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Abstract

Uterine PEComas often present a diagnostic challenge as they share morphological and 

immunohistochemical features with smooth muscle tumors. Herein we evaluated a series of 19 

uterine PEComas to compare the degree of melanocytic marker expression with their molecular 

profile. Patients ranged from 32 to 77 (median 48) years, with six tumors classified as malignant 

based on the modified gynecologic-specific prognostic algorithm. All patients with malignant 

PEComas were alive with disease or dead from disease at last follow-up, while all those of 

uncertain malignant potential were alive and well (median follow-up, 47 months).

Seventeen of 19 (89%) PEComas harbored either a TSC1 or TSC2 alteration. One of the two 

remaining tumors showed a TFE3 rearrangement, but the other lacked alterations in all genes 

evaluated. All showed at least focal (usually strong) positivity for HMB-45, with 15/19 (79%) 

having > 50% expression, while the tumor lacking TSC or TFE3 alterations was strongly positive 

in 10% of cells. Melan-A and MiTF were each positive in 15/19 (79%) tumors, but staining extent 

and intensity was much more variable than HMB-45. Five of six (83%) malignant PEComas also 

harbored alterations in TP53, ATRX, or RB1, findings not identified in any tumors of uncertain 

malignant potential. One malignant PEComa was microsatellite-unstable/mismatch repair protein-

deficient.
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In summary, TSC alterations/TFE3 fusions and diffuse (> 50%) HMB-45 expression are 

characteristic of uterine PEComas. In morphologically ambiguous mesenchymal neoplasms 

with myomelanocytic differentiation, especially those with metastatic or recurrent disease, next-

generation sequencing is recommended to evaluate for TSC alterations, as such patients can be 

eligible for targeted therapy.
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INTRODUCTION

Uterine perivascular epithelioid cell tumors (PEComas) are diagnostically challenging 

mesenchymal neoplasms as their morphology often overlaps with smooth muscle tumors1–5. 

PEComas are characterized by the coexpression of melanocytic and smooth muscle markers, 

but a small subset of smooth muscle tumors may also be positive for the former, in 

particular, HMB-456–8. Novel immunostains such as cathepsin K and PNL2 were originally 

speculated to aid in this diagnostic issue, but have since been found to be positive in 

smooth muscle tumors2,3,9. Recently, a study on uterine sarcomas with myomelanocytic 

differentiation identified four subgroups of tumors based on integration of morphological, 

immunohistochemical, and molecular data—malignant PEComa, sarcoma with PEComa-

like features, myogenic sarcoma, and sarcoma NOS4. TSC2 alterations or TFE3 fusions 

were detected in 6/7 (86%) primary or recurrent tumors in the first two groups, and absent 

in the latter two categories (n=8). However, one malignant PEComa, as well as one of the 

myogenic sarcomas, lacked TSC2 or TFE3 alterations, but showed ≥ 50% expression for 

HMB-45 and positivity for MiTF; thus, it is difficult to explain their classification within the 

respective categories. Herein we correlate the molecular findings and degree of melanocytic 

marker expression in a series of 19 uterine tumors previously diagnosed as PEComa3.

MATERIALS AND METHODS

Next-Generation Sequencing/TFE3 Fusion Status:

Formalin-fixed paraffin-embedded sections (FFPE) (n=22) or sequencing data (n=1) were 

available for 23/32 (72%) tumors from the prior study3. For the former, genomic DNA 

was isolated from macro-dissected sections using the QIAamp DNA FFPE Tissue Kit 

(Qiagen, Valencia, CA) according to manufacturer’s instructions. Extraction was successful 

in 18/22 (82%) tumors while the remaining four failed to meet quality control measures 

and were excluded from analysis. Next-generation sequencing was performed using the 

targeted, hybrid capture 1,213-gene OncoPlus panel at the University of Chicago, as 

previously described10,11. Somatic mutation calling was performed across all 1,213 genes 

using a custom in-house bioinformatics pipeline as previously described10. Variant review 

was performed by two authors with specific expertise in this area (Z.O., L.R.) and 

included filters based on population variant frequencies (Exome Aggregation Consortium, 

http://exac.broadinstitute.org/), variant frequencies in cancer databases (COSMIC: catalogue 

of somatic mutations in cancer https://cancer.sanger.ac.uk/cosmic and cBioPortal https://
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www.cbioportal.org/), and coding effects. Somatic variant calls were inspected using 

Integrated Genomics Viewer (IGV; Broad Institute, MIT Harvard, Cambridge, MA). TFE3 
fusions were previously assessed by fluorescence in-situ hybridization3.

