage of blood clots occurs due to intracellular traction forces

generated by activated platelets adhering to fibrin fibers, which form

the viscoelastic 3D framework of clots and distribute traction forces

throughout them. Since platelets are commonly activated by thrombin,

contraction occurs simultaneously with the formation of a fibrin

network. In the cytoplasm of activated platelets, non-muscle myosin

IIA pulls on actin filaments, leading to the generation of traction forces

through an ATP-dependent molecular mechanism similar to that of

other motile cells [8]. Intracellular forces are transmitted to the fibrin

network via adhesive molecules (mechanotransduction), which leads

to mechanical compression of the clot and squeezing of liquid serum

out [9]. The platelet integrin αIIbβ3 serves as the main mechanical and
structural bridge between extracellular fibrin and intracellular actin

connected to integrin via talin [10]. The αIIbβ3-talin interaction de-

pends on the activity of calpain, which helps in modulating the kinetics

of clot contraction [11]. Notably, the αIIbβ3-fibrin binding sites

necessary for contraction are distinct from the αIIbβ3-fibrinogen

binding specificity during platelet aggregation [12–16]. The αIIbβ3-

fibrin binding induces outside-in signaling that strengthens platelet

contractility [17], which can be potentially exaggerated by other

fibrin-associated integrin-binding proteins. The critical importance of

this platelet molecular machinery for clot contraction is evident from

the inhibitory effects of myosin II, actin, and integrin αIIbβ3 antago-

nists [18], all of which impair clot contraction.

The molecular and cellular mechanisms of clot contraction have

been studied for decades with important insights [19,20]. More

recently, our real-time confocal microscopy imaging has shown that

contraction is driven by platelet filopodia that attach to adjacent fibrin

fibers and retract, making a kink in each fiber and thus pulling fibers

toward the platelet body [21] (Figure 2). An activated platelet un-

dergoes successive cycles of filopodia extending, attaching to a fibrin

fiber, and retracting, bending, as well as shortening the fibers (similar

to pulling on a rope “hand-over-hand”) [21]. Platelet aggregates acting

as a nidus for fibrin fibers with a large number of filopodia enhance the

dynamic mechanical interactions with the fibers [22,23]. Ultimately,

contracting platelets cause compaction of the network with the for-

mation of fibrin bundles and amorphous fibrin agglomerates wrapped

around the platelets. Collectively, contracting platelets induce dra-

matic remodeling of the fibrin network by decreasing the clot volume,

as well as increasing its density and stiffness associated with reduced

porosity and permeability of the clot. The contraction of blood clots is

a spatially heterogeneous process, such that the peripheral part of the

macroscopic clot contracts faster and the shrinkage propagates to-

ward the center [21] since platelets pull uniformly in all directions but

there is asymmetry because the contractile forces acting on the pe-

riphery are not compensated [21,24].



F I GUR E 2 Time-lapse images of a contracting platelet that causes bending, kinking, and agglomeration of a single fibrin fiber. Top row: A

platelet (green) attaches to a fibrin fiber (red) and spreads filopodia along the fiber axis that contract, pulling the fiber and inducing a kink in the

fiber, compacting it into a dense fibrin knot or coil. Middle row: The same platelet is shown without the fibrin channel, demonstrating the

formation of filopodia (arrows) and platelet contraction. Bottom row: The same fibrin fiber without the platelet channel, showing platelet-

induced kinking (arrow) and agglomeration of fibrin. Modified from [21]
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4 | METHODS TO MEASURE PLATELET

CONTRACTILITY AND BLOOD CLOT

CONTRACTION

Since the ability of platelets to generate contractile forces and the rate

or degree of clot shrinkage is not always commensurate, due to the

multifactorial nature of clot contraction, the characterization of blood

clot contraction in both the research laboratory and the clinical setting

should be based on complementary methodological approaches.
4.1 | Assessment of traction forces generated by

activated platelets

Assessment of traction forces generated by activated platelets can be

performed either in a bulk macroscopic clot or at the levels of a

platelet aggregate or an individual platelet [7]. Earlier systems to

measure platelet contractile forces used a relatively large clot with

one end fixed and the other attached to a force transducer [19,25, 26].

