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ABSTRACT 1 

Background: AF risk estimation is feasible using clinical factors, inherited predisposition, and 2 

artificial intelligence (AI)-enabled electrocardiogram (ECG) analysis.  3 

Objective: To test whether integrating these distinct risk signals improves AF risk estimation. 4 

Methods: In the UK Biobank prospective cohort study, we estimated AF risk using three models 5 

derived from external populations: the well-validated Cohorts for Aging in Heart and Aging 6 

Research in Genomic Epidemiology AF (CHARGE-AF) clinical score, a 1,113,667-variant AF 7 

polygenic risk score (PRS), and a published AI-enabled ECG-based AF risk model (ECG-AI). 8 

We estimated discrimination of 5-year incident AF using time-dependent area under the receiver 9 

operating characteristic (AUROC) and average precision (AP).  10 

Results: Among 49,293 individuals (mean age 65±8 years, 52% women), 825 (2.4%) 11 

developed AF within 5 years. Using single models, discrimination of 5-year incident AF was 12 

higher using ECG-AI (AUROC 0.705 [95%CI 0.686-0.724]; AP 0.085 [0.071-0.11]) and 13 

CHARGE-AF (AUROC 0.785 [0.769-0.801]; AP 0.053 [0.048-0.061]) versus the PRS (AUROC 14 

0.618, [0.598-0.639]; AP 0.038 [0.028-0.045]). The inclusion of all components (“Predict-AF3”) 15 

was the best performing model (AUROC 0.817 [0.802-0.832]; AP 0.11 [0.091-0.15], p<0.01 vs 16 

CHARGE-AF+ECG-AI), followed by the two component model of CHARGE-AF+ECG-AI 17 

(AUROC 0.802 [0.786-0.818]; AP 0.098 [0.081-0.13]). Using Predict-AF3, individuals at high AF 18 

risk (i.e., 5-year predicted AF risk >2.5%) had a 5-year cumulative incidence of AF of 5.83% 19 

(5.33-6.32). At the same threshold, the 5-year cumulative incidence of AF was progressively 20 

higher according to the number of models predicting high risk (zero: 0.67% [0.51-0.84], one: 21 

1.48% [1.28-1.69], two: 4.48% [3.99-4.98]; three: 11.06% [9.48-12.61]), and Predict-AF3 22 

achieved favorable net reclassification improvement compared to both CHARGE-AF+ECG-AI 23 

(0.039 [0.015-0.066]) and CHARGE-AF+PRS (0.033 [0.0082-0.059]). 24 
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Conclusions: Integration of clinical, genetic, and AI-derived risk signals improves discrimination 1 

of 5-year AF risk over individual components. Models such as Predict-AF3 have substantial 2 

potential to improve prioritization of individuals for AF screening and preventive interventions. 3 

 4 

 5 

Key Words: atrial fibrillation, genetics, precision medicine, risk prediction, stroke, screening 6 

  7 
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Introduction 1 

Atrial fibrillation (AF) is associated with increased risks of stroke, heart failure, and death.1 AF 2 

screening can facilitate earlier diagnosis, and preventive treatment for AF-related morbidity, 3 

such as risk factor management or anticoagulation, can mitigate AF-related morbidity or even 4 

prevent AF altogether.2 However, screening approaches to date have demonstrated modest 5 

yield of AF diagnosis and have failed to demonstrate improvements in hard outcomes such as 6 

stroke or mortality.3–5 7 

 Analogous to established screening approaches for selected conditions such as lung 8 

cancer6 or osteoporosis,7 the efficiency of AF screening may be improved by utilizing a risk-9 

informed approach. AF risk can be predicted with reasonable accuracy on the basis of clinical 10 

risk factors,8 inherited predisposition as assessed by polygenic risk scores [PRS]),9,10 and most 11 

recently artificial intelligence-enabled analysis of the electrocardiogram (ECG-AI).11,12 We have 12 

previously shown that the predictive power of a validated clinical risk score such as CHARGE-13 

AF can be improved by the addition of either an AF PRS9 or ECG-AI.11 However, the degree to 14 

which each of these varied AF risk signals may overlap or complement one another within the 15 

context of a single comprehensive model remains unknown. 16 

Here, we leveraged the UK Biobank – a unique resource of nearly 50,000 individuals 17 

with linkage to national health-related datasets, protocolized prospectively acquired 12-lead 18 

ECG, and genome-wide genotyping, to quantify the relative contributions of externally 19 

developed AF risk scores comprising a) clinical risk factors, b) common genetic variation, and c) 20 

AI-enabled ECG analysis. We hypothesized that by integrating complementary information, 21 

models incorporating each of the varying AF risk signals would achieve greater longitudinal AF 22 

discrimination.  23 

 24 

Methods 25 
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The UK Biobank was approved by the UK Biobank Research Ethics Committee (reference 1 

11/NW/0382). All UK Biobank participants provided written informed consent. Use of UK 2 

Biobank (application #7089) data was approved by the MGB institutional review board. 3 

 4 

Data availability  5 

UK Biobank data are accessible to researchers by application (www.ukbiobank.ac.uk). The PRS 6 

used in this study was obtained from the most recent AFGen consortium genome-wide 7 

association study by Roselli et al., which utilized a version of the analysis excluding UK Biobank 8 

participants.13 The published version of the ECG-AI model11 used to generate the AI-based 9 

predictions evaluated in the current analysis is available at 10 

https://github.com/broadinstitute/ml4h/tree/master/model_zoo/ECG2AF. Data processing scripts 11 

underlying the current analysis are available at https://github.com/shaankhurshid/af_prediction3. 12 

 13 

UK Biobank cohort 14 

We analyzed the UK Biobank, a prospective cohort of 502,629 participants aged 40-69 that 15 

were recruited between 2006-2010.14 Participants underwent an extensive assessment in 16 

various stages (“instances”), including questionnaire data, anthropometric measures, and 17 

laboratory values. Instance 2 included a structured imaging visit for a subset of participants that 18 

included whole-body magnetic resonance imaging as well as protocolized resting 12-lead ECG. 19 

We analyzed individuals without prevalent AF who underwent resting 12-lead ECG at the 20 

instance 2 study visit. 21 

 22 

AF polygenic risk score 23 

Details of genotyping, imputation, and quality control have been published previously and are 24 

provided in Supplementary Methods.14,15 The SNP-level weights used to calculate the AF PRS 25 

used in the current study were derived from a recent AF GWAS meta-analysis including 26 
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154,330 AF cases and 999,609 controls.13 The weights were derived using the PRS-CS 1 

approach.16 The UK Biobank cohort was not included in the version of the meta-analysis used 2 

as input to the PRS-CS algorithm. We calculated AF genetic risk in UK Biobank individuals 3 

using Plink2, summing up the weighted effect allele dosage of 1,113,667 variants included in 4 

the score with good quality (imputation info ≥0.4).17 5 

 6 

ECG-AI  7 

To obtain ECG-based AI-enabled AF risk estimates, we applied a contemporary version of 8 

ECG-AI, a previously published convolutional neural network-based deep learning model 9 

designed to estimate 5-year risk of AF using a single 12-lead ECG.11 The current version of 10 

ECG-AI utilized a larger training set (450,000 standard 12-lead ECGs representing over 11 

100,000 primary care and cardiology patients at Massachusetts General Hospital) and achieved 12 

higher discrimination of 5-year incident AF (c-index 0.761 vs. 0.716), but otherwise had identical 13 

architecture to the published model described in detail previously.11 UK Biobank participants 14 

were not included in any aspect of ECG-AI development. 15 

 16 

CHARGE-AF 17 

To estimate the predictive utility of clinical risk factors, we calculated the CHARGE-AF score, a 18 

widely validated risk factor-based AF prediction tool.8,18 UK Biobank participants were not 19 

included in the original derivation of CHARGE-AF. To calculate the score, age, sex, race, 20 

height, weight, and blood pressure values were obtained from structured assessments using the 21 

value closest to the ECG date. Anti-hypertensive use was determined using self-reported 22 

medication data. Tobacco use was categorized as present or absent. Race was classified as 23 

White or non-White, as performed previously using CHARGE-AF.  In cases of multiple available 24 
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values, values from the assessment most closely preceding the ECG were used preferentially. 1 

The presence of heart failure, diabetes, and myocardial infarction were ascertained using 2 

previously published diagnostic and procedural codes.9,11  A full summary of clinical factor 3 

definitions is provided in Supplementary Table 1. 4 

 5 

Outcomes 6 

The prediction target for each model was 5-year incident AF. AF events were identified using a 7 

previously published combination of self-reported illness codes, OPCS Classification of 8 

Interventions and Procedures version 4 codes for cardioversion or catheter ablation, and 9 

International Classification of Diseases, Ninth- or Tenth Revision (ICD-10) codes for AF or atrial 10 

flutter (Supplementary Table 1).19  11 

Statistical analysis 12 

Discrimination of 5-year incident AF was measured using the area under the time-dependent 13 

receiver operating characteristic curve (AUROC) and time-dependent average precision 14 

(AP).20,21 Similar to how AUROC provides a composite measure of test sensitivity and specificity 15 

across a range of predictor thresholds, AP provides a composite measure of test precision (i.e., 16 

positive predictive value) and recall (i.e., sensitivity) across a range of predictor thresholds. Both 17 

AP and AUROC were calculated using inverse probability of censoring weights, which more 18 

accurately account for the potential bias introduced by censoring when compared to unweighted 19 

measures such as Harrell’s c-index.22 20 

 Discrimination of individual models was assessed as raw scores (CHARGE-AF, PRS) or 21 

probabilities (ECG-AI). Combination models were then developed by fitting Cox proportional 22 

hazards models with terms for each respective component (e.g., CHARGE-AF + PRS 23 

comprises a Cox model including a term for CHARGE-AF and a term for the AF PRS). As 24 

performed with the two-component Predict-AF model previously,23 prior to inclusion in Cox 25 
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models the ECG-AI AF probabilities were logit-transformed to achieve an approximately linear 1 

relationship with log hazard. A model with a coefficient for each of CHARGE-AF, the PRS, and 2 

ECG-AI was termed “Predict-AF3”. Discrimination of the combination models was assessed 3 

using their linear predictors (i.e., score values). Discrimination was assessed overall and across 4 

subgroups of age (age<60 years, age 60-70 years, age>70 years, approximating tertiles of the 5 

distribution) and sex. 6 

 We then assessed model calibration. To allow fair comparison across each component, 7 

including components with no intrinsic translation to a longitudinal risk estimate (i.e., AF PRS), 8 

we fit univariable Cox proportional hazards models with a single term for each individual 9 

component. Linear predictors of the individual fitted models as well as the combination models 10 

outlined above were then converted into 5-year absolute risk estimates using the equation 11 

1−S0
exp(ΣX−ΣY), where S0 is the average 5-year AF-free survival of the sample, ΣX is the 12 

individual’s linear predictor or score value, and ΣY is the average score of the sample. 13 

Calibration of absolute risk estimates was then assessed by plotting smoothed curves of 14 

absolute versus predicted risk using adaptive hazard regression, and calculating the integrated 15 

calibration index (ICI), a measure of the average prediction error weighted by the empirical risk 16 

distribution and where an ICI of zero indicates perfect absolute risk estimates.24 For AP, 17 

AUROC, and ICI estimates, 95% confidence intervals were calculated using bootstrapping (500 18 

iterations for AP and AUROC, and 200 iterations for ICI), which also provided estimates of 19 

standard error to perform pairwise z testing. To estimate the clinical impact of implementing one 20 

AF risk model over another, we calculated net reclassification improvement, both at the >2.5% 21 

5-year AF risk threshold and as a continuous measure.8,25 We considered 2-sided p<0.05 22 

statistically significant. Analyses were performed using Python v3.10 and R v4.3. 23 

 24 

Results 25 
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Sample characteristics 1 