Melanocytic Marker Expression:

Immunohistochemistry for HMB-45, Melan-A, and MiTF was previously performed in 

tumors from our study3. Tumors were scored for both extent (percentage of positive cells) 

and intensity (1+ weak, 2+ moderate, 3+ strong) of each melanocytic marker. Stains were 

considered positive if nuclear (MiTF) or cytoplasmic (HMB-45, Melan-A) expression was 

noted.

Microsatellite Instability/Mismatch Repair Protein Immunohistochemical Testing:

As part of the OncoPlus panel, a microsatellite instability (MSI) detection module using 

data from 336 incidentally captured homopolymers across the 1,213 captured genes was 

utilized as previously described12. Due to the impact of pre-analytic factors on the MSI-

calling module and the inclusion of many FFPE blocks in this study that were > 5 years 

old, we required that > 90% of microsatellite loci reach the minimum sequencing depth 

threshold (50X coverage) for quality control and accurate MSI calling. Tumors with < 9% 

unstable loci were classified as microsatellite-stable, 9 to 15% as indeterminate, and > 15% 

as unstable. Immunohistochemistry for MSH6 and PMS2 was performed on all tumors 

classified as indeterminate or unstable, as well as in those without available microsatellite 

information. PEComas were considered mismatch repair protein-deficient if there was 

absence of nuclear staining in tumor cells for either MSH6 (rabbit monoclonal EPR3945, 

dilution 1:200; Abcam, Cambridge, MA) or PMS2 (rabbit monoclonal EPR3945, dilution 

1:50; Abcam, Cambridge, MA). For all other staining patterns, the tumor was considered 

mismatch repair protein-proficient.

RESULTS

Clinical and Morphological Features:

Patients ranged from 32 to 77 (mean 50, median 48) years and tumors from 1 to 17 

(mean 7, median 6; unknown in two) cm. Two patients had a clinical diagnosis of 

tuberous sclerosis. Two other patients had a history of renal angiomyolipoma or pulmonary 

lymphangioleiomyomatosis but never underwent further clinical or genetic evaluation. The 

remaining patients either had no other signs suggestive of tuberous sclerosis (n=13) or 

additional clinical information was not available (n=2). All tumors showed morphological 

features of PEComas (Supplemental File 1) and were classified as such in our prior 

study3. Based on the modified gynecologic-specific prognostic algorithm where at least 

three atypical features (size ≥ 5 cm, necrosis, high nuclear grade, mitoses > 1 per 50 

high-power fields, vascular invasion) are required for a diagnosis of malignancy2,3,13, 

13/19 (68%) PEComas were classified as uncertain malignant potential and 6/19 (32%) 

as malignant (Table 1). Recurrences occurred in 6/18 (33%; unknown in one) patients with 

three experiencing multiple recurrences (two malignant, one uncertain malignant potential). 

Follow-up was available for all patients, ranging from 5 to 175 (mean 51, median 47) 

months, with 13/19 (68%) alive and well, 3/19 (16%) alive with disease, and 3/19 (16%) 
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dead of disease. All patients with a diagnosis of malignant PEComa were either alive with 

disease or dead of disease at last follow-up, while all with PEComas of uncertain malignant 

potential were alive and well; however, one patient in the latter category experienced 

multiple recurrences.

Next-Generation Sequencing:

Seventeen of 19 (89%) PEComas harbored either a TSC1 or TSC2 alteration (Figure 

1a). TSC1 alterations were detected in 9/19 (47%) tumors and included pathogenic/likely 

pathogenic mutations in eight and a rearrangement predicted to cause loss of function in 

one, with three of them also showing copy number losses. TSC2 alterations were noted in 

8/19 (42%) PEComas and included pathogenic/likely pathogenic mutations in four (with 

one also showing an additional variant of uncertain significance), variants of uncertain 

clinical significance in two, a rearrangement predicted to cause loss of function in one (also 

with additional copy number loss), and only copy number loss in one. For the remaining 

two tumors, one had a TFE3 fusion and the other did not harbor alterations in any genes 

examined. TSC1, TSC2, and TFE3 alterations were mutually exclusive.

ATRX and/or TP53 mutations were detected in 4/6 (67%) malignant PEComas but were 

absent in all those classified as uncertain malignant potential. Additional non-recurrent 

pathogenic/likely pathogenic mutations included TERT (1/18; 6%), ADGVR1 (1/18; 6%), 

FZR1 (1/18; 6%), KMT2D (1/19; 5%), and SUFU (1/19; 5%). All variants are summarized 

in supplemental file 2.

Copy number losses were noted in 7/19 (37%) tumors (Figure 1b). Recurrent ones included 

the previously mentioned losses in TSC1 (9q34.13) (3/19; 16%) and TSC2 (16p13.3) (2/19; 

11%), as well as FANCA (16q24.3) (2/19; 11%), FGFR3 (4p16.3) (2/19; 11%), NOTCH1 
(9q34.3) (2/19; 11%), and MYCN (2p24.3) (2/19; 11%). Similar to the ATRX and TP53 
mutations described above, deletion of TP53 (17p13.1) (case 9b) and RB1 (13q14.2) (case 

16) were only observed in malignant PEComas. Overall, 5/6 (83%) malignant PEComas 

harbored alterations in TP53, ATRX, or RB1.

Correlation Between Melanocytic Marker Expression and Molecular Results:

All tumors, regardless of their TSC alteration status, showed at least focal positivity (≥ 10%) 

for HMB-45. HMB-45 expression ranged from 10 to 100% (mean 72%, median 75%), with 

most (17/19; 89%) showing strong intensity. In PEComas with TSC alterations, HMB-45 

was positive in 15 to 100% (mean 74%, median 75%) of cells, with > 50% staining in 

14/17 (82%). Melan-A was positive in 15/19 (79%) tumors, ranging from 0 to 100% (mean 

19%, median 5%), with most (8/15; 53%) displaying strong intensity. In PEComas with TSC 
alterations, Melan-A was positive in 14/17 (82%), ranging from < 1 to 100% (mean 25%, 

median 10%), with > 50% expression seen in 4/17 (24%). MiTF was expressed in 15/19 

(79%) tumors, ranging from 0 to 100% (mean 20%, median 5%) of cells, with only 2/15 

(13%) showing strong intensity. In PEComas with TSC alterations, MiTF was expressed in 

14/17 (82%), ranging from < 1 to 100% (mean 21%, median 10%), with > 50% expression 

in 3/17 (18%) tumors. Immunohistochemical results are summarized in Table 2.
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Two tumors did not show any TSC alterations. One of them (case 15) was composed 

of an alveolar to nested growth of epithelioid cells with clear cytoplasm. It harbored a 

PSF-TFE3 fusion and was strongly and diffusely (100%) HMB-45 positive, but negative for 

Melan-A and MiTF. The other one (case 2; Figure 2) was comprised of sheets and nests 

of predominantly epithelioid cells (70%), with cytoplasm ranging from clear to eosinophilic 

and granular to rhabdoid, as well as a perivascular/radial distribution of tumor cells. It 

showed strong, but focal (10%) expression for HMB-45 and Melan-A, and strong and 

diffuse (80%) MiTF staining.

One tumor (case 9; Figure 3) was biphasic, being comprised of two morphologically and 

immunohistochemically distinct areas. Approximately 40% of the tumor (case 9a) cells 

grew in sheets, nests, and trabeculae and were markedly pleomorphic, associated with brisk 

mitoses and tumor cell necrosis. This component was strongly and diffusely (100%) positive 

for HMB-45, moderately and diffusely (60%) positive for Melan-A, and negative for MiTF 

and all myogenic markers (data not shown). The remaining 60% (case 9b) was composed 

of fascicles of moderately atypical spindle cells with appreciable mitoses and tumor cell 

necrosis. It showed strong, but very rare (< 1%) HMB-45 expression, was negative for 

Melan-A and MiTF, and strongly and diffusely positive for smooth muscle actin, desmin, 

and caldesmon (data not shown). Both components harbored the same ATRX and ADGRV1 
mutations, but a TSC1 mutation was detected only in the epithelioid component, and 

multiple copy number losses (including TSC1 and TP53, among others) only in the spindled 

component.

Microsatellite Instability/Mismatch Repair Protein Immunohistochemical Testing:

One PEComa (case 12) was microsatellite-unstable by next-generation sequencing, while 

the remaining tumors analyzed by sequencing were either stable (n=8), indeterminate (n=1), 

or unable to be determined based on insufficient sequencing coverage of microsatellite loci 

(< 90% of loci at 50X coverage) (n=8). The microsatellite-indeterminate PEComa and those 

without microsatellite information (n=9) were mismatch repair protein-proficient, while the 

one microsatellite-unstable tumor was mismatch repair protein-deficient (loss of MLH1 and 

PMS2, retained MSH2 and MSH6).

DISCUSSION

Even before the first series on uterine PEComas in 20021, there has been speculation 

to whether PEComas are a distinct entity or related to smooth muscle tumors, likely 

an epithelioid variant with melanocytic differentiation6–8,14–16. It is generally accepted 

that in the appropriate morphological setting, the presence of any expression for at least 

two melanocytic markers (or one melanocytic marker and cathepsin K), a diagnosis of 

PEComa can be rendered2. However, as there is often morphological overlap between 

PEComas and smooth muscle tumors, the question arises whether the extent of melanocytic 

marker expression is imperative in differentiating between the two entities. Cathepsin K 

was originally used in the differential diagnosis of renal cell carcinoma and epithelioid 

angiomyolipoma17, but its use has major limitations in the distinction between PEComa and 

smooth muscle tumors3,9. Herein, we further explored this issue by comparing the genomic 
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findings with the degree of melanocytic marker expression in a series of 19 PEComas 

previously published3.

All tumors in this cohort fulfilled the immunohistochemical criteria used for PEComas (18 

with positivity for at least two melanocytic markers and one positive for HMB-45 and 

cathepsin K). Since the latter PEComa (case 15) harbored a PSF-TFE3 fusion, it is not 

surprising that both Melan-A and MiTF were negative, as has been described in TFE3 
translocation-associated PEComas18,19. Of the three melanocytic markers, only HMB-45 

was strongly positive in all but two tumors, with just four showing < 50% expression. One of 

these four neoplasms (case 2) showed 10% HMB-45 expression and did not harbor a TSC/
TFE3 alteration, while the remaining three with 15%, 35%, and 40% HMB-45 expression 

showed TSC alterations. We did not find Melan-A or MiTF to be particularly helpful as no 

correlation was obvious between TSC alterations and their expression pattern.

This naturally leads to the question as to whether case 2 is truly a PEComa versus 

a smooth muscle tumor with aberrant melanocytic marker expression. Several potential 

interpretations can be postulated. The presence of a different TSC dysregulation mechanism 

(epigenetic modification, miRNA, etc), a structural TSC alteration not detected by the 

assay, or alterations in a mTOR pathway-associated gene not covered by the assay may 

argue for this tumor still being a true PEComa. For instance, two TSC wild-type PEComas 

have recently been shown to harbor mutations in FLCN, a gene encoding for a protein 

involved in the mTOR pathway20. Although this gene was covered by our platform, it is still 

possible that there might be another mTOR pathway-associated gene that was not covered 

by our assay. Finally, although the morphology and immunoprofile was not typical of a 

TFE3 translocation-associated PEComa, it is possible that this tumor could harbor a TFE3 
fusion that was not detected by FISH or a novel fusion in uterine PEComas yet to be 

identified. On the other hand, it may be postulated that this tumor may not be a PEComa, but 

perhaps an epithelioid smooth muscle neoplasm with PEComa-like morphological features 

and focal melanocytic marker expression. Myogenic markers, including desmin, caldesmon, 

and smooth muscle actin, were strongly and diffusely positive (data not shown), but this 

finding is also observed in PEComas1–3. We cannot further classify this mesenchymal tumor 

with certainty, but would favor it to be at most of uncertain malignant potential based on 

its morphology and wild-type status for genes commonly altered in malignancy (i.e. TP53, 
CDKN2A/2B, RB1, ATRX, etc). Thus, one could argue that due to the expression of three 

melanocytic markers, this tumor could still be part of the PEComa family.

One tumor (case 9) was quite unusual in that it was clearly biphasic with morphologically 

and immunophenotypically distinct spindled and epithelioid areas. Macro-dissection of 

these components revealed identical ATRX and ADGRV1 mutations in both, with a TSC1 
mutation detected in the epithelioid areas and copy number losses in multiple genes 

in the spindled areas. Based on molecular data, we can infer this is a clonally-related 

neoplasm rather than a collision tumor, with two pathways of clonal evolution. One pathway 

where a TSC1 mutation was acquired likely resulted in a PEComa-like morphology and 

immunoprofile, and the second, with chromosomal instability with multiple copy number 

losses, led to a leiomyosarcoma-like morphology and immunophenotype. This neoplasm 

offers insight into whether PEComas and smooth muscle tumors are separate or related 
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entities as it highlights that this tumor likely arose from the same progenitor cell and 

underwent divergent differentiation. Whether this concept is universal for all PEComas 

merits further study, especially those investigating epigenetic modifications/cell of origin.

Our study demonstrated several similarities with a recent series integrating morphological, 

immunohistochemical, and molecular features of 15 uterine mesenchymal tumors with 

myomelanocytic differentiation4. In that series, histologically ambivalent tumors were 

examined, while we typified neoplasms morphologically and immunohistochemically 

consistent with PEComa. Furthermore, they only sequenced 8/15 (53%) primary tumors 

(with the remainder studied being recurrences) whereas we only evaluated primary tumors. 

They identified a TSC2 alteration (n=5) or TFE3 fusion (n=1) in 6/7 (86%) malignant 

PEComas and PEComa-like sarcomas, that parallels our findings with 18/19 (95%) tumors 

having TSC or TFE3 alterations. Of note, none of their 15 tumors harbored TSC1 
alterations, a finding we observed in 9/19 (47%) tumors, and has been previously been 

described in a subset of PEComas20–22. Those with characteristic PEComa genomic 

alterations were all positive for HMB-45 (two “positive”, “focal”, 15% strong, 20% strong, 

100% strong; percentages and intensity not provided in tumors characterized as “positive” 

or “focal”), which aligns with our findings. One of their tumors (UMT01) classified as 

lung recurrence of a malignant PEComa showed moderate to strong HMB-45 expression 

in 70% of cells, lacked TSC or TFE3 alterations, but harbored mutations in TP53, RB1, 
and BRD44. As previously reported20,23 and also confirmed in our study (discussed in 

detail below), TSC-altered PEComas may show concurrent TP53 mutations. However, in 

contrast to our series, UMT01 lacked TSC alterations, but showed > 50% HMB-45 staining. 

The several interpretations speculated for our case 2 can be applied to this tumor. Another 

sarcoma and its recurrence from their study (UMT06 and UMT06-R) showed 5% and 20% 

strong HMB-45 expression, respectively4. The primary tumor harbored mutations in TP53 
and ATRX, whereas the recurrence had the same ATRX mutation as well as novel TSC2 
and TERT mutations. The change in the HMB-45 staining pattern is similar to a HMB-45 

negative uterine leiomyosarcoma reported by Silva et al. that acquired variable positivity 

for HMB-45 in the recurrences7. Thus, it can be speculated that as only 5% of cells were 

HMB-45 positive in the primary tumor, a TSC2-mutated subclone was likely present that 

became the predominant component in the recurrence. This tumor might be analogous to our 

case 9 with both PEComa and LMS-like components, with the exception that its PEComa-

like clone was a smaller interspersed component rather than the two morphologically and 

immunohistochemically distinct foci we observed.

None of the sarcomas from the other two groups described by Selenica et al. (myogenic 

sarcoma and sarcoma NOS) harbored TSC or TFE3 alterations, and all except one (UMT02) 

showed limited (≤ 15%) HMB-45 expression. However, in UMT02 tumor, 50% of cells 

were strongly HMB-45 positive, with alterations noted in TP53 and MED12. As MED12 
mutations have been described in 11% to 21% of leiomyosarcomas24,25, and to our 

knowledge not in PEComas, this tumor likely represents a leiomyosarcoma with significant 

HMB-45 expression. As 5/6 (83%) of their tumors in the myogenic sarcoma category 

showed ≤ 15% HMB-45 expression, it is highly plausible that case 2 in this series represents 

a leiomyoma with aberrant (10%) HMB-45 expression. Of note, MED12 is covered by our 

platform and was not altered in this tumor.
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The question of whether TSC alterations are specific to PEComas or if they may occur 

in morphological mimickers must be considered. Previously, TSC2 alterations in uterine 

mesenchymal neoplasms have been reported in a leiomyoma with bizarre nuclei26, two 

leiomyosarcomas27,28, and two “high-grade non-leiomyosarcoma sarcomas”24. Scanned 

slides without immunohistochemical data are available for the tumor reported as uterine 

leiomyosarcoma by The Cancer Genome Atlas, but in our opinion does not morphologically 

resemble leiomyosarcoma28. None of the other tumors with reported TSC2 alterations have 

any morphological or immunohistochemical information available for review. Although it 

is entirely plausible that TSC alterations may be detected in rare smooth muscle tumors, 

it appears that they are most prevalent in PEComas, and hence can help establish the 

diagnosis in morphologically and immunohistochemically ambiguous neoplasms. Currently, 

this distinction is largely academic and thus an extensive molecular evaluation is not 

necessary in most situations. However, it is important to note that in a patient with metastatic 

or recurrent disease if a TSC alteration is identified, she may be eligible for targeted 

therapy with MTOR inhibitors29–32. A proposed algorithm for the molecular work-up of 

a uterine mesenchymal neoplasm with immunohistochemical evidence of myomelanocytic 

differentiation is provided (Figure 4).

Aside from TSC alterations, only two other recurrent genetic aberrations were identified in 

this study, TP53 (3/19; 16%) and ATRX (2/19; 11%). TP53 and/or ATRX mutations were 

only detected in malignant PEComas (4/6; 67%), while another malignant PEComa showed 

a RB1 loss. The tumor that harbored both TP53 and ATRX mutations strongly expressed 

HMB-45 in 40% of cells, whereas the two with TP53 mutations (including one with a TSC2 
variant of uncertain clinical significance), the one with an ATRX mutation, and the one with 

RB1 loss showed strong and diffuse HMB-45 positivity. Given the presence of a TSC variant 

and strong HMB-45 expression in ≥ 40% of cells, we believe that the diagnosis of malignant 

PEComa, as opposed to leiomyosarcoma with aberrant melanocytic marker expression is 

justified. Similarly, TP53, ATRX, and RB1 alterations have been described in a small subset 

of TSC-altered PEComas from diverse sites, most of which were classified as malignant, 

and analogous to our PEComas, showed variable amounts of HMB-45 expression4,20,23. 

Although the number of PEComas evaluated by next-generation sequencing is limited, the 

presence (or lack thereof) of an alteration in one or more of these genes might be a helpful 

adjunct to the morphological-based algorithm in predicting behavior; thus, additional studies 

are needed to corroborate this finding.

Brief discussion is warranted regarding the patient who suffered from multiple recurrences 

of her uncertain malignant potential PEComa. This tumor lacked a TSC mutation or 

rearrangement, but instead harbored a TSC2 deletion as well as a TERT promoter mutation. 

TERT promoter mutations are recurrent in multiple cancer types33. It is well recognized 

that they likely contribute to tumor biology and aggressive clinical behavior, including those 

in the gynecologic tract34–38. Whether this mutation is also characteristic for PEComas of 

uncertain malignant potential that recur merits further investigation.

By next-generation sequencing microsatellite testing, one tumor (case 12) was 

microsatellite-unstable and showed loss of MLH1 and PMS2. As there were no alterations in 

MLH1 or PMS2 by next-generation sequencing, we favor this abnormality to be secondary 

Bennett et al. Page 8

Mod Pathol. Author manuscript; available in PMC 2022 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to MLH1 promoter methylation. To our knowledge, this is the second mismatch repair 

protein-deficient/microsatellite unstable uterine PEComa39, a finding which is important to 

note and warrants further study, as such patients can be eligible for targeted therapy with 

PD-L1 inhibitors40.

In summary, we identified TSC or TFE3 alterations in most (18/19; 95%) uterine 

tumors morphologically and immunohistochemically compatible with PEComa, and 

14/17 (82%) had > 50% HMB-45 expression. We also recognized that most malignant 

PEComas harbor alterations in TP53, ATRX, or RB1, and rare PEComas are mismatch 

repair protein deficient/microsatellite unstable. Finally, detection of identical mutations 

(ATRX, ADGRV1) in a morphologically and immunohistochemically biphasic tumor that 

subsequently acquired different alterations (TSC1 mutation versus single copy deletions) in 

the different components, concludes this is a clonal neoplasm that underwent two pathways 

of evolution. Further studies are necessary to explore this finding and ultimately determine 

the relationship between PEComas and smooth muscle tumors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Pathogenic/likely pathogenic mutations (A) and copy number alterations (B) detected in 

uterine PEComas.
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Figure 2. 
Sheets of epithelioid cells (A) and fascicles of spindle cells (B). Non-cohesive epithelioid 

cells with clear to eosinophilic and granular cytoplasm. Note scattered cells with a rhabdoid 

appearance (C). Strong, but focal HMB-45 expression (D).
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Figure 3. 
Biphasic neoplasm with epithelioid (left) and spindled (right) components. Non-cohesive 

epithelioid cells forming vague nests with marked atypia, brisk mitoses, and tumor cell 

necrosis (B). Fascicles of spindle cells with moderate atypia and scattered mitoses (C).
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Figure 4. 
Proposed algorithm for evaluation of a uterine tumor with myomelanocytic differentiation 

by immunohistochemistry.
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