The same principle has been reproduced in a parallel plate rheometer,

where a platelet-containing clot fills the gap between 2 horizontal

plates and the contractile stress is measured as the negative normal

(perpendicular) force pulling on the upper plate [6,18]. Devices to

measure contractile forces, in the same manner, have been developed

[27,28]. Importantly, almost all bulk clot methods measure isometric

or constrained contraction, i.e., platelet-generated stress without

volumetric clot shrinkage, which limits the utility of these assays for

the assessment of averaged platelet functionality.
To address the functional heterogeneity of platelets [29], their

contractility can be measured at the scale that corresponds to platelet

aggregates and single platelets, but the relationship between single-

platelet force and bulk clot contraction force is not straightforward

[30]. Highly sensitive techniques measure the platelet-induced

deflection of synthetic microposts with a size comparable to platelet

aggregates and even individual platelets [31–33]. A miniaturized

hemoretractometer [34] measures the contractile force generated in a

microscopic whole blood clot. The traction force of individual platelets

has been quantified using atomic force microscopy [35], with the force

of individual platelets varying from 1.5 to 79 nN [8]. Hydrogel traction

force microscopy uses 2 fibrinogen-coated beads with known stiffness

covered and connected by a single activated contracting platelet that

pulls the beads together [36]. Based on this approach, a high-

throughput single-platelet force measurement methodology has

been developed, called a platelet contraction cytometer [37]. Fluo-

rescent molecular tension sensors have been used to measure tensile

forces transmitted by single-platelet integrin αIIbβ3 molecules and

were on the order of tens of picoNewtons [38].
4.2 | Stiffening of blood clots is an indirect

equivalent of contraction

Stiffening of blood clots is an indirect equivalent of contraction [39]

due to platelet-driven densification of the fibrin network and me-

chanical stress applied to the fibrin fibers, as well as deformation and

central accumulation of RBCs, liquid expulsion and reduced



F I GUR E 3 Schematic of the optical tracking system to quantify

the clot size as a function of time and the kinetics of blood clot

contraction. Blood samples are added to a flat cuvette of the

Thrombodynamics Analyzer System (HemaCore, Russia) pre-heated

to 37◦C and allowed to clot. The cuvette is exposed to light every

15 seconds, and clot images are recorded using a charge-coupled

device camera. Three selected images of blood clots at various time

points of contraction are shown. Serial data on the clot size are

compiled into a kinetic curve (solid line) with the following

extracted parameters: the maximum extent of clot contraction after

20 min, lag time, and area under the curve reflecting mechanical

work performed by platelets. Using the local minima and maxima of

the first derivative (dashed curve), the clot contraction kinetics are

segregated into 3 phases, corresponding to the initiation of

contraction (phase 1), linear contraction (phase 2), and mechanical

stabilization (phase 3) as demonstrated in [18]
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intercellular spaces. There are other factors contributing to the pro-

gressive stiffening of blood clots, such as the inherent tension of the

polymerizing fibrin [40], factor XIIIa-catalyzed fibrin crosslinking,

cellular content, and composition, etc., but the platelet-mediated clot

contraction plays a major role in clot stiffening, especially at the later

stages of clot formation, when the 3D fibrin meshwork has been

established. Therefore, the dynamic increase of clot stiffness is widely

used to assess the strength of clot contraction with various techniques

that measure clot viscoelasticity. In rotational rheometers, clot forms

and matures between 2 flat or conical surfaces, and the dynamic

elasticity and viscosity levels of a contracting clot are measured as the

mechanical response to the generated shear stress. The elasticity

(reversible deformation) represented by the shear storage modulus

and viscosity (irreversible deformation) characterized by the shear

loss modulus both change as activated platelets contract and apply

tension to the fibrin network, such that elasticity goes up and viscosity

decreases. In combination with the ability to measure bulk clot

contractile forces, rheometers are quite suitable to quantify either

isometric or isotonic contraction of blood clots [7,18]. Thromboelas-

tography can be called “uncalibrated rheometry” because it uses

oscillations to measure a clot’s relative stiffness in arbitrary units [41].

The maximal amplitude of a thromboelastogram depends on the clot’s

viscoelasticity and correlates with platelet contraction, but the exact

contribution of the platelet-mediated clot stiffening is uncertain [42].

Sonoclot is another instrumental viscoelastic test that measures the

amplitude of oscillation of a vibrating probe in the clot [43,44]. Based

on the elasticity of a blood clot, a portable point-of-care instrument to

assess platelet function has been created [45]. All the viscoelastic

techniques described can be used to study dynamic clot mechanics as

well as the kinetics of blood clotting. One common caveat in assessing

clot contraction by measuring clot mechanical properties is the pos-

sibility that a clot may be detached from the transducer-connected

surface, which may cause an artifact like a reduced maximal ampli-

tude in a thromboelastogram interpreted as a measure of platelet

contractility [46].
4.3 | Measuring changes in clot size or serum

volume

Measuring changes in clot size or serum volume corresponding to the

degree of contraction has been used in numerous studies to assess

platelet functionality in vitro [47–51]. Unlike fibrin clots formed with

platelets or in platelet-rich plasma, the rate and extent of volumetric

shrinkage of whole blood clots [52] provide information on the

structural rearrangement and mechanical evolution of a clot. We have

developed a quantitative method for studying the kinetics of blood

clot contraction in vitro [18]. The decrease in size of a contracting clot

is recorded optically and the kinetics of contraction and phase pa-

rameters can be extracted from the resulting curve (Figure 3). This

optical tracking method has been modified to increase throughput

[53].
4.4 | Specialized techniques

A number of specialized techniques to quantify the time course and

extent of blood clot contraction in vitro have been developed, based

on various physical principles and dynamic clot properties, such as

transverse relaxation of water molecules measured with T2 magnetic

resonance [54], the permeability of a contracted clot formed under

flow conditions [55,56], aggregation and shape change of RBCs

quantified with dielectric spectroscopy [57], and serum expulsion

sensed by impedance spectroscopy [58].
5 | BLOOD COMPOSITION AFFECTS CLOT

CONTRACTION

The rate and extent of clot contraction can vary over a broad range

because they depend on the cellular and protein composition of the

blood. In addition to platelet functionality, the platelet count is one of

the most significant variables affecting the parameters of clot

contraction [18,59]. The critical level of platelets in plasma, below

which clot contraction does not occur, is approximately 50×109/l [59],
and an increase in the number of platelets is accompanied by a pro-

gressive increase in the rate and degree of contraction [18].

With normal platelet functionality and count, clot contraction

depends directly on the thrombin activity that determines the degree

of platelet activation [9,18]. Moreover, this effect is mediated through
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PAR1- and PAR4-receptor-dependent intracellular signaling that ac-

tivates both integrin αIIbβ3 and kinases to phosphorylate myosin IIa

and cause instantaneous generation of traction forces [60]. Another

major thrombin-dependent mechanism controlling clot contraction is

the expression level of the activated αIIbβ3 on platelets and its binding

to fibrin [61]. In addition to thrombin, platelet contractility can be

induced by ADP, epinephrine, or collagen [62], indicating that puri-

nergic receptors, GPVI, and adrenergic receptors participate in

platelet-driven clot contraction.

The content of RBCs in clots and thrombi varies broadly and

depends on the conditions of formation as well as on the RBC count.

Since RBCs themselves have mechanical resilience and are incom-

pressible, a higher content of RBCs in the clot impedes contraction

[18]. Importantly, clot contraction depends not only on the quantity

but also on the mechanical properties of RBCs, such that abnormally

rigid RBCs as, for example, in sickle cell anemia, reduce the rate and

degree of contraction [63,64].

The mass and density of the fibrin network, the major mechanical

scaffold of blood clots and thrombi, is an important modulator of clot

contraction [65,66]. At higher plasma fibrinogen concentrations, a

significant dose-dependent decrease in the degree of blood clot

contraction in vitro occurs [18]. The activity of factor XIIIa is also

important for clot contraction [67], and in the absence of factor XIIIa-

catalyzed covalent crosslinking of fibrin, contraction is diminished

[18]. Moreover, without crosslinking of fibrin α-chains clots cannot

hold RBCs such that they fall out, reducing clot size [47,68].

The influence of leukocytes on contraction has been relatively

little studied, although the content of neutrophils and monocytes in

clots and thrombi can increase significantly in inflammatory throm-

bosis. In vitro, activated monocytes enhance blood clot contraction due

to the expression of tissue factor, causing the generation of endoge-

nous thrombin [69]. The formation of neutrophil extracellular traps is

another potential, yet not studied, biomechanical modulator of clot

deformability.

Thus, blood clot contraction is a multifactorial process involving

various blood components that can modulate the extent and rate of

clot contraction over a wide range. This is an important pathophysi-

ological feature, but these variations may complicate the interpreta-

tion of clot contraction assays performed in pathological conditions

with altered blood composition.
6 | CONTRACTION OF BLOOD CLOTS

MODULATES THEIR SUSCEPTIBILITY TO

FIBRINOLYSIS

Fibrinolysis, i.e., dissolution of the fibrin scaffold of blood clots and

thrombi, happens after the conversion of inactive plasminogen to

active plasmin by the action of plasminogen activators. Unlike natural

internal fibrinolysis, which occurs from inside a clot or thrombus,

therapeutic thrombolysis is an external process, when a plasminogen

activator is introduced into the bloodstream and dissolution begins

from outside the thrombus [70]. Contraction of a blood clot appears to
have differential effects on internal vs. external fibrinolysis. In vitro

studies indicate that contracted blood clots are more resistant to

external cleavage than platelet-free uncontracted clots [71–77], most

likely due to the low porosity of the compressed clots and poor

permeation and diffusivity of fibrinolytic enzymes [78]. On the con-

trary, compressed clots lyse faster than a loose or uncontracted clot if

the plasminogen activator is present in the blood initially before the

formation of the clot [75,76, 79–81]. This accelerated rate of internal

proteolysis is likely explained by higher local concentrations of the

fibrin-attached fibrinolytic enzymes, including plasmin, and its protein

substrate i.e., densified fibrin [82–84]. Reciprocally, endogenous

fibrinolysis facilitates clot contraction both in vivo and in vitro, likely

due to the partial cleavage of fibrin followed by reduction of clot

stiffness [85]. In addition to the porosity and stiffness of the entire

fibrin network, fibrinolysis depends strongly on the structure and

properties of individual fibrin fibers, such as their mechanical tension,

which impedes [86–88] or accelerates [89] fibrinolysis, depending on

the conditions. Local concentrations and ratios of pro- and anti-

fibrinolytic agents, their crosslinking to fibrin, and several other

local and systemic factors that modulate clot contraction altogether

determine whether contraction will slow down or quicken the cleav-

age [90–92].

Irrespective of the underlying mechanisms, the complex rela-

tionship between clot contraction and fibrinolysis potentially has

clinical importance in thrombotic conditions, since it can determine

the possibility and effectiveness of natural or therapeutic dissolution

of a thrombus, depending on the timing of its formation, contractile

activity, and the number of platelets, blood composition, and other

factors, directly or indirectly affecting the extent of clot compaction.
7 | STRUCTURAL REMODELING OF BLOOD

CLOTS DURING CONTRACTION

Contraction of blood clots is accompanied not only by a decrease in

the volume and mass of clots but also by dramatic reorganization of

their structure. All 3 main components of blood clots and thrombi,

RBCs, platelets, and fibrin, undergo significant morphological changes

in the process of contraction. The most significant structural conse-

quences of clot contraction are i) redistribution of fibrin and platelets

from a homogeneous meshwork to the periphery and the accumula-

tion of RBCs in the core (Figure 4); ii) a change in the shape of RBCs

from biconcave to polyhedral with a simultaneous increase in cell

packing density [93]. In the interior of a contracted blood clot, both

electron and light microscopy reveal tightly packed, compressed RBCs

that have an unusual polyhedral shape, named polyhedrocytes [93] or

piezocytes (derived from the Greek piezein, which means to squeeze

or press) [94] (Figure 5) [95].

The formation of polyhedrocytes is due to their mechanical

deformation under the action of the compressive force generated by

the outer fibrin-platelet network. Tight packing of RBCs in the form of

tessellated polyhedra most effectively minimizes the volume occupied

by the RBCs inside the compressed clot after the liquid serum is



F I GUR E 4 Blood clot components undergo non-uniform spatial redistribution during contraction. Panoramic scanning electron micrograph

(technology of our scanning electron microscope to stitch together hundreds of adjacent images) of a contracted blood clot showing the

following segregated areas: the outer layer with superficial fibrin-platelet agglomeration, fibrin network, sparse non-deformed RBCs; the

intermediate part containing a mixture of fully and partially deformed RBCs with some intercellular spaces and fibrin fibers; and the central part

of the clot displaying tightly packed tessellated polyhedrocytes without spaces and no fibrin. With permission from [120]
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squeezed out of the intercellular space. Polyhedrocytes that were first

described in the 21st century [93] are a heretofore unknown natural

variant of erythrocytes, which have been studied by microscopy since

the time of Jan Swammerdam, Marcello Malpighi, and Antony van

Leeuwenhoek.

The structural changes in clots during contraction make them

more rigid and mechanically stable. The dense packing of poly-

hedrocytes and their concentration in the center reduce the porosity

and permeability of the clot to pathogens and lytic enzymes, as well as

for blood components in bleeding, which is of great pathophysiological

and clinical significance.
F I GUR E 5 RBCs undergo compressive deformation during the

contraction of blood clots. (A) A non-deformed biconcave

erythrocyte and (B) a polyhedral erythrocyte (polyhedrocyte) that

underwent compressive deformation in a contracted clot as

revealed by 3D confocal fluorescent microscopy. Magnification

bars = 10 μm. With permission from [95]
8 | EVIDENCE FOR CONTRACTION OF

THROMBI AND THROMBOTIC EMBOLI

IN VIVO

To the best of our knowledge, until recently there had been no sys-

tematic studies proving the in vivo contraction of obstructive thrombi,

except a single observation of shrinkage of a thrombus in an animal

model [85]. The typical structural features of a contracted blood clot

revealed in vitro (compressive deformation of RBCs and accumulation

of fibrin and platelets on the periphery of the clot) comprise objective

morphological criteria for clot contraction. Thus, the presence of these

structural markers of contraction in ex vivo thrombi demonstrates

intravital contraction. The presence of polyhedrocytes inside a

thrombus was first demonstrated in coronary artery thrombi extrac-

ted from patients with ST-segment elevation myocardial infarction

[93], and this observation was soon confirmed and quantified in



F I GUR E 6 Representative scanning

electron micrographs of cerebral thrombi

illustrating their major structural

features. (A) Prevalence of compressed

RBCs in the thrombus core. (B) Partially

deformed RBCs located closer to the

thrombus periphery. (C, D) The

dominance of fibrin on the surface of

thrombi. Magnification bar = 10 μm.

Modified from [98]
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independent studies of the ultrastructure of coronary thrombi [96].

Polygonal red cells and accumulation of fibrin on the periphery had

been seen on histological preparations and electron micrographs of a

thrombus [97], but these results remained unnoticed and were not

associated in any way with clot contraction in thrombosis.

Thrombi or emboli aspirated from the cerebral arteries in patients

with ischemic stroke also contain many polyhedrocytes in the center

and accumulations of fibrin-platelets on the periphery, indicating that

they undergo intravital contraction [98] (Figure 6). Studies of the

cellular composition of surgically extracted intravital venous thrombi

have shown that polyhedrocytes and partially deformed intermediate-

shaped RBCs are the major components [99,100]. Scanning electron

microscopy and light microscopy of pulmonary emboli both show the

presence of polyhedrocytes and redistribution of fibrin-platelets to

the periphery [99,101]. Thus, the aggregate of structural data in-

dicates that the contraction of thrombi and thrombotic emboli in

various locations occurs in vivo, which means that the platelet-driven

contraction of blood clots is a real pathophysiological process.
9 | IMPAIRED CONTRACTION OF BLOOD

CLOTS AND PLATELET DYSFUNCTION IN

(PRO)THROMBOTIC STATES

It has been shown that the contraction of in vitro clots formed from the

blood of patients with venous and arterial thromboses of various eti-

ology is reduced significantly compared to that of healthy donors

[59,100,102–106]. Unexpectedly, the first study of the kinetics of

contraction of clots obtained from the blood of patients with ischemic

stroke revealed a low rate and degree of contraction comparedwith the

clots from the blood of healthy donors despite normal platelet counts

[106]. This result may seem paradoxical, since ischemic stroke is a
pathological condition associated with hypercoagulability, thrombine-

mia, and platelet activation, so, a priori, an increase rather than a

decrease of platelet contractile activity is more likely. However, the

reduction of clot contraction in ischemic stroke has a relatively strong

correlation with stroke severity as well as with laboratory tests. A

decrease in the ability of in vitro blood clots to contract also was also

found to be characteristic of venous thromboembolism, especially in

deep vein thrombosis associated with pulmonary embolism [100].

Reduced contraction of in vitro blood clots has been revealed later in

other prothrombotic conditions of various etiologies (Table) [107,108].

The search for fundamental causes andmechanismsof the impaired

contraction of blood clots in (pro)thrombotic conditions has led to the

discovery of a common concept that explains the apparent contradic-

tion. A study of the functional and morphological state of ex vivo

platelets isolated from the blood of patients with thrombosis revealed 2

interrelated facts: 1)most of the platelets are initially partially activated

in the absence of any exogenous stimulants and 2) platelets are partially

refractory, i.e., their response to an activating stimulus (assessed by

expression of molecular markers of activation) is many-fold reduced

compared to normal platelets [100,106,109]. This combination strongly

suggests that the impaired contraction of blood clots in thrombotic

conditions is a consequence of chronic, continuous activation of plate-

lets in the bloodstream, leading to their secondary refractoriness and

dysfunction, including impairedcontractility. This notion is confirmedby

an in vitro study in which the kinetics of contraction of clots was studied

in blood spiked with purified anti-DNA antibodies isolated from

thebloodof systemic lupus erythematosus patients. Treatmentwith the

anti-DNA antibodies mimicked immune platelet activation via the

FcγRIIA receptors. Following the short-term incubation (minutes),

theplatelet contractilitywasenhanced,while at later incubationperiods

(hours), antibodies toDNAsuppressed clot contraction compared to the

untreated control [103],which confirms the time-dependent exhaustion



T AB L E (Pro)thrombotic conditions and bleeding disorders asso-
ciated with reduced platelet contractility and/or impaired contraction
of blood clots in vitro or in vivo.

(Pro)thrombotic states References

Acute ischemic stroke [106]

Systemic lupus erythematosus [103,109]

Venous thromboembolism [100]

Postoperative venous thrombosis [102]

Premorbid hemostasis in women with a

history of pregnancy loss

[105]

Rheumatoid arthritis [104]

Sickle cell disease [18,63,64]

COVID-19 [59]

Hyperhomocysteinemia [107]

Bronchial asthma [108]

Bleeding disorders

Hemophilia A [113]

Glanzmann’s thrombasthenia [9]

Hermansky-Pudlak syndrome [54]

MYH9-related disorders [37,111,112]

diYF mutation [114]

Familial RUNX1 mutation [54]

Platelet dysfunction due to NSAID medication [54]

Wiskott-Aldrich syndrome [37]

Coagulation factor deficiencies [9]

Trauma [42]

NSAID, nonsteroidal antiinflammatory drug.

8 of 14 - LITVINOV AND WEISEL
of platelets as a result of their primary activation. The mechanisms of

platelet dysfunction may be related to energetic exhaustion and ATP

depletion, storage pool deficiency, shedding surface receptors, etc.