We analyzed 49,293 individuals without prevalent AF (age 65 ± 8 years, 52% women, 96% 2 

White) at the time of the UK Biobank instance 2 visit. Over 5 years of follow-up, 825 participants 3 

(2.4%) developed incident AF. An overview of the study is provided in Figure 1 and baseline 4 

characteristics are provided in Table 1. 5 

Discrimination of incident atrial fibrillation using single models 6 

Using single prediction models, discrimination of 5-year incident AF as measured by AUROC 7 

was highest using CHARGE-AF (0.785 [95% CI: 0.769-0.801]), followed by ECG-AI 0.705 8 

[0.686-0.724]) and the PRS (0.618 [0.598-0.639]). Discrimination using CHARGE-AF tended to 9 

increase with longer prediction windows, while discrimination using ECG-AI and AF PRS 10 

remained largely stable over time (Figure 2). While CHARGE-AF had highest discrimination 11 

among individuals aged <60 years (AUROC 0.739 [0.678-0.798]), discrimination was more 12 

similar across models in those aged >70 years (e.g. CHARGE-AF AUROC 0.688 vs ECG-AI 13 

AUROC 0.687) (Supplementary Table 2). Models performed similarly among men versus 14 

women (Supplementary Table 3).  15 

Measured using average precision, discrimination was highest using ECG-AI (0.085 16 

[0.071-0.11]), followed by CHARGE-AF (0.053 [0.048-0.061]) and the PRS (0.038 [0.028-17 

0.045]), indicative of relatively good performance using ECG-AI for the detection of the highest 18 

risk individuals. Consistent with an increasing cumulative event rate (e.g., 0.4% at 1 year to 19 

2.4% at 5 years), the AP for each model increased over time (Figure 2) and among older 20 

subgroups of age (Supplementary Table 2). Trends in performance were similar among men 21 

versus women (Supplementary Table 3). 22 

As expected, there was no substantive correlation between PRS and CHARGE-AF (r=-23 

0.014 [-0.022 to -0.0048]). There was very weak correlation between PRS and ECG-AI (r=0.041 24 
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[0.032-0.050]). There was moderate correlation between ECG-AI and CHARGE-AF (r=0.34 1 

[0.33-0.35]) 2 

Discrimination of incident atrial fibrillation using combined models  3 

We then evaluated discrimination of the combined models, namely a) CHARGE-AF + PRS, b) 4 

ECG-AI + PRS, c) CHARGE-AF + ECG-AI, and CHARGE-AF + ECG-AI + PRS (“Predict-AF3”). 5 

The best performing two-component models were CHARGE-AF + ECG-AI (AUROC 0.802 6 

[0.786-0.818]; AP 0.098 [0.081-0.13]), followed by CHARGE-AF + PRS (AUROC 0.802 [0.786-7 

0.818]; AP 0.053 [0.048-0.061]). The best performing model overall was Predict-AF3 (AUROC 8 

0.817 [0.802-0.832]; AP 0.11 [0.091-0.15], p<0.01 vs CHARGE-AF + ECG-AI and CHARGE-AF 9 

+ PRS) (Figure 3). Addition of the PRS to each component contributed relatively modest but 10 

consistently detectable improvements in discrimination (improvement in AUROC with addition of 11 

PRS to CHARGE-AF: 0.017 [0.0096-0.025], addition of PRS to ECG-AI: 0.023 [0.012-0.034], 12 

addition of PRS to CHARGE-AF + ECG-AI: 0.015 [0.0089-0.021]) (Supplementary Table 4). 13 

Improvements were similar according to AP (Supplementary Table 4). Relative performance 14 

patterns were similar when assessing discrimination of AF at 1 year (e.g., Predict-AF3 AUROC 15 

0.791 [0.758-0.823]; AP 0.030 [0.020-0.050], Figure 3).  16 

 17 

Calibration and net reclassification of atrial fibrillation risk estimates 18 

Absolute risk estimates for the single and combined models were well-calibrated 19 

(Supplementary Figure 1). Absolute error rates were consistently very low (ICI range 4.16x10-5 20 

for CHARGE-AF to 0.0018 for Predict-AF3). At the >2.5% 5-year AF risk threshold, Predict-AF3 21 

resulted in favorable net reclassification improvement versus CHARGE-AF + ECG-AI (NRI 22 

0.039 [0.015-0.066]), which was driven by both favorable case reclassification (NRI+ 2.59% 23 

[0.18-5.30]) and favorable non-case reclassification (NRI- 1.35% [1.06-1.67]) (Supplementary 24 

Table 5). Predict-AF3 also provided similar reclassification improvement over CHARGE-AF + 25 
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PRS, although it was driven solely by favorable non-case reclassification (NRI 0.033 [0.0082-1 

0.059]; NRI+ 0.52% [-2.06 to 3.00]; NRI- 2.81% [2.54-3.08]) (Supplementary Table 5). 2 

Continuous reclassification improvement was also favorable using Predict-AF3 (0.34 [0.26-0.41] 3 

vs. CHARGE-AF + ECG-AI; 0.23 [0.16-0.31] vs. CHARGE-AF + PRS).    4 

Stratification of longitudinal atrial fibrillation incidence using Predict-AF3 5 

Use of Predict-AF3 effectively stratified longitudinal AF risk, with individuals at high AF risk (5-6 

year predicted AF risk >2.5%) having a 5-year cumulative incidence of AF of 5.83% (5.33-6.32), 7 

those with a predicted risk of 1-2.5% having a cumulative incidence of 1.51% (1.26-1.75) and 8 

those with a predicted risk of ≤1% having a cumulative incidence of 0.56% (0.43-0.69) (Figure 9 

4).  10 

Using the >2.5% 5-year AF risk threshold, the 5-year cumulative incidence of AF was 11 

progressively higher according to the number of individual models predicting high risk (zero: 12 

0.67% [0.51-0.84], one: 1.48% [1.28-1.69], two 4.48% [3.99-4.98], three: 11.06% [9.48-12.61]) 13 

(Figure 4). Among the 825 participants who developed AF during the 5-year period, 208 14 

(25.2%) had high estimated AF risk according to all three models, 340 (41.2%) according to two 15 

models, 207 (25.1%) according to one model, and 70 (8.5%) according to zero models. 16 

 17 

 18 

Discussion 19 

In this study, we leveraged a unique resource of nearly 50,000 prospective cohort study 20 

participants with detailed clinical data, genome-wide genotyping, and protocolized 12-lead ECG 21 

to compare the relative predictive utility of varied forms of AF risk information. Specifically, we 22 

applied externally derived and contemporary clinical, genetic and ECG-based AI-enabled AF 23 

risk models separately and in combination. Our findings demonstrate that clinical, genetic, and 24 

AI-based AF risk signals are complementary. There was a graded increase in AF incidence as 25 

individuals were identified as high-risk by a greater number of risk signals. The Predict-AF3 26 
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score, which combines all three elements, achieved higher predictive utility than any single or 1 

two-model combination. Overall, our work establishes the value of integrating varying data types 2 

to achieve increasingly accurate AF risk estimates, providing a foundation for efforts to better 3 

prioritize individuals for AF screening and related preventive efforts. Our findings yield several 4 

key implications. 5 

 6 

First, it is feasible to integrate varying AF risk signals to achieve more accurate AF risk 7 

estimates. In our analysis, the Predict-AF3 score consistently exhibited favorable discrimination 8 

compared to the individual components of the score, implying that clinical, genetic, and ECG-9 

based AI risk estimates provide complementary information. By incorporating all three 10 

components, Predict-AF3 achieves the highest discrimination of 5-year incident AF risk 11 

(AUROC 0.82, AP 0.11) of any AF prediction model previously applied in a prospective 12 

community cohort.8,9,11,18,26,27 Our findings are consistent with prior observations from our group 13 

suggesting that the addition of ECG-derived AI risk to clinical risk improves AF risk estimation.11 14 

Despite some evidence that ECG-based AI may encode some aspects of inherited 15 

predisposition to AF,28 we consistently observed improvements in AF discrimination with the 16 

addition of PRS to any individual component or two-component combination, suggesting that 17 

genetic risk remains orthogonal to current ECG-based AI models. However, as with prior work, 18 

the degree of discrimination improvement observed with the addition of PRS was generally 19 

modest,9,29 although we did note favorable net reclassification improvement when adding the 20 

PRS to the best performing two-component model (CHARGE-AF + ECG-AI) to create Predict-21 

AF3. Importantly, we observed that AF incidence increased progressively with the number of 22 

distinct elements portending high AF risk, suggesting that individuals with risk conferred by the 23 

combination of clinical factors, genetics, and AI-enabled ECG signals appear particularly 24 

vulnerable to developing AF. 25 

 26 
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Second, the optimal approach to AF risk estimation to guide AF screening and related 1 

preventive interventions may be a function of available data and the specific setting in which risk 2 

stratification is intended. Although Predict-AF3 achieved the highest discrimination of 3 

longitudinal AF among all approaches tested, genome-wide genotyping data is not commonly 4 

available in many populations in which AF screening is considered (e.g., routine primary care). 5 

To this end, we observed good discrimination using CHARGE-AF + ECG-AI, a model requiring 6 

only routine clinical factors and a single 12-lead ECG, an inexpensive diagnostic test available 7 

within minutes in most clinic settings. Future work is warranted to assess whether the predictive 8 

utility of ECG-AI may extend to single-lead ECGs, which are increasingly available using mobile 9 

and consumer devices and may increase the reach of AF risk estimation further.30 Conversely, 10 

the combination of CHARGE-AF + PRS also achieved similar performance to CHARGE-AF + 11 

ECG-AI. Such a model may have particular value in population health interventions targeting 12 

healthcare-related biobanks, where risk estimation can be run on previously acquired samples, 13 

and leveraging linked electronic health record data.  14 

 15 

Third, the integration of an increasing variety of clinically relevant risk markers has potential to 16 

further the goal of personalized medicine with regard to AF. While opportunistic screening is 17 

recommended in the most recent European Society of Cardiology guidelines for people of older 18 

age,31 recent randomized trials of screening guided only by age have resulted in little to no 19 

increase in AF diagnosis, and absence of meaningful improvements in AF-related complications 20 

such as stroke or mortality.3,4 Subgroup analyses have suggested higher AF screening yield 21 

among individuals with higher AF incidence,3 suggesting that screening based on AF risk may 22 

be more efficient. To this end, recent work has identified the ability to stratify AF risk based on a 23 

large breadth of potential markers, including not only clinical factors, polygenic risk, and AI-24 

based signals, but additionally imaging-based features and blood-based biomarkers.32,33 25 

Therefore, although Predict-AF3 provides an important demonstration of the potential value of 26 
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incorporating varying contributors to AF risk to achieve more precise AF risk estimates, future 1 

work is warranted to integrate even more markers, and potentially leverage emerging statistical 2 

learning techniques capable of incorporating high-level interactions between varied data types. 3 

Ultimately, randomized trials are needed to assess whether AF risk estimation using 4 

progressively more accurate models leads to more efficient AF screening interventions. 5 

 6 

Limitations 7 

Our study should be interpreted in the context of design. The UK Biobank is primarily of 8 

European ancestry and our results might not be generalizable to people of other ancestries. 9 

Second, the UK Biobank is not reflective of the general population and comprises healthier 10 

individuals.34 Due to survivorship bias, the instance 2 cohort that received protocolized 12-lead 11 

ECG is even healthier than the UK Biobank at large. Third, our models were assessed against 12 

the clinical diagnosis of AF, and therefore their performance for detection of undiagnosed AF in 13 

a screening setting may vary. Fourth, although the clinical risk score, PRS, and ECG-based AI 14 

model assessed in the current study were all developed externally to the UK Biobank, the 15 

relative contributions of each component in the combination models were weighted within-16 

sample. The relative importance of AF risk components may differ in other populations, and 17 

therefore further validation of the Predict-AF3 multi-component model is warranted.  18 

 19 

Conclusions 20 

Integration of clinical, genetic, and ECG-based AI risk signals for AF into a single model 21 

(Predict-AF3) leads to greater predictive utility of 5-year incident AF compared to the use of 22 

individual elements. Consistent with the presence of complementary information, AF incidence 23 

increased progressively with the total number of distinct elements portending high AF risk. 24 

Scores such as Predict-AF3 may pave the way for integrated and personalized prioritization of 25 

individuals for AF screening and related preventive interventions. 26 
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Tables  1 

Table 1. Baseline Characteristics 2 

 Female Male Overall 

N 25742 23551 49293 

Age at ECG, years 64.48 (7.7) 65.73 (7.9) 65.08 (7.8) 

Height, cm 162.6 (6.3) 175.9 (6.6) 169.0 (9.2) 

Weight, kg 69.1 (13.4) 83.7 (13.6) 76.1 (15.3) 

Current smoker 762 (3.0) 971 (4.1) 1733 (3.5) 

Systolic blood pressure, 
mmHg 

136.70 (19.7) 142.53 (17.6) 139.49 (18.9) 

Diastolic blood pressure, 
mmHg 

79.25 (10.1) 77.66 (10.0) 80.99 (9.9) 

Diabetes mellitus 1136 (4.4) 1928 (8.2) 3064 (6.2) 

Heart failure 80 (0.3) 173 (0.7) 253 (0.5) 

Myocardial infarction 235 (0.9) 952 (4.0) 1187 (2.4) 

Values are shown as mean (standard deviation) for continuous measures and N (%) for 
categorical measures. 
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Figures 1 

Figure 1. Flow chart of study cohort 2 

Depicted is an overview of the cohort creation. CHARGE-AF is a clinical risk model for incident 3 
atrial fibrillation (AF) risk prediction. ECG-AI is a deep-learning model trained to predict 5-year 4 
risk of AF and the polygenic risk score (PRS) is a genetic risk score estimating the risk based on 5 
common variant risk from genome-wide association studies of incident AF. Predict-AF3 6 
combines all three risk prediction models for a comprehensive AF risk prediction. 7 
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Figure 2. Discrimination of incident atrial fibrillation 1 

 2 

Depicted is model discrimination for a 5-year window of incident atrial fibrillation (AF) using a polygenic risk score (PRS) model (teal),3 
an ECG-derived artificial intelligence (AI) prediction (turquoise) and a model based on the CHARGE-AF score (orange). Panel A 4 
depicts discrimination measured using a time-dependent area under the receiver operating characteristic curve (AUROC) while 5 
Panel B depicts the time-dependent average precision. A model with no discriminative power is depicted by black triangles. 6 
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Figure 3. Discrimination of incident atrial fibrillation in combined models 1 

2 
Depicted is model discrimination for a 5-year window of incident atrial fibrillation (AF) using models a) combining polygenic risk score 3 
(PRS) and CHARGE-AF (black), a model combining an ECG-derived artificial intelligence (ECG-AI) prediction and the PRS (grey), a 4 
model  combining ECG-AI and the CHARGE-AF (orange), and a model combining  5 
ECG-AI, CHARGE-AF and the PRS (red). Panel A depicts discrimination measured using a time-dependent area under the receiver 6 
operating characteristic curve (AUROC) while Panel B depicts the time-dependent average precision.  A model with no discriminative7 
power is depicted by black triangles. 8 
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Figure 4.Cumulative risk of incident atrial fibrillation stratified by the combined models 1 

 2 

Depicted is the cumulative risk of AF across strata of predicted risk using Predict-AF3. Panel A plots cumulative risk 3 
across categories of Predict-AF3 estimated risk (thresholds chosen to approximate tertiles of the risk distribution), and 4 
Panel B plots cumulative risk across strata of high risk (i.e., 2-year AF risk >2.5%) by each model component. The 5 
number at risk across each stratum over time is depicted below each plot. 6 
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