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ABSTRACT

Computational drug sensitivity models have the po-
tential to improve therapeutic outcomes by identi-
fying targeted drug components that are likely to
achieve the highest efficacy for a cancer cell line at
hand at a therapeutic dose. State of the art drug sen-
sitivity models use regression techniques to predict
the inhibitory concentration of a drug for a tumor cell
line. This regression objective is not directly aligned
with either of these principal goals of drug sensitiv-
ity models: We argue that drug sensitivity modeling
should be seen as a ranking problem with an opti-
mization criterion that quantifies a drug’s inhibitory
capacity for the cancer cell line at hand relative to
its toxicity for healthy cells. We derive an extension
to the well-established drug sensitivity regression
model PaccMann that employs a ranking loss and
focuses on the ratio of inhibitory concentration and
therapeutic dosage range. We find that the ranking
extension significantly enhances the model’s capa-
bility to identify the most effective anticancer drugs
for unseen tumor cell profiles based in on in-vitro
data.

INTRODUCTION

Cancer is a leading cause of death worldwide and case num-
bers are expected to rise in an aging population (1). Tradi-
tional one-size-fits-all cancer therapies fail to address the di-
verse nature of the disease: being caused by a combination
of genetic mutations, no two cancers are the same, which
explains the vast range of therapeutic outcomes for seem-
ingly similar clinical presentations. Driven by advances in
genomic testing, personalized oncology aims at providing
the best therapy, given all available information––including
the entire genetic tumor profile. Genomic alterations and
the transcriptome of cancer cells, in combination with in-

formation about the employed drugs, are among the factors
that determine the diverse outcomes of cancer therapies (2).
Increasingly, data-driven machine learning approaches are
used to facilitate precision oncology (3).

In vitro compound sensitivity is known to be a predictor
for clinical therapy success (4). Many machine learning ap-
proaches to precision oncology therefore rely on large-scale
drug sensitivity screening data. The data are created by ex-
posing cultivated tumor cell lines to a variety of anti-cancer
compounds in vitro, and measuring the survival rate of the
cancer cells as a function of the drug concentration. The
inhibitory concentration IC50 is derived from each experi-
ment and often serves as a measure of drug efficacy (5–10).

Each combination of a cell line, an anticancer drug
compound that the cell line has been exposed to, and
the observed inhibitory concentration IC50 constitutes
a data point. The resulting databases, most prominently
GDSC (11,12), are then used to train models that can poten-
tially predict the IC50 of unknown pairs of candidate drugs
and cell lines (13). This approach carries the potential to re-
vert the trend of declining drug-discovery productivity (14).

Drug sensitivity models usually rely on cell and drug fea-
tures. Genomic cell features that have been studied include
mutation, gene copy number variation, and microsatellite
instability data. However, the most predictive cell feature
is believed to be the transcriptome (15), as measured by
cellular RNA levels. For anticancer compounds, features
encode information about the chemical structure. For in-
stance, MACCS fingerprints––binary vectors indicating the
presence of structural features in a molecule––can be used
to this effect (16).

Many different machine learning architectures have been
employed to model IC50 values (17). Menden et al. (6)
have used a simple feed-forward neural network on ge-
nomic and fingerprint features. Ammad-ud-din et al. (8)
have been rethinking drug sensitivity prediction as a rec-
ommendation problem and were able to incorporate the
high-dimensional RNA expression data by applying a ker-
nelized matrix factorization approach. They also employed
a strict cross-validation strategy and differentiated between
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cell cold-start and drug cold-start evaluation. This facili-
tates the analysis of the model’s essential ability to predict
the IC50 values for cells and drugs that are not present in the
training data, respectively. Gupta et al. (9) used a kernelized
support vector machine and decision tree-based ensemble
models were, amongst others, employed by Su et al. (10).
Baptista et al. (18) provide a comprehensive overview on
deep-learning approaches to drug-sensitivity prediction.

PaccMann, a well-established multi-modal attention-
based neural-network model (15), forms the basis for this
work. PaccMan is trained to minimize the squared loss for
its estimates of the IC50 values of pairs of drug compo-
nents and cell lines. This approach is misaligned with the
underlying goals in two significant ways. First, the cytotox-
icity of anticancer drugs and, as a result, the dosage ranges
vary greatly across drug compounds. The inhibitory con-
centration IC50 of highly toxic compounds is always lower
than the inhibitory dose of compounds on the less toxic end
of the spectrum. For resistant cell lines, the inhibitory dose
of highly cytotoxic compounds can still be a low absolute
value, even though that value may exceed the therapeutic
range or even the lethal concentration. Therefore, it is not
the inhibitory concentration itself that indicates therapeutic
usefulness, but rather the inhibitory concentration normal-
ized to the therapeutic dosage range. In this paper, we will
develop this approach into an optimization criterion.

Secondly, the squared loss as optimization criterion puts
equally large weights on the model’s ability to estimate the
inhibitory concentration of the most effective and the least
effective pairs of drugs and cell lines. This aligns poorly with
the practical goal of precision oncology. To serve its pur-
pose as a therapeutic tool, the model has to identify the
therapeutically most effective drug candidates for a given
cell line whereas a differentiation between the inhibitory
concentrations of ineffective drugs is not relevant. Ranking
loss functions such as the normalized discounted cumula-
tive gain (NDCG) (19) specifically quantify a model’s ability
to identify highly-rated candidates from a base set. Ranking
loss functions have previously been employed in the con-
text of targeted cancer therapy within a kernelized ranking
SVM (20). In this paper, we will explore ranking loss func-
tions for targeted cancer therapy using for deep neural net-
works.

The paper is structured as follows. After introducing the
PaccMan model for regressing the inhibitory concentration,
the paper will lay out the problem setting and discuss ade-
quate performance metrics. We will proceed to develop a
neural network that directly minimizes the chosen ranking
loss function. We will then present and discuss our experi-
mental results before concluding.

MATERIALS AND METHODS

PaccMan: Regressing IC50 with neural networks

PaccMann uses RNA expression levels of the cell lines
and the tokenized SMILES strings of the drug molecules
as inputs for the network. A SMILES string is a one-
dimensional representation of a molecule, based on the
atom-bond network structure. The SMILES code of a com-
pound is not unique because it depends on the starting point

Figure 1. PaccMann (15) multi-modal architecture. Cell RNA expression
data dimension is reduced from 17 737 genes to 2089 genes using network
propagation and encoded with a 4-head self-attention encoder. Tokenized
SMILES string of the compound is padded to a length of 155 and em-
bedded by an embedding layer with 16 dimensions. The compound em-
bedding is encoded with 3 parallel convolutional channels (kernel sizes: 3,
5 and 11) and a residual skip connection. Each channel is further encoded
with a multihead of four contextual attention layers, that use the encoded
gene expression as context. The results are concatenated and fed to a set
of dense layers (number of units: 512, 128, 64, 16 and 1) with dropout and
batch normalization.

of a walk across the molecule. In order to address this is-
sue, training data is often augmented by adding multiple
SMILES representations of the same molecule.

Additionally, PaccMan incorporates prior knowledge
about drug-target information and protein-protein inter-
actions to reduce the dimensionality of the gene expres-
sion data by using network propagation. Weights are initial-
ized to 1 for reported target genes and to a small, positive
value for other genes. Propagation of these values through
the protein-protein interaction network results in activation
values that roughly correspond to the functional relatedness
of genes (21). Using only the RNA expression level data of
the 20 highest-scoring genes for each compound reduces the
number of cell features from 17 737 to 2089.

PaccMann uses attention-based network modules to en-
code both the tokenized SMILES string and gene expres-
sion subsets. Attention-based encoders are trained to as-
sign high weights to the most informative input features.
The network parameters are trained to minimize the mean
squared error. Figure 1 gives an overview of the PaccMan
architecture.

Problem setting and performance metrics

The goal of precision medicine is to identify the most
promising candidate compounds for a cell line at hand. For
ineffective drugs, it is sufficient for the model not to rate
them among the most likely candidates. Since a medical
practitioner will only consider a limited number of treat-
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ment options, the model does not need to be able to estimate
the inhibitory concentration of ineffective drugs with high
accuracy. The optimization criterion should therefore not
trade a model’s ability to identify the most effective drugs
against its precision in estimating the inhibitory concentra-
tion of ineffective drugs.

This application scenario corresponds best to the abstract
problem setting of learning a ranking function. A ranking
is an ordering of items according to a ranking model that
approximates the ordering given by an underlying definition
of relevance.

Ranking loss functions quantify a ranking model’s abil-
ity to bring the most relevant items of a list into the correct
order, while putting a lower weight on the correct order of
items on the far end of the list. In our application of preci-
sion medicine, items are drugs d for a given cell line c; the
ranking is over a set of drugs {d1, . . . , dn} for a fixed cancer
cell line c.