Moreover, a prospective study of brain surgery patients demonstrated

that these changes in platelet contractility precede thrombosis and are

likely contributing causes rather than merely a consequence of

thrombosis [102]. Three prothrombotic mechanisms are involved in the

proposed pathogenic role of platelet dysfunction and impaired

contractility in promoting thrombosis (Figure 7). Regardless of the

causes and underlying mechanisms, impaired contraction of blood clots

is a thrombogenic and embologenic factor with potentially important

clinical significance.
10 | CONTRACTION OF BLOOD CLOTS IN

HEMOSTASIS

Compaction of a blood clot formed at the site of injury might be ex-

pected to improve hemostasis by making a mechanically strong and
impermeable seal. Mutations in the MYH9 gene encoding non-muscle

myosin IIA cause disturbance of thrombocytopoiesis and the devel-

opment of macrothrombocytopenia associated with a bleeding

phenotype [110]. Although macrothrombocytopenia complicates the

interpretation of the effects of MYH9 mutations on clot contraction,

the bleeding phenotype does not necessarily depend on the extent of

thrombocytopenia, suggesting a role for clot contraction in hemostasis

[37,111,112].

In a mouse model for hemostasis, the major component of venous

wound clots in wild-type mice is polyhedrocytes formed as a conse-

quence of robust clot contraction, and redistribution of platelets and

fibrin to the periphery and RBCs to the interior [113]. In contrast,

polyhedrocytes comprise much smaller volume fractions of hemostatic

clots in hemophilia A mice, consistent with the increased bleeding and

reduced stability of the clots attributed to the impaired contraction

associated with compromised hemostasis. Hemostatic blood clots or

thrombi formed in another mouse model in response to penetrating

injuries in both venules and arterioles have a core of densely packed

fibrin-associated platelets that undergo contraction [114,115]. For-

mation of the tightly compacted platelets near the injured vessel wall

limits plasma extravasation [116] and provides a physical mechanism

to establish thrombin concentration gradients that determine the non-

uniform platelet activation and spatially heterogeneous thrombus

architecture [117]. Remarkably, in clots with densely packed platelets,

fibrin is not necessary for the contraction of a hemostatic platelet

plug, which can be primarily mediated by fibrinogen and involves

signaling events linked to Rho kinase [118]. Many clinical and exper-

imental bleeding disorders are associated with reduced platelet

contractility and/or impaired contraction of blood clots (Table).

From the limited data available, the contraction of blood clots at

the site of injury appears to be a determinant of the capacity to form

hemostatic clots with adequate structural and mechanical properties

needed to prevent or stop bleeding.
11 | PATHOPHYSIOLOGICAL AND

CLINICAL SIGNIFICANCES OF NORMAL AND

IMPAIRED CONTRACTION OF BLOOD

CLOTS AND THROMBI

Established and hypothetical pathophysiological consequences of

normal and reduced blood clot contraction that may affect the course

and outcomes of wound healing, thrombosis, or bleeding can be

summarized:

• Contraction of a hemostatic blood clot approximates the wound

edges and makes the clot stiff and impermeable, thus improving the

hemostasis and preventing wound infection [4,119].

• Contraction of a thrombus or thrombotic embolus reduces

obstruction of the vessel lumen and helps to restore blood flow by

bypassing the occlusive mass. Although the severity of thrombosis

is determined primarily by the location and diameter of the

occluded vessel, the degree of obstruction has a significant impact
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thrombotic pathogenic mechanisms

related to impaired clot contraction.

Local and systemic (pro)thrombotic

conditions, such as hypercoagulability

and thrombinemia, cause continuous

background platelet activation in the

bloodstream, leading to platelet

exhaustion and dysfunction, including

refractoriness to physiological stimuli.

When a blood clot or thrombus is formed

in vivo, the reduced contractility of

activated platelets (often combined with

hyperfibrinogenemia) causes decreased

contraction of the thrombotic mass that

has at least 3 pathogenic sequelae, all of

which exaggerate thrombosis.

Insufficient volumetric shrinkage causes

increased obstructiveness (a

thrombogenic mechanism). Imperfect

clot densification reduces its

susceptibility to protective internal

fibrinolysis (an antifibrinolytic

mechanism). Insufficient compaction of a

thrombus or its floating part predisposes

it to rupture under the hydrodynamic

forces of blood flow (embologenic

mechanism)
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on local hemodynamics. According to Poiseuille’s law, if a thrombus

blocks the vessel lumen by 80%, the volumetric blood flow rate will

decrease to 4% of the initial level without a thrombus. On the other

hand, if the degree of thrombus compression increases by only 1/10

of its initial volume, the blood flow will increase by 1.6 times. So, the

degree of contraction may be an important modulator of local he-

modynamics in thrombosis, thus affecting the course of the

thrombotic process and its clinical consequences [9,55,106].

• Contraction modulates the probability of embolization of a

thrombus, depending on the degree of its compaction and resis-

tance to rupture. In patients with pulmonary embolism, the degree

and rate of contraction are significantly reduced compared to pa-

tients with isolated venous thrombosis, which suggests a relation-

ship between decreased contraction and thrombus embologenicity

[100]. This important matter has been addressed more directly by

comparing the extent of intravital contraction of the primary

venous thrombi and thrombotic emboli using a “contraction ruler”

based on the fraction of compressed polyhedrocytes [120]. The

extent of contraction has been shown to relate inversely to

embologenicity. The extent of contraction is the lowest in the tail of

venous thrombi, which is the most embologenic portion of a venous

thrombus, and it is indistinguishable from the extent of contraction

of thrombotic emboli. The underlying mechanism of increased

embologenicity associated with reduced contraction is likely due to

the low packing density of a thrombus or its part that is prone to

rupture. The rupture of a weakly contracted/compacted thrombus

or portions of it may be induced or promoted by impaired factor

XIIIa-catalyzed crosslinking [121] or a structural defect (notch) due
to local fibrinolysis in combination with hydrodynamic shear forces

of blood flow [122]. These observations indicate the likely patho-

genetic role of reduced contraction of clots and thrombi as a factor

in thrombus embologenicity.

• The extent of contraction makes thrombi or clots more or less

sensitive to natural fibrinolysis or therapeutic thrombolysis [123].

The rate of lysis is determined by the interplay between the

accessibility of fibrin to fibrinolytic agents, including clot perme-

ability, the spatial proximity of the fibrin fibers [76], and other local

conditions [90–92]. The time-dependent progressive intravital

contraction of occlusive thrombi may underlie the well-known

inefficacy of therapeutic thrombolysis and thrombectomy in

ischemic strokes and heart attacks beyond the time window be-

tween the onset of acute thrombosis and treatment during which

the treatment is still effective.
12 | SUMMARY

The volumetric shrinkage of a blood clot, called contraction or

retraction, is a pathophysiological mechanism of mechanical and

structural remodeling of hemostatic clots and obstructive thrombi.

Compression and compaction of the three-dimensional fibrin scaffold

and RBCs occur under the action of contractile forces generated by

the actomyosin complex inside activated platelets. Through the

cytoskeleton attached to adhesive receptors, these forces are trans-

mitted to the extracellular fibrin fibers, which bend and shorten while
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spreading the mechanical moment to the entire polymer network.

Compression of a clot or thrombus is accompanied by characteristic

structural changes, mainly redistribution of the fibrin-platelet mesh-

work to the periphery and dense packing of RBCs in the center, which

are deformed to “polyhedrocytes” or “piezocytes”. These morpholog-

ical signs of clot contraction found in ex vivo thrombi and thrombotic

emboli are the structural markers of their intravital contraction.

The pathophysiological and clinical consequences of contraction of

blood clots and thrombi include reinforcement of a hemostatic plug;

modulation of thrombus size and, hence, the extent of vessel occlusion;

altered sensitivity to fibrinolysis and therapeutic thrombolysis; resis-

tance to mechanical thrombectomy; and risk of thrombotic emboliza-

tion. There is evidence for at least 3 major pathogenic mechanisms

linking impaired clot contraction and thrombosis. First, in several

thrombotic and pre-thrombotic conditions, the ability of blood clots to

contract is weakened due to chronic hyperactivation of platelets, their

exhaustion, and secondary dysfunction, including decreased contrac-

tility. Accordingly, uncompressed thrombi will impair blood flow, in

contrast, to fully contracted, less occlusive thrombi. Second, impaired

contraction, whatever the underlying mechanism, correlates directly

with the risk of embolization, perhaps because the degree of compac-

tion determines the thrombus’s mechanical stability and its resistance

to rupture under hydrodynamic forces. Third, reduced sensitivity to

internal or pathophysiological fibrinolysis is associated with less con-

tracted blood clots, thus increasing the stability and longevity of

thrombi. In addition, parameters of clot contraction in vitro reflect

platelet functionality as well as pathological changes in blood compo-

sition. Therefore, clot contractionassayshavediagnostic andprognostic

importance in evaluating hemostatic disorders.
13 | INTERNATIONAL SOCIETY ON

THROMBOSIS AND HAEMOSTASIS 2022

CONGRESS REPORT

Several studies focused on the contraction of blood clots were pre-

sented at the International Society on Thrombosis and Haemostasis

(ISTH) 2022 Congress. A novel high-throughput screening methodol-

ogy has been developed to identify molecules that inhibit clot

contraction. More than 400,000 small-molecule compounds have

been tested, of which about 0.34% were identified as inhibitors of clot

contraction, including kinase inhibitors as well as compounds that

have not previously been reported to have antiplatelet activity.

Further studies of the novel inhibitors can decipher mechanisms of

clot contraction and have pharmacologic prospects [124].

A stimulating role of platelet FXIII-A in blood clot contraction has

been revealed by examining the shrinkage of clots formed from FXIII-

depleted plasma with normal healthy or FXIII-deficient platelets.

Contraction of FXIII-depleted plasma clots was reduced in the pres-

ence of FXIII-deficient platelets and platelets treated with trans-

glutaminase inhibitors compared to untreated healthy platelets,

indicating that platelet FXIII-A plays a role in driving clot contraction,

perhaps by mediating intracellular cytoskeletal rearrangement [125].
It was unknown if megakaryocytes (MKs), platelet parental cells,

also possess the ability to shrink blood clots. It has been shown that

MKs generated from human induced pluripotent stem cells (iMKs) can

cause the contraction of plasma clots after being activated with

thrombin. The contractile machinery in iMKs and the biomechanical

mechanisms of MK-driven clot contraction are qualitatively similar to

those in platelets [126]. In addition to the insights into the mecha-

nobiology of MKs, which may have pathophysiological significance in

itself, the iMKs provide a novel model system to study platelet

integrin αIIbβ3 structure/function relationships. Using the CRISPR/

Cas9 technology, iMKs expressing specific variants of αIIbβ3 receptor

have been generated to study the effects on αIIbβ3-fibrin interactions,

including MK-driven contraction of platelet-free plasma clots [127].

Activation of mechanosensitive cationic Piezo1 channels in com-

pressed RBCs augments platelet-driven contraction of the blood clots.

Therefore, Piezo1 channels expressed on platelets and RBCs comprise

a novel mechanochemical modulator of blood clot contraction [128].

The relationship between clot contraction and fibrinolysis has

been studied using a combination of mathematical modeling and ex-

periments to characterize the exogenous delivery of t-PA during

external fibrinolysis of a contracted blood clot. The results indicate

that fibrin densification makes the most significant contribution to the

reduced rate of fibrinolysis, compared with the redistribution of clot

components and degree of compaction [92].
14 | FUTURE DIRECTIONS

Since we know now that platelet-driven contraction of blood clots is

not only an in vitro phenomenon but also a pathophysiological process

with important clinical implications, many more in vivo studies, both in

animals and humans, as well as microfluidic investigations are neces-

sary. These studies can establish the basic pathogenic mechanistic

links between the extent of contraction and the course and outcome

of thromboses, including obstructiveness, sensitivity to internal and

external fibrinolysis, as well as clot rupture and embolization. A major

pending question is whether clot contraction is, indeed, a protective

mechanism that alleviates aspects of thrombosis and reduces the risk

of thromboembolic complications. If so, is the impaired clot contrac-

tion, whatever are the underlying mechanisms, a prothrombotic factor

that aggravates thrombotic vessel occlusion and related conse-

quences? Since activated platelets are the driving force of clot

contraction, what is the nature of acquired platelet contractile

dysfunction in thrombosis and prothrombotic states? Does continuous

background platelet activation generally result in exhaustion and

reduced contractility?

From the clinical standpoint, more studies on the role of clot

contraction in hemostasis and hemostatic disorders are necessary.

There is emergent evidence that defective clot contraction is a major

cause of persistent bleeding and defective wound healing. With

recently developed animal models of hemostasis, targeted examina-

tion of the structural signs of clot contraction in hemostatic clots

formed under various experimental conditions would be worthwhile.
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If platelet contractility is shown to be critically important for efficient

hemostasis, this may be an additional argument for the transfusion of

fresh human platelet concentrates in bleeding disorders with and even

without thrombocytopenia and thrombocytopathy. Newly designed

and repurposed medications that modulate clot contraction may

comprise a novel direction in the pharmacology of hemostasis and

thrombosis.

An important avenue of clinical research is investigations into

correlations between results of in vitro clot contraction assays and

clinical manifestations of thrombosis and bleeding. At least 2 di-

rections seem most promising in this respect: i) the possible predictive

value of impaired clot contraction in threatening thrombosis or

bleeding and ii) the use of clot contraction assays for laboratory

control of treatment with medications affecting blood clotting, platelet

function, and fibrinolysis. The existing preliminary data in support of

these applications should be expanded to various pathological condi-

tions associated with hemostatic disorders and their treatments.

Despite a wealth of studies on the molecular and cellular mech-

anisms of non-muscle cell contractility, little is known about what

components of the cytoskeleton of platelets are involved and the

mechanisms; inside-out and outside-in reactions following platelet-

fibrin interactions (mechanotransduction); mechanochemical conse-

quences of the RBC compression and deformation during clot

contraction, etc. The mechanisms and relative contribution of various

platelet stimulants and corresponding platelet receptors in clot

contraction comprise another understudied aspect of the problem.

Given the insufficient outcomes of current methods of prevention

and treatment of thrombosis and bleeding worldwide, there is a good

reason to consider the contraction of clots and thrombi worth the

close attention of clinicians and researchers working in various fields

of experimental and clinical medicine.
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