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Abstract

Background: Parkinson disease (PD) is characterized by the degeneration of nigrostriatal dopaminergic neurons. However,
postmortem evidence indicates that the pathology of lower brainstem regions, such as the pons and medulla, precedes
nigral involvement. Consistently, pontomedullary damage was implicated by structural and PET imaging in early PD.
Neurochemical correlates of this early pathological involvement in PD are unknown.

Methodology/Principal Finding: To map biochemical alterations in the brains of individuals with mild-moderate PD we
quantified neurochemical profiles of the pons, putamen and substