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Abstract

Objectives

Antidepressants are first-line treatments for major depressive disorder (MDD), but 40–60%

of patients will not respond, hence, predicting response would be a major clinical advance.

Machine learning algorithms hold promise to predict treatment outcomes based on clinical

symptoms and episode features. We sought to independently replicate recent machine

learning methodology predicting antidepressant outcomes using the Sequenced Treatment

Alternatives to Relieve Depression (STAR*D) dataset, and then externally validate these

methods to train models using data from the Canadian Biomarker Integration Network in

Depression (CAN-BIND-1) dataset.

Methods

We replicated methodology from Nie et al (2018) using common algorithms based on linear

regressions and decision trees to predict treatment-resistant depression (TRD, defined as

failing to respond to 2 or more antidepressants) in the STAR*D dataset. We then trained

and externally validated models using the clinical features found in both datasets to predict

response (�50% reduction on the Quick Inventory for Depressive Symptomatology, Self-

Rated [QIDS-SR]) and remission (endpoint QIDS-SR score�5) in the CAN-BIND-1 dataset.

We evaluated additional models to investigate how different outcomes and features may

affect prediction performance.
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Results

Our replicated models predicted TRD in the STAR*D dataset with slightly better balanced

accuracy than Nie et al (70%-73% versus 64%-71%, respectively). Prediction performance

on our external methodology validation on the CAN-BIND-1 dataset varied depending on

outcome; performance was worse for response (best balanced accuracy 65%) compared to

remission (77%). Using the smaller set of features found in both datasets generally

improved prediction performance when evaluated on the STAR*D dataset.

Conclusion

We successfully replicated prior work predicting antidepressant treatment outcomes using

machine learning methods and clinical data. We found similar prediction performance using

these methods on an external database, although prediction of remission was better than

prediction of response. Future work is needed to improve prediction performance to be clini-

cally useful.

Introduction

Depression affects all aspects of life, from impairing social relationships [1], interfering with

work functioning [2], and reducing quality of life, to increasing mortality from other medical

conditions [3]. Consequently, major depressive disorder (MDD) is the second-leading cause

of disability globally [4] and is associated with significant healthcare costs [5].

Clinical guidelines recommend evidence-based treatments such as antidepressant medica-

tions for patients with moderate to severe MDD [5]. Unfortunately, only 40–60% of patients

will respond to an initial antidepressant and up to a third will show non-response to a second

medication [5, 6]. A personalized medicine approach, i.e., predicting whether an individual

patient will show response or non-response to an antidepressant, can improve treatment out-

comes by providing more intensive treatments sooner in the treatment algorithm. For exam-

ple, patients predicted to have a high risk of non-response might benefit from starting

combination or adjunctive medications instead of monotherapy, or may be prioritized to also

engage in psychological treatment.

Prediction of treatment outcome presents a promising application for predictive models

trained by machine learning. Briefly, machine learning methods build predictive statistical

models from labelled training data. These data consist of different types (e.g. age, medication

dose) termed features. The training data has multiple examples (e.g. subjects in a clinical trial)

with these features and each example is labelled with the outcome being predicted (e.g. clinical

response). Cross-validation (CV) is a common method to train and evaluate machine learning

models [7]. In CV, the training dataset usually consists of a random sampling of a proportion

(e.g., 80%) of the entire dataset, with the remainder (i.e., 20%) held out as testing dataset. This

testing dataset is then used for a validation of the final trained algorithm. Each CV fold (e.g.

10-fold) repeats this random sampling of training and testing datasets and then trains and

evaluates the model anew. The prediction performance is then measured as the average across

all folds. The performance of a specific algorithm will vary based on the data and predictive

task and have different trade-offs [8].

A recent systematic review of machine learning to predict treatment outcomes in

MDD identified 26 published studies [9]. Of these, 13 used neuroimaging data as
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predictors, three used genetic data such as DNA and micro-RNA, and seven studies used

only clinical data (e.g., demographics and symptoms). Predicting treatment response

using only readily available clinical data is much more feasible for routine clinical prac-

tice compared to neuroimaging or blood testing for genetic and other molecular

markers.

Previous studies of clinical data predictors have used a variety of machine learning

methods such as elastic net [10], random forests [11], gradient boosting machines (GBM)

[12], unsupervised clustering [13], and neural networks [14]. Nie and colleagues [15] com-

pared various predictive and feature selection methods to predict treatment-resistant

depression (TRD, defined as not achieving symptom remission after two antidepressant

medication trials) in a large dataset from the U.S. Sequenced Treatment Alternatives to

Relieve Depression (STAR�D) study [16]. They tested logistic regression with L2 (ridge)

and a combination of L1 and L2 regularization (elastic net) [8], random forests, and gradi-

ent boosted decision trees. They combined these machine learning algorithms with differ-

ent methods for selecting features, such as a “clustering-χ2” method, which uses K-means

clustering to prioritize features closest to centroids and then selects the top features based

on a χ2 score [15]. Their analyses resulted in a balanced accuracy of 0.64–0.71 in predict-

ing TRD, depending on the method. Balanced accuracy is an adjusted accuracy which

weighs the accuracy for each outcome equally, compensating if one outcome is more com-

mon than the other [17].

One well-known limitation of machine learning studies is that predictive modelling results

obtained within one dataset may not be accurate when applied to a new and different dataset.

This can result from overfitting, when a model learns the particularities of a training dataset so

well it may be unable to fit new data [8]. Hence, replication studies are very important in

machine learning and artificial intelligence [18], particularly given the broader “replication cri-

sis” in science [19], including medicine [20] and health informatics [21]. We are unaware of

any prior studies where a set of different authors have replicated work predicting antidepres-

sant treatment outcomes [9, 22].

An independent external validation is the most rigorous method to establish that results

from a predictive model will be valid when applied to a different dataset [23, 24], though there

are few examples of its use in this field [9, 25]. Decreased performance may result from any

changed factor between datasets, such as limited overlapping features or inherent differences

in the participants. Nie et al [15] conducted an external validation of their results from the

STAR�D dataset by applying their algorithms to a different dataset from another clinical trial

(RIS-INT-93). They found that balanced accuracy was worse with the overlapping features in

the new dataset, ranging from 0.64–0.67 [15].

We sought to independently replicate the cross-validation findings by Nie et al [15] on the

STAR�D dataset, and then externally validate their methodology on another new dataset from

the Canadian Biomarker Integration Network in Depression (CAN-BIND)-1 study [26], a

multicentre study to discover multi-modal (neuroimaging, electrophysiological, molecular,

clinical) biomarkers to predict treatment response in patients with MDD. We chose to repli-

cate the Nie et al study given its relatively strong results, its use of a well-known study that now

has its data publicly available, and its evaluation of a variety of common machine learning

algorithms. Our hypothesis is that the cross-validation of the STAR�D dataset will replicate the

accuracy performance reported by Nie et al [15]. However, we expect the validation on the

external CAN-BIND-1 dataset will be less accurate because of the limited number of overlap-

ping features between the two datasets. Our work will also contribute to reproducibility by

using automated data processing, publicly accessible code, and the current, open-access ver-

sion of the STAR�D dataset.
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Methods

STAR�D dataset

This well described study funded by the U.S. National Institutes of Mental Health (NIMH)

sought to investigate next-step treatments of depression after initial agents failed [16]. The

study enrolled 4041 outpatients with a DSM-IV [27] diagnosis of MDD without psychotic fea-

tures (see S1 Table for the inclusion and exclusion criteria) and involved four treatment levels.

For level 1, patients initially started citalopram 20–60 mg/d. If they did not achieve remission

(score�5 on the Quick Inventory of Depressive Symptomatology, Clinician version [QIDS-C]

[28]) after 14 weeks, they went on to one of seven different treatment options in level 2, and

continued similarly to levels 3 and 4. Patients provided written consent and the study was

approved by institutional review boards at the participating institutions. Clinical and demo-

graphic data were recorded on enrollment, weeks 2,4,6,9,12, and 14 within each treatment

level, and on level exit/entry. We obtained this study’s dataset from the publicly available

NIMH Data Archive [29], in contrast to the Nie et al [15] study which used an older version of

the dataset obtained directly from the STAR�D investigators. We were unable to access this

older version of the dataset used by the prior authors, though we know there are some differ-

ences such as in feature names and formatting.

CAN-BIND-1 dataset

This 16-week study conducted across six Canadian academic health centres sought to investigate

the prediction of outcomes in patients with DSM-IV MDD treated with medications (S1 Table

for the inclusion and exclusion criteria). Full details are described elsewhere [30] but, briefly, 211

patients received eight weeks of open-label treatment with escitalopram 10–20 mg/d, flexibly

dosed. Patients who did not respond (defined as a<50% reduction in the Montgomery-Åsberg

Depression Rating Scale [MADRS) score] [31] after eight weeks received a further eight weeks of

adjunctive aripiprazole 2–10 mg/d, flexibly dosed [32]: responders at eight weeks (�50% reduc-

tion in MADRS score) continued on escitalopram monotherapy for the second eight weeks.

Clinical and molecular data were obtained at baseline and at weeks 2, 4, 8, 10 and 16, and imag-

ing data at weeks 2 and 8. All participants provided written consent and institutional review

boards at each study site (University of Toronto Health Sciences Research Ethics Board, Univer-

sity of British Columbia Clinical Research Ethics Board, University of Calgary Conjoint Health

Research Ethics Board, Queen’s University Health Sciences and Affiliated Teaching Hospitals

Research Ethics Board, McMaster University Hamilton Integrated Research Ethics Board) pro-

vided approval. Table 1 lists information on the participants from both studies.

The two cohorts have similar inclusion and exclusion criteria (S1 Table). Both include par-

ticipants who meet DSM-IV criteria for MDD, and exclude those with bipolar disorders, sig-

nificant other psychiatric or substance use disorders, and pregnancy. For comparison to

STAR�D level 1, we examined data from the first 8 weeks of CAN-BIND-1.

Preparation of data

To improve reproducibility, we sought to build an automated pipeline for data cleaning, aggre-

gation, and processing. We built this pipeline in Python 3 using the data handling library pan-

das [33]. Categorical data were one-hot encoded, and missing data were replaced with a mean,

median, or mode, or were computed from other features, depending on the data, further detail

is available in the supplemental material.

For the STAR�D datasets, we used all available features from the enrollment, baseline, and

week 2 visits of the study. This included symptom scales, demographics, side effects, medical
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and psychiatric history, health care utilization, and scales quantifying functioning at home,

school or work. We made additional features as described by Nie et al [15] to represent various

depression score subscales and changes in depression scores. As our version of the dataset was

not always labeled by the week-of-study, we used days-in-study as a proxy, cross-checked with

data that were labelled with both.

To evaluate STAR�D trained models on the CAN-BIND-1 dataset, only features repre-

sented in both datasets could be used. The two studies recorded similar clinical data includ-

ing symptom scales, demographics, measures of functioning, and history of concurrent

psychiatric disease. However, there are some differences between the clinical scales used to

quantify these data (Table 2). Notably, the QIDS-C was not done in the CAN-BIND-1

study. However, the patient-rated version, the Quick Inventory of Depressive Symptomatol-

ogy, Self Rating (QIDS-SR), was completed in both studies. We thus used the QIDS-SR for

subject selection and outcome in the external validation analysis. Other overlapping fea-

tures were selected on exact equivalence, or if conversion was unambiguous, e.g., monthly

to yearly income.

Table 1. Characteristics of the cohorts used in the external validation portion of our study, the Sequenced Treatment Alternatives to Relieve Depression (STAR�D)

and Canadian Biomarker Integration Network in Depression (CAN-BIND-1) trials.

Characteristic STAR�D CAN-BIND-1

n % n %

Female:Male 1858:1151 61.7:38.3 112:68 62.2:37.8

Married/Domestic Partnership 1266 42.1 50 27.8

Never Married/Divorced/Separated/Widowed 1743 57.9 130 72.2

Disabled 488 16.2 16 8.9

Unemployed 359 11.9 25 13.9

Retired 122 4.1 2 1.1

Prior depressive episode 1928 64.1 107 59.4

Substance use Disorder 209 6.9 8 4.4

Any Anxiety Disorder 478 15.9 90 50

Mean SD Mean SD

Age 40.9 12.9 35.4 12.7

Years of education 13.6 3.2 13.7 2.3

Age in years at onset of depression 25.3 14.3 20.8 10.1

No. of prior depressive episodes 3.9 8.7 2.6 2.2

Current episode duration in months 25.4 54 26.2 33.4

Baseline QIDS-SR Total Score 15.4 4.3 16.0 4.1

QIDS-SR: Quick-Inventory of Depressive Symptomatology, Self Report

https://doi.org/10.1371/journal.pone.0253023.t001

Table 2. Categories of overlapping clinical features, and the scales or forms used to obtain such data from the Sequenced Treatment Alternatives to Relieve Depres-

sion (STAR�D) and Canadian Biomarker Integration Network in Depression (CAN-BIND-1) trials.

Overlapping Clinical Features STAR�D Source CAN-BIND-1 Source

Demographics Demographics Form

Psychiatric History Psychiatric Diagnostic Screening Questionnaire [34] Mini International Neuropsychiatric Interview [35]

Functional Impairment Quality of Life, Enjoyment and Satisfaction Questionnaire–Short Form [36]

Work and Social Adjustment Scale [37] Sheehan Disability Scale [38]

Work Productivity & Activity Impairment Questionnaire [39] Lam Employment Absence and Productivity Scale [40]

Depressive Symptoms Quick Inventory of Depressive Symptomatology, Self report [28]

https://doi.org/10.1371/journal.pone.0253023.t002
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Subject selection

For the cross-validation STAR�D dataset, we re-implemented the subject selection as described

in Nie et al [15]. We included subjects who had any baseline QIDS-C scores, stayed in the

study at least four weeks, and either stayed until Level 2 of STAR�D, or left in Level 1 due to

achieving remission. After corresponding with the authors of the Nie et al study, we also

excluded a small number of subjects who were missing most of their non-QIDS-C data, to bet-

ter match their dataset.

For our external validation using the CAN-BIND-1 dataset, we adapted the above inclusion

criteria. We included subjects with any baseline QIDS-SR scores, who stayed at least four

weeks. We again excluded subjects from the STAR�D dataset if they were missing the majority

of non-QIDS-C data, or if they were missing baseline QIDS values from the version being used

for a model.

Feature selection

Given the large number of features and correlations, we implemented methods for feature

selection. We replicated both methods for feature selection used by Nie et al [15]. We again

used elastic net optimized to find around 31 non-zero weights to select those features, replicat-

ing Nie et al’s attempt to decrease multicollinearity which can impact both interpretability and

performance [15, 41]. We also reimplemented their “clustering-χ2” method, first transposing

the data matrix, and then applying k-means clustering. We then picked the features closest to

the centroid as representatives of the whole cluster, calculated χ2 scores, and selected the top

30 features based on these.

Predictive models

We implemented the methods to create our models as closely as possible to the description in

Nie et al [15]. As previously, we used the Python library scikit-learn [42] for the logistic regres-

sion, gradient boosted decision trees (GBDT), and random forest models. We implemented all

methods from scratch but, since we had some access to their code, when possible we used the

hyperparameters from Nie et al [15]. XGBoost [43] was downloaded from its website. As Nie

et al [15] did not report how elastic net was implemented, we used scikit-learn’s stochastic gra-

dient descent (SGD) model with logistic loss and L1/L2 regularization [42]. When not provided

hyperparameters, we tuned the models using GridSearchCV from scikit-learn.

Training and evaluation

As per Nie et al [15], our training set consisted of 80% of the STAR�D data. While they split

the training and validation cohort based on study sites, our data from NDA was not labeled by

site, and so we randomly separated the data. We then trained and optimized the models using

standard 10-fold cross-validation on this training set [8].

We trained models for the STAR�D cross-validation replication using all features, to predict

TRD, as defined as failing to achieve a QIDS-C or QIDS-SR score of five or less in the first two

levels of the study. The 20% holdover set was then used to evaluate model performance.

We used separate models trained on the STAR�D data to externally validate perfor-

mance on the CAN-BIND-1 dataset, using only the overlapping features as previously

described. The models were used to predict antidepressant response by eight weeks, as

defined as a 50% or greater reduction in their QIDS-SR score. We also used them to pre-

dict remission at eight weeks, defined as a QIDS-SR score of five or less. When training on

the STAR�D data, the predicted outcomes were the same, but instead we used the first
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nine weeks, as STAR�D recorded QIDS scores at week nine instead of at week eight as in

the CAN-BIND-1 study.

We further evaluated models with different combinations of targets (TRD, response, or

remission), QIDS scale version (clinician or self-report), feature sets, and subject inclusion cri-

teria, to investigate how these changes affect performance. We evaluated these models through

cross-validation on the STAR�D data.

We used the method for handling class imbalance as described in Nie et al [15] which uti-

lizes random undersampling [44]. Briefly, models were trained t times, each time using all the

data from the minority class, and an equal number of randomly selected data from the major-

ity class. This was repeated t = 30 times, with the average of these tmodels used in ensemble to

make the predictions.

We report all results as the mean of repeating the above procedure 100 times to evaluate each

model. Numerical differences between our results can be interpreted as statistically significant,

as the variance between evaluations is low, which we report alongside p-values from two-tailed

t-tests in S5, S8 and S11 Tables. We cannot use McNemar’s Test [45] or other methods to

directly compare the statistical significance between our results and those of Nie et al [15], as we

do not have the specific results of the cross-validation folds used by the original authors. Instead,

Table 3 shows the Z-scores for Nie et al’s results versus our distribution. We used functions

from scikit-learn’s metrics module to compute specific metrics such as the AUC [42].

Results

Feature and subject selection

Our STAR�D dataset, after following Nie et al’s methodology but using the raw data from

the NIMH NDA, consists of 480 features. This is fewer than the “approximately 700” Nie

Table 3. Resulting from replicating a prior study’s cross-validation, predicting treatment-resistant depression according to the Quick Inventory of Depressive

Symptomatology, Clinician version (QID-C) scale, using data from Sequenced Treatment Alternatives to Relieve Depression. GBDT: gradient boosting decision tree.

Feature selection methods include clustering-χ2 (30 features) and elastic net (31 features). Results reported as Balanced Accuracy and area-under-curve (AUC). As the rep-

licated study only reported one number for their results, we show the z-score of these against the distribution of our results from 100 runs of 10-fold cross-validation. Addi-

tional performance metrics and statistics are documented in S4 and S5 Tables.

Balanced Accuracy AUC

Our Result Nie et al study [15] Z-Score Our Result Nie et al study [15] Z-Score

Random Forest

Full Features 73% 70% -10 0.80 0.78 -18

Clustering-χ2 72% 68% -11 0.79 0.77 -9

Elastic Net 72% 69% -4 0.79 0.76 -5

GBDT

Full Features 73% 70% -10 0.81 0.78 -16

Clustering-χ2 71% 70% -3 0.78 0.77 -6

Elastic Net 73% 70% -5 0.80 0.76 -9

XGBOOST

Full Features 71% 68% -4 0.78 0.76 -4

Clustering-χ2 70% 67% -5 0.77 0.73 -9

Elastic Net 70% 68% -3 0.76 0.76 -0.4

L2 Logistic Regression

Full Features 71% 64% -16 0.78 0.69 -30

Clustering-χ2 72% 71% -2 0.79 0.73 -34

Elastic Net 73% 71% -3 0.80 0.77 -7

Elastic Net Model 70% 68% -5 0.77 0.76 -2

https://doi.org/10.1371/journal.pone.0253023.t003

PLOS ONE Replication of machine learning methods to predict antidepressant outcomes in MDD

PLOS ONE | https://doi.org/10.1371/journal.pone.0253023 June 28, 2021 7 / 15

https://doi.org/10.1371/journal.pone.0253023.t003
https://doi.org/10.1371/journal.pone.0253023


et al reports, though our dataset contains features from all scales noted by these authors,

and includes their derived features. The overlapping datasets, consisting of features found

in both CAN-BIND-1 and STAR�D, contains 100 features, more than the 22 overlapping

features Nie et al report from the external study validation dataset. We document all fea-

tures in S2 Table.

For the STAR�D datasets, replicating the subject selection from Nie et al [15] for TRD pre-

diction as defined by QIDS-C criteria results in 2520 subjects, with 701 (27.8%) labelled as

TRD. These numbers differ slightly from their paper, which reported 2454 subjects with 642

(26.3%) meeting QIDS-C TRD criteria. For the external validation, the STAR�D dataset with

QIDS-SR values and overlapping features with the CAN-BIND-1 dataset included 3024 sub-

jects, with 1772 (58.6%) achieving a QIDS-SR response by week 9 and 1295 (42.8%) achieving

remission. The CAN-BIND-1 dataset included 180 subjects, with 63 (35.0%) achieving

QIDS-SR response by week 8 and 43 (23.9%) achieving remission. Remission and response

rates for other targets are shown in S3 Table.

Replication of cross-validation

Table 3 shows the results of our replication in performing cross-validation on the full STAR�D

dataset to predict QIDS-C TRD. We present the results as balanced accuracy, which accounts

for class-imbalance, as well as area under the receiver operator characteristic curve (AUC),

which evaluates both sensitivity and specificity. We document sensitivity, specificity, F1 and

other performance metrics in S4 Table, statistical comparison between these results in S5

Table, and feature importance in S6 Table.

Our models achieved balanced accuracies and AUCs numerically higher than those of Nie

et al [15]. The highest balanced accuracy was higher in our study compared to Nie et al (73%

versus 71%, respectively). Similarly, our highest AUC was higher at 0.81 versus 0.78, respec-

tively. The z-score of Nie et al’s results in our distributions ranges from -0.4 to -34.

We observed a similar benefit by using feature selection methods. As in Nie et al [15], the

tree-based methods (Random Forests, GBDT, XGBOOST) generally do not confer a benefit

when using the selected features, in contrast to the linear regression methods.

External validation

Table 4 shows the results of our external validation, training models on the STAR�D dataset

with overlapping features and evaluating them on the dataset from CAN-BIND-1. Here, the

models are used to predict response (�50% reduction in QIDS-SR scores) or remission

Table 4. Performance of our predictive models when trained on the Sequenced Treatment Alternative to Relieve Depression (STAR�D) dataset, and externally eval-

uated on the Canadian Biomarker Integration Network in Depression (CAN-BIND-1) trial, predicting both response and remission according to the Quick Inven-

tory of Depressive Symptomatology, Self Report Version (QIDS-SR) scale. SeeMethods for our definition of these outcomes. No feature selection was used before

running the models. Additional performance metrics and statistics are documented in S7 and S8 Tables.

QIDS-SR Response QIDS-SR Remission

Balanced Accuracy AUC Balanced Accuracy AUC

Random Forest 65% 0.69 74% 0.83

GBDT 63% 0.70 75% 0.83

XGBOOST 64% 0.68 74% 0.82

L2 Logistic Regression 61% 0.65 77% 0.80

Elastic Net 59% 0.64 73% 0.79

GBDT: gradient boosting decision tree, AUC: area-under-curve.

https://doi.org/10.1371/journal.pone.0253023.t004
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(endpoint QIDS-SR � 5). Only overlapping features are used for both training and evaluat-

ing the models; 100 such features were available, as summarized in Table 2. Again, models

based on decision trees perform better. Our results are higher for predicting QIDS-SR

(AUC 0.79–0.83) remission than predicting response (AUC 0.64–0.70). We again provide

further performance metrics (S7 Table), statistical comparison (S8 Table), and feature

importance (S9 Table).

Further investigations

To further understand our results, we also compared the performance of response and remis-

sion prediction on cross-validation with the STAR�D dataset, as Table 5 shows. We focused on

using the Random Forest models without feature selection, given that this was one of the best

performing models. Our models continue to predict response worse than they do remission,

though the difference is smaller when using QIDS-C instead of QIDS-SR. The supplementary

material documents additional metrics (S10 Table), statistical comparison (S11 Table) and fea-

ture importance (S12 Table).

We conducted additional cross-validations, again using Random Forests, to investigate

whether fewer features could be contributing to the decreased performance of predicting

QIDS-SR response external validation (Table 5). On cross-validation, using only the over-

lapping features between both STAR�D and CAN-BIND-1 increase performance, with bal-

anced accuracy rising to 70% compared to 68% with all STAR�D features. However, we also

note that using our feature selection methods to reduce the number of features decreases

performance compared to using the full features. Elastic net feature selection drops bal-

anced accuracy to 67%, while clustering-χ2 lowers it to 65%. Our results for predicting

QIDS-SR remission follow a similar pattern on cross-validation (S10 Table), improving

when using the overlapping features but not when using feature selection to reduce features.

Unlike for QIDS-SR response, QIDS-SR remission results improve when externally validat-

ing on CAN-BIND-1, increasing to a balanced accuracy of 74%.

Table 5. Comparison of model performance with different targets and sets of features, using Random Forests. Overlapping features are the 100 features in both Cana-

dian Biomarker Integration Network in Depression’s CAN-BIND-1’s trial and Sequenced Treatment Alternatives to Relieve Depression (STAR�D), while Full uses all 480

features from STAR�D. Clustering-χ2 Selection (30 features) and Elastic Net Selection (31 features) refer to using these feature selection techniques as defined inMethods.
Targets include antidepressant response, remission, or treatment-resistant depression (TRD), as defined inMethods. Models trained and evaluated using cross-validation

(CV) on STAR�D, and we also report again the results of externally validating models on the CAN-BIND-1 dataset after being trained on STAR�D. We report balanced

accuracy and area-under-curve (AUC). Additional performance metrics and statistics are documented in S10 and S11 Tables.

Evaluation Target Features Balanced Accuracy AUC

CV QIDS-C TRD Full 73% 0.80

CV QIDS-SR TRD Full 74% 0.83

CV QIDS-C Remission Full 71% 0.80

CV QIDS-SR Remission Full 72% 0.81

CV QIDS-SR Remission Overlapping 72% 0.82

CV QIDS-C Response Full 70% 0.78

CV QIDS-SR Response Full 68% 0.76

CV QIDS-SR Response Clustering-χ2 Selection 65% 0.72

CV QIDS-SR Response Elastic Net Selection 67% 0.73

CV QIDS-SR Response Overlapping 70% 0.78

External Validation QIDS-SR Remission Overlapping 74% 0.83

External Validation QIDS-SR Response Overlapping 65% 0.69

QIDS: Quick Inventory of Depressive Symptomatology, -SR: Self-Report, -C: Clinician.

https://doi.org/10.1371/journal.pone.0253023.t005
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Discussion

Our analyses replicated the cross-validation of the recent Nie et al study using supervised

machine learning to predict antidepressant outcomes from clinical data. We then further vali-

dated these methods by externally validating them on an unrelated and new dataset. We

accomplished this replication and external validation using data processing code, and datasets,

that are available to other investigators, to provide a foundation for further replication and

improvement. The performance of our replicated prediction is numerically similar, though

slightly higher, than that achieved by the prior study. However, the performance for the exter-

nal validation on our new dataset depended upon which outcome, clinical response or remis-

sion, is predicted.

Several possibilities may explain the numerically small improvement in the results of our

replicated cross-validation compared to the prior study by Nie et al. We used a newer version

of the STAR�D dataset so the datasets have small differences in numbers of subjects and rates

of TRD that may lead to small differences in performance. We also used a different method for

selecting a hold-out set; because our dataset was not labelled by geographic trial center, we ran-

domly assigned 20% of all subjects to a testing set, in contrast to Nie et al, who used data from

three of the fourteen trial centers. This could mean that our training and testing data are more

related, leading to overfitting of the machine-learning model. Another possible cause for our

increased performance is our full feature set containing fewer features than Nie et al, 480 com-

pared to approximately 700, despite following the data preparation methodology as laid out in

their paper and in personal correspondence. This impact may be suggested by the smaller

advantage we see in our results that use feature selection methods. Regardless, our slightly

improved performance is unlikely to be clinically significant, and we instead interpret our

results as a successful replication supporting the findings of Nie et al. and our own implemen-

tation of data processing and machine learning methods. To our knowledge, this is the first

instance of an independent group replicating prior antidepressant outcome prediction, as

prior studies have generally published novel, positive results [9, 25].