In drug development, the ratio of efficacy to toxicity is
generally referred to as the therapeutic index (22). Efficacy is
usually measured in terms of the effective dose and toxicity
can be measured in terms of the lethal dose. Since neither
of these doses are available in our in vitro data, we use the
inhibitory concentration IC50 as proxy of efficacy and the
maximum therapeutic dosage range as proxy of the toxicity
for healthy cells. We therefore construct the relevance of a
drug d for a given cell line c as the ratio

r (d, c) = IC50(d, c)
cmax(d)

of the inhibitory concentration of the drug for the cell line to
the maximum therapeutic concentration cmax for the drug
compound. Intuitively, if a small fraction of the possible
therapeutic dose inhibits cell growth, the cell is sensitive to
the drug, whereas an inhibitory dose in excess of the ther-
apeutic dose indicates a resistant cell line. This definition
ensures that the most relevant drug-cell line combinations
achieve the strongest inhibitory response in the available
dosage range.

We write the ranking of items given by a ranking model
as �, where �(d|c) is the position in the ordering assigned
by the ranking model to drug d for given cell line c. Us-
ing neural networks, ranking models are implemented by
means of a ranking function f�(d|c) that assigns relevance
scores to items by which these items are then sorted.

Several ranking performance measures quantify the use-
fulness of rankings. The discounted cumulative gain at k
(DCG@k) sums the ground-truth relevance scores r(d, c) of
the k most relevant items, where the relevance of each item
is divided by the logarithm of the item’s position �(x) in the
ranking:

DCG@k(π ) =
∑

d:π(d|c)≤k

2r (d,c) − 1
log2 (π (d|c) + 1)

.

In order to maximize the DCG, the most relevant items
have to occupy the first ranks, because the relevance of each
item is discounted by its position in the ranking. Constant
k has to be chosen as the number of candidate drugs that
a medical practitioner would typically take into consider-
ation before making a therapeutic decision. The relevance

of items beyond position k does not impact the DCG met-
ric, because these items would be ignored in any case by the
medical practitioner.

The DCG depends on the absolute relevance of ranked
items, and so the DCG values for rankings of different item
sets cannot be compared. The NDCG therefore normalizes
the DCG by the DCG of the ideal ranking, in which items
are ranked strictly by ground-truth relevance:

NDCG@k(π ) = DCG@k(π )
DCG@k(π∗)

,

where

DCG@k(π∗) = max
rankings π

DCG@k(π )

is the DCG of an ideal ranking. The NDCG quantifies the
merit of a ranking on a scale from 0 to 1 where 1 is the per-
fect ranking according to the ground-truth relevance func-
tion.

We will also refer to the precision at k as an additional
ranking performance metric that has an intuitive and easy-
to-understand meaning. The precision at k is the fraction
of the k most relevant items that which are part of the top-k
predictions of the model. For precision medicine, this is the
proportion of the most effective drug compounds that are
present in the k highest-rated compounds. For example, a
precision at 10 of 90% means that 9 out of the 10 most ef-
fective drugs are included in the 10 drugs that a model rates
highest. Unlike the NDCG, the precision at k does not mea-
sure how well the top k items are sorted by their relevance.

We investigate the cell cold-start problem. Training data
contains observations of the inhibitory concentration IC50
for pairs of drug compounds and cell lines. These data can
be used to optimize parameters of a model In the cell cold-
start situation, at application time one is faced with new cell
lines that do not occur in the training data. By contrast, the
drug compounds that are available at application time also
occur in the training data.

Optimizing the ranking loss

Being based on a discrete ordering, NDCG@k and preci-
sion@k are non-convex and non-differentiable functions; as
such, they do not lend themselves well to direct maximiza-
tion with gradient methods. In order to still be able to ap-
proximately maximize the NDCG with a deep neural net-
work, Qin et al. (23) approximate the position by a smooth
function of the relevance, and the truncation function by
a smooth function of positions of items. Thus, the NDCG
can be approximated as

̂NDSG@k(π ) =
̂DCG@k(π )
̂DCG@k(π∗)

where (1)

̂DCG@k(π ) =
∑

x∈X

2r (x) − 1
log2(1 + π̂ (x))

I[π̂ (x) − k ≤ 0], (2)

DCG@k(π∗) = max
rankings π

DCG@k(π ). (3)
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Figure 2. Feed-forward neural network baseline architecture. Cell RNA
expression data dimension is reduced from 17 737 genes to subset of 2089
genes using network propagation. SMILES strings are tokenized, encoded
with a 16-dimensional embedding layer. The embedded SMILES and re-
duced gene expression tensors are concatenated and fed to a set of dense
layers (number of units: 64, 32, 16 and 1) with dropout and batch normal-
ization.

Here, I[·] is a smooth approximation of an indicator func-
tion that can be implemented as a logistic function

I[v ≤ 0] = e−αv

1 + e−αv

with scaling constant �, and π̂i (x) is a smooth approxima-
tion of the index function that can be implemented as a sum,
over all other items y, of the indicator function indicating
that y receives a higher score than x from the ranking func-
tion f�:

π̂(x) = 1 +
∑

y�=x

I[ fπ (y) − fπ (x) ≤ 0].

The appxoximate NDCG of Equation (1) is differen-
tiable; a neural-network model that implements ranking
function f� can directly be optimized for this criterion.
We optimize the PaccMan neural network using the Ten-
sorFlow implementation of PaccMann (available at https:
//github.com/drugilsberg/paccmann) and the TensorFlow-
ranking library (available at https://github.com/tensorflow/
ranking). In contrast to the original PaccMan model, the in-
stances of the ranking model are no longer drug-cell pairs.
Each training input is a list of drugs and relevance scores
for a given cell profile. We refer to the method as PaccMan
with NDCG loss.

Experimental setting

We employ 5-fold cross validation to evaluate the models.
We investigate the setting of Cell cold-start, meaning that
we split cell lines into training and test portions with no
overlap. For each cross-validation fold, we train PaccMan
with NDCG loss (Figure 2) and each of the reference mod-
els; for the neural network models, we execute 1 000 000
training steps with a batch size of 390. We average the re-
sulting ranking performance measures over the 5-fold.

Figure 3. Precision at k for different values of k of PaccMan with NDCG
loss and reference methods for drug rankings. Error bars depict the stan-
dard error.

We judge the statistical significance of differences in
the performance of models with two-sided paired t- and
Wilcoxon tests and for equal means.

Reference models

The first, natural reference method that we include in our
experiments is the original PaccMan method with squared
loss. We train the PaccMan network in each cross-validation
fold using the hyperparameters from the original paper (15).

The next reference method is a simple feed-forward neu-
ral network, as shown in Figure 2. This network concate-
nates one-hot encoded SMILES codes and gene-expression
features into an input layer that is followed by three fully-
connected hidden layers and a linear output unit to predict
a relevance score. Dropout, batch normalization and ReLu
activation are applied after each hidden layer. The network
is trained with mean squared error (referred to as simple
NN) and approximate NDCG loss (simple NN with NDCG-
loss), respectively. The network is illustrated in Figure 2.

The final reference method is kernelized rank learning
(KRL) (20). Kernalized rank learning directly optimizes a
convex upper bound of the NDCG at k using a kernelized
linear model. Hyperparameters are tuned on the training
portion of each cross-validation fold using the code from
the original paper (20).

Data

We obtain IC50 and RNA expression data from the Ge-
nomics of Drug Sensitivity in Cancer (GDSC) database (11)
that contains screening data for 957 cell lines against 220
drugs. The tokenized, canonical SMILES codes, acquired
with the chemical software RDKit (available at https://www.
rdkit.org/), are available for 208 of the compounds.

RESULTS

Prediction performances

Figures 3 and 4 and Table 1 compare precision at k and
NDCG at k of the 5-fold cross-validation for different val-
ues of k. Here, each ranking is an ordering of drug com-
pounds for a given cell line; precision and NDCG values

https://github.com/drugilsberg/paccmann
https://github.com/tensorflow/ranking
https://www.rdkit.org/
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Figure 4. NDCG at k for different values of k of PaccMan with NDCG
loss and reference methods for drug rankings. Error bars depict the stan-
dard error.

are averaged over the drug rankings for all cell lines. Ta-
ble 1 also shows the P values of paired two-sided t-tests and
Wilcoxon tests with the null hypothesis that the NDCG of
PaccMan with NDCG-loss is equal to the NDCG of each of
the reference methods. PaccMan with NDCG-loss outper-
forms all reference methods both in terms of precision at k
and NDCG at k, for every value of k under investigation.
The difference in NDCG k is statistically significant for ev-
ery reference method and every value for k with P < 0.01.

Naturally, the performance difference is higher for lower
values of cutoff values k. For low values of k, the models
are evaluated in terms of their ability to pick the few, most
promising drug compounds. By contrast, regression models
are optimized to estimate the inhibitory concentration for
every single effective or ineffective drug.

Figure 5 shows how the ranking performance varies
across different cell lines. For the vast majority of cell lines,
the quality of the ranking differs between 60% (for ‘hard’
cell lines) and 100% (for ‘easy’ cell lines) of the DCG of an
ideal ranking. There are 5 out of around 957 cell lines which
the NDCG @ 5 is less than or equal to 0.5; there is no cell
line for which the NDCG @ 30 is below 0.5. An NDCG of
0.5 corresponds to a random ordering of drug compounds.

Attention weight analysis

We were interested in the attention weights generated by the
learning procedure, and whether the biological processes in-
duced by the respective genes reflect prior knowledge. Thus,
for each gene we average the attention weights across all
cell lines and discarded genes with average attention weight
w̄ < 1/n, where n is the number of genes used. This results
in 939 highly attended genes. Enrichment analysis with the
ConsensusPathDB resource (24) reveals numerous cancer-
relevant processes that are indicative of anti-cancer drug
action either inhibiting the growth or cell division of tu-
mor cells (cytostatic) or increasing their mortality (cyto-
toxic) through DNA damage and the induction of apopto-
sis (Table 2). Consequently, programmed cell death (apop-
tosis) is among the most-enriched pathway (Q = 3.21E-03)
which points to the fact that many of the cancer drugs in-

deed kill tumor cells, which is then reflected by the attention
weights (25).

The most enriched pathway relates to FoxO signaling (Q
= 3.72E-06). Forkhead box O proteins (FoxOs) are tran-
scriptional regulators important for cell differentiation, de-
velopment and stem cell maintenance. They are associated
with many disease processes and are considered as tumor
suppressors that prolongate cancer progression by promot-
ing apoptosis, DNA repair and cell cycle arrest (26). Carbon
metabolism in cancer (Q = 2.29E-04) is the most enriched
metabolic pathway. Cancer cells adapt their metabolism in
order to support enhanced proliferation and survival and,
thus, one route of cytotoxic anti-cancer therapy has been the
design of anti-metabolites that interfere with the division
of cancer cells such as the anti-folate 5-fluorouracil among
others which is reflected by the attention weights of the re-
spective genes (27).

The highest average attention weight across all cell lines
has the gene RAI2. Retinoic acid plays a critical role in de-
velopment, cellular growth, and differentiation. The specific
function of Retinoic Acid-Induced Protein 2 is largely un-
known and has only recently been associated with cancer
and cancer therapy. Reduced expression of RAI2 was found
in breast cancer and in colorectal cancer RAI2 acts as a
tumor suppressor by inhibiting AKT signaling. Moreover,
methylation of the RAI2 promoter is a mark for poor prog-
nosis in colorectal cancer (28).

For each cell line i we interrogated the attention weights
gained by the procedure for outliers (wi > �i + 5�i) where �i
and �i are the mean and standard deviation across all atten-
tion weights for that cell line. We found that the number of
outliers varies with increasing mutation load of the cell lines
with respect to important driver mutations. For example,
many cell lines that are of colon cancer origin (COREAD)
have mutations in the APC (37 out of 46), KRAS (28) and
TP53 (34) genes which account for the major driver muta-
tions in colon cancer. The number of outliers identified by
the attention weights assigned to the colon cancer cell lines
varies between 2 and 13 genes and this variation is greater
in the cell lines with higher mutation loads than in the cell
lines with lower mutation load (R2 = 0.994). This reflects
the fact that mutations lead to expression variations (29,30)
and may indicate further cell line differentiation and dys-
regulation during cancer progression which is captured by
different genes that are important for cell line characteriza-
tion during the learning process.

Example Use case: drugs against colon cancer

We investigate the predictions for the subset of colon can-
cer cell lines (TCGA classification COREAD (31)) for those
drugs that are approved or in clinical studies for colon can-
cer. In total, 46 different cell lines are available. As suggested
by a recent review (32), targeted therapies for colon cancer
can be classified into inhibitors of the EGF/EGFR-related
pathways that target proliferation of the tumor cells, in-
hibitors of the VEGF/VEGFR-related pathways that tar-
get angiogenesis, and inhibitors of other growth factors
such as HGF/c-MET pathway.

Ranking predictions across the COREAD cell lines vary
greatly (Figure 6), while EGF/EGFR-related therapies
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Table 1. Precision at k and NDCG at k for different values of k of PaccMann with NDCG loss and reference methods for rankings over drug compounds

k Precision NDCG Model P (t-test) P (Wilcoxon)

1 0.364 ± 0.018 0.525 ± 0.012 KRL 0.0 0.021
0.491 ± 0.022 0.885 ± 0.006 simple NN with NDCG-loss 0.141 0.602
0.211 ± 0.055 0.726 ± 0.043 simple NN 0.02 0.009
0.494 ± 0.021 0.889 ± 0.007 PaccMann with NDCG-loss - -
0.245 ± 0.046 0.78 ± 0.02 PaccMann 0.002 0.009

3 0.307 ± 0.008 0.517 ± 0.014 KRL 0.0 0.021
0.397 ± 0.011 0.849 ± 0.003 simple NN with NDCG-loss 0.003 0.009
0.244 ± 0.037 0.734 ± 0.042 simple NN 0.038 0.009
0.397 ± 0.008 0.869 ± 0.004 PaccMann with NDCG-loss - -
0.279 ± 0.014 0.795 ± 0.01 PaccMann 0.001 0.009

5 0.325 ± 0.006 0.534 ± 0.013 KRL 0.0 0.021
0.414 ± 0.008 0.848 ± 0.003 simple NN with NDCG-loss 0.018 0.047
0.274 ± 0.036 0.74 ± 0.041 simple NN 0.043 0.009
0.422 ± 0.008 0.862 ± 0.005 PaccMann with NDCG-loss - -
0.299 ± 0.011 0.803 ± 0.008 PaccMann 0.001 0.009

30 0.543 ± 0.001 0.645 ± 0.01 KRL 0.0 0.021
0.562 ± 0.005 0.867 ± 0.003 simple NN with NDCG-loss 0.001 0.009
0.447 ± 0.045 0.776 ± 0.036 simple NN 0.04 0.009
0.629 ± 0.004 0.891 ± 0.003 PaccMann with NDCG-loss - -
0.538 ± 0.004 0.845 ± 0.004 PaccMann 0.0 0.009

Figure 5. Distribution of NDCG at k values for cell lines using the Pacc-
Man model with NDCG loss.

show on average lower ranks compared to VEGF/VEGFR-
related therapies. The lowest ranking-position is held by
trametinib, an inhibitor of the ERK/MAPK signaling path-
way. The putative targets of trametinib are MEK1 and
MEK2, two members of the RAS-RAF–MEK–ERK sig-
naling pathway that transmits signals from growth fac-
tor receptors to the nucleus and other organelles to reg-
ulate cell proliferation, differentiation, survival and inva-
sion. The compound is currently investigated in combina-
tion with other compounds for the treatment of patients
with BRAFV600E metastatic colon cancer (33).

The second best performing compound, according to the
ranking model, that is currently approved or in clinical tri-
als for colon cancer is the RTK signaling inhibitor foretinib
that targets a couple of kinases, such as MET. Foretinib has
been shown to inhibit colon tumor growth in vitro and in
xenograft models (34).

It is also visible in Figure 6 that the group of approved or
clinically investigated therapies targeting the EGF/EGFR
pathway improves over other targeted therapies, however,
the ranking results for the group of cytotoxic drugs are
better. Thus, recommendations should distinguish both

groups, since the targeted drugs are supposed to have less
severe side-effects and thus induce less severe viability ef-
fects to the cellular system under study.

Conclusions

We have studied a variant of the deep neural network Pacc-
Man (15) that directly maximizes a smooth approximation
of the NDCG at k. From our experiments, we can conclude
that PaccMan with NDCG loss significantly outperforms
the original version of PaccMan, kernelized rank learning,
and a simple neural-network baseline with respect to both
NDCG at k and precision at k for all values of k under in-
vestigation.

We observe that in example ranking of drugs for colorec-
tal cancer, the top ranks are held by plausible drug com-
pounds that are currently in clinical trials. We also note that
he maximum dosage range of a drug is an imperfect proxy
of toxicity, because the severity of side-effects at that dose
can varies across drugs. Therefore, the rankings of targeted
therapies and cytotoxic drugs for a given cell line should be
viewed separately.

DISCUSSION

We argue that drug sensitivity models for precision oncol-
ogy should be evaluated in terms of their ability to select
a small set of candidate drug compounds that achieve the
most favorable trade-off between their inhibitory concen-
tration for cancer cells and their toxic concentration for
healthy cells for a given cell line at hand. The squared loss of
the inhibitory concentration IC50 is a poor proxy of either
of these overarching objectives. Therefore, we have devel-
oped a ranking model that maximizes the ranking criterion
NDCG at k, where the relevance criterion is the IC50, nor-
malized to the maximum therapeutic concentration.

From our experiments, we can conclude that rethink-
ing drug sensitivity modeling as a learning-to-rank learn-
ing problem significantly improves the efficacy of the drug
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Table 2. Top thirty KEGG pathways enriched by the 939 highly attended genes

P-value q-value Pathway Pathway size Overlap genes

3.74e-08 3.72e-06 FoxO signaling pathway 132 24
4.340e-08 3.72e-06 Pathways in cancer 526 57
1.14e-07 5.02e-06 MAPK signaling pathway 295 38
1.19e-07 5.02e-06 Human cytomegalovirus infection 225 32
2.30e-07 7.78e-06 PI3K-Akt signaling pathway 354 42
3.53e-06 9.95e-05 Proteoglycans in cancer 201 27
6.80e-06 0.000146 Prostate cancer 97 17
8.20e-06 0.000146 Neurotrophin signaling pathway 119 19
8.89e-06 0.000146 Focal adhesion 199 26
9.03e-06 0.000146 Progesterone-mediated oocyte maturation 99 17
9.68e-06 0.000146 Human immunodeficiency virus 1 infection 212 27
1.04e-05 0.000146 HIF-1 signaling pathway 100 17
1.19e-05 0.000155 Hepatitis B 144 21
1.90e-05 0.000229 Central carbon metabolism in cancer 65 13
2.15e-05 0.000243 ErbB signaling pathway 85 15
3.15e-05 0.000332 Epithelial cell signaling in Helicobacter pylori infection 68 13
4.63e-05 0.000460 T cell receptor signaling pathway 101 16
5.26e-05 0.000494 Cell cycle 124 18
6.94e-05 0.000618 Kaposi sarcoma-associated herpesvirus infection 186 23
0.000113 0.000953 Hepatitis C 155 20
0.000127 0.001021 Ras signaling pathway 232 26
0.000209 0.001608 Epstein-Barr virus infection 201 23
0.000234 0.001680 C-type lectin receptor signaling pathway 104 15
0.000240 0.001680 Chemokine signaling pathway 189 22
0.000248 0.001680 p53 signaling pathway 72 12
0.000274 0.001783 Tuberculosis 179 21
0.000524 0.003214 Apoptosis 136 17
0.000551 0.003214 Gastric cancer 149 18
0.000551 0.003214 Non-alcoholic fatty liver disease (NAFLD) 149 18
0.000581 0.003259 Toxoplasmosis 113 15

compounds on top ranks. PaccMann with NDCG-loss out-
performs PaccMann not only in terms of the NDCG @ k
for unseen cell lines––which it has been specifically trained
for––but also in terms of precision @ k. In contrast to drug
sensitivity regression, ranking models are closer to the en-
visioned application in precision oncology. Regression met-
rics such as Pearson correlation or the mean squared error
are not directly interpretable in the context of drug recom-
mendation. Precision @ k however, is a metric which might
prove useful for the intercommunication between oncolo-
gist and machine learning engineers.

In this study, we have quantified the therapeutic potential
of drug compounds as the ratio of inhibitory concentration
IC50 to maximum dosage range, the rationale being that the
dosage range is a proxy of the drug’s cytotoxicity for healthy
cells. The dosage range is readily available for all drug com-
pounds that have undergone clinical studies. Since, however,
the dosage may be constrained by factors other than cyto-
toxicity, it may not be a perfect proxy. Toxicity indicators
such as the LD50 for mice may potentially be a better gauge
of toxicity for human patients, but they are not reported in
GDSC or other databases for all drug compounds.

Our ranking model is trained on in vitro data while ther-
apeutic recommendations are ultimately made for human
patients. Being trained on in vitro data, the model cannot ac-
count for factors such as the the drug’s bioavailability in the
affected tissue, or interaction between cancer cells, drugs,
and the immune system. Clinical data will likely always be
a rare commodity. In many application areas, transfer learn-
ing of neural networks is achieved by pre-training the model
on auxiliary data, and fine-tuning it on a smaller set of data

from the target domain. Applied to precision oncology, this
would mean to train the model on in vitro data first, and
fine-tuning its parameters on clinical data. As an additional
intermediate step, it appears promising to additionally in-
corporate measurements of inhibitory concentrations on ex
vivo and organoid tissues into the training process (35).

Alternative approaches to learning-to-rank have been
studied, such as the boosted-tree model LambdaMart (36).
Boosted trees have proven to be most useful in applications
in which limited volumes of training data are available. As
the trove of globally available drug-sensitivity data grows,
we expect the relevance of boosted-tree models to diminish
in this application area.

Apart from algorithmic improvements, utilizing addi-
tional data sources might enhance drug sensitivity models.
As an example, encoding drug molecules structures as a
one-dimensional SMILES code is a considerable simplifi-
cation. Strong molecule encoders that use the readily avail-
able 3D-structure of molecules might provide additional in-
formation for drug-ranking models and advance drug cold-
start capabilities.

We showed evidence for the ranking predictions among
the drugs for colon cancer (cf. Figure 6). Additionally, we
investigated the potential of the ranking model to predict
cancer subtype-specific drug differences in the context of
breast cancer. The available 49 breast cancer cell lines can
be classified into five different subtypes according to estro-
gen receptor (ER), progesterone receptor (PR), and human
epithelial receptor 2 (HER2) status, namely luminal A (7
cell lines), luminal B (6), HER2-positive (7), triple-negative
A (12) and triple-negative B (10) (37); 7 cell lines remained



8 NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 1

Figure 6. Box plots of predicted rankings of the drugs across 46 colon-cancer cell lines. Drugs are selected among approved drugs or drugs that are in
clinical trials according to a recent review (32) and are color coded: yellow and brown panel refer to EGF/EGFR-related therapies, green panel refers to
VEGF/VEGFR-related therapies and grey panel to other growth-factor inhibitors.

unclassified. We then derived the predicted ranking of drugs
for the subtypes by computing the median predicted rank
across all cell lines within the respective subtype. Although,
we found that both the rankings according to ground-truth
IC50 and the predicted ranks overall are very similar, we
can identify selected examples of subtype-specific drug re-
sponses that show literature evidence either by existing clin-
ical trials or previously identified molecular targets.

For example, entinostat, an HDAC inhibitor, has lower
median rank (43) in the HER2-positive cell lines compared
to luminal (76.5) and triple-negative (62.5) cell lines indi-
cating a benefit for the HER2-positive subtype. This find-
ing is supported by literature evidence of a recent phase Ib
study where entinostat in combination with other therapies
had positive effects on HER2+ metastatic breast cancer pa-
tients (38). Another drug that has different predicted sub-
group effects is the PI3K and mTOR inhibitor dactolisib.
It has a median rank of 9 among the HER2-positive cell
lines and rank 15 for the luminal A cell lines. This is sup-
ported by literature where it has been found that dactolisib
selectively induced cell death in breast cancer cell lines with
HER2 amplification (39).

Triple-negative breast cancers are very heterogeneous
and thus deriving potential targeted therapies is particu-
larly difficult. It has been proposed that specific subgroups
of triple-negative breast cancer patients can take advan-
tage from mTOR inhibitors (40,41). In our predicted rank-
ings, we observe the drug WYE-125132, an mTOR in-
hibitor, as selective for triple-negative type B cell lines (me-
dian rank 13) rather than HER2-positive cell lines (me-
dian rank 16). The same is true for the mTOR inhibitors
omipalisib and PI-103 which have lower predicted ranks

in the triple-negative cell lines (10 and 40) compared to
the HER2-positive cell lines (11 and 46). Most breast can-
cers (80%) are of luminal type, either luminal A (ER+
and/or PR+/HER2−) or the more aggressive luminal B
type (ER+ and/or PR+/HER2+). Our predictions suggest
different effects among these subtypes for example for the
PI3K/mTOR inhibitor dactolisib, that has a median rank
of 9 for the luminal B cell lines and 15 for the luminal A
cell lines, and for the MEK1/2 inhibitor PD0325901, that
has rank 19 in luminal B cell lines and rank 25 in luminal A
cell lines. The corresponding markers have been identified
previously as promising targets for luminal B breast cancer
therapies (42).

Comparing drug predictions across different drugs and
cell lines is a difficult task regarding the different ranges
of drug sensitivities and the evolution of cell lines across
time due to mutations and other factors (43). We observed
that ranking robustifies drug sensitivity predictions and im-
proves overall prediction performance on the one hand. On
the other hand, the ranking is influenced by differences in
sensitivity ranges in the actual measurements. For example,
cells are typically more sensitive to cytotoxic drugs yield-
ing a lower dose range, even after normalization, compared
to targeted drugs (cf. Figure 6). Thus, ranking predictions
should be applied in practice in a semi-supervised way in-
cluding biomedical knowledge and comparing subsets of
drugs with similar mechanisms (e.g. EGFR inhibitors).

Besides variations of drug sensitivity measurements
across different drugs, this strategy has also to cope with
factors due to the cell line differences. In our screens, we
used gene expression data as the main source of molecular
data to characterize cell line differences. However, attempts
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have been made to characterize cancer cell lines with differ-
ent types of molecular data including methylation, splicing
and protein expression as well as CRISPR-Cas9 knockout
data with respect to critical mutations which may lead to a
better biological subtyping and thus to a better transferabil-
ity to the in vivo situation (44). Other factors that affect cell
line variability have been identified, for example technical
assay effects, drug concentration ranges and even image-
processing algorithms for cell counting after treatment as
well as biological factors such as media composition, kary-
otypes, variable growth rates and drug exposure times and
reproducibility studies across different centers may help in
identifying and reducing the main influence factors (45).
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