For these predictive models to have clinical benefit and be accepted by clinicians [23, 46],

they need to have comparable performance when used in different clinical samples. Our exter-

nal validation results on the CAN-BIND-1 dataset show that the performance can vary based

on the specific outcome being measured. When we predict achieving clinical remission using

an antidepressant, defined as an endpoint score of five or less on the QIDS-SR scale, we find

balanced accuracy performance similar to the cross-validation analysis, with a slight improve-

ment. However, we find reduced performance compared to the cross-validation when predict-

ing clinical response, defined as a 50% or greater reduction on the QIDS-SR scale.

Such large performance differences predicting response versus remission is somewhat

unexpected. Prior work has usually not compared performance of these two outcomes on

external validation, and the small number of prior studies predicting each of these outcomes

have found varied performance with no major differences [9]. Of note, Nie et al [15] found dif-

ferent results, with the prediction of TRD improving when using response criteria compared

to remission criteria, such as their Random Forest full feature model having an AUC of 0.78

using QIDS-C remission, but 0.80 with QIDS-C response. As well, on their external validation,

when looking at metrics that account for class-imbalance, they find that performance

decreases similarly on external validation for both remission and response.

We investigated why response performance dropped on external validation by conducting

additional cross-validations on STAR�D datasets. We found that using the 100 features used

for the external validation, which are overlapping between STAR�D and CAN-BIND-1 data-

sets, generally increased performance on both response and remission predictions. This
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suggests other factors may be leading to the worsened response prediction on external valida-

tion, such as inherent differences in patients between the two datasets. It also provides an

example where having to use fewer features due to differences between datasets may actually

not hamper performance, but increase it, unlike prior examples–for instance, when Nie et al

only used overlapping features on STAR�D cross-validation, they noted performance

decreases. This is likely related to the number and types of features; our external validation

dataset had more features overlapping than did this prior work; 100 compared to 22.

Together, these results have implications for future work and clinical deployment. While

prior work has often found little difference between predicting antidepressant outcomes, we

show that the same machine learning methodology can lead to different performance when

predicting response and remission, including when externally validated. Our improved results

when using the overlapping features has implications for deployment in clinical settings,

where it may not be feasible to collect all the information required to replicate all features from

a clinical trial, and for further external validation, transfer learning, or other applications

where the number of overlapping features between datasets may be limited.

While our results are generally an improvement over Nie et al, further performance

increase is likely needed for clinical applicability. Our results may also have implications for

how to improve these predictive models. We note that the two feature selection methods

attempted often worsened cross-validation performance. This may suggest that alternative

techniques and parameters for feature selection may lead to increased performance. Whether

it be with different feature selection techniques, different models, or other changes, those seek-

ing to improve the performance of predicting antidepressant effect will be able to easily repro-

duce our work, using the same dataset. This will allow better understanding of how possible

changes affect performance.

Limitations

There are limitations to our cross-validation replication with Nie et al, including using a differ-

ent version of the STAR�D dataset and a different method of data processing. Our cross-vali-

dation evaluation could not be based on study location, as our dataset does not include this

information. Similarly, our deployment of the machine learning analyses may have differences,

despite our best efforts, such as our different number of features in the full STAR�D dataset.

Future work can support replicability by ensuring their data and methods are publicly

available.

The results of our external validation may largely depend on the specific differences and

similarities between the STAR�D and CAN-BIND-1 datasets. It is unclear how broadly these

findings apply, and future work could investigate this by repeating our CAN-BIND-1 dataset

analysis with a different training dataset. This may also help elucidate further factors impacting

the difference in performance of remission and response predictions.

Conclusions

Replication and external validation may play an important role in driving clinician acceptance

and applicability of machine learning methods in psychiatry. Our results represent the first

independent replication of prior work using machine learning models to predict antidepres-

sant outcomes in non-psychotic MDD. We successfully replicate the prior Nie et al cross-vali-

dation results using a newer version of their data that is publicly available. Our external

validation of these methods on a new, independent dataset from a different country found that

performance was similar to cross-validation when predicting clinical remission, although per-

formance was reduced when predicting clinical response. These results motivate future work
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to investigate the generalizability of this finding, as well as other efforts to improve prediction

performance. Our work facilitates future research by using reproducible and publicly available

data and methodology.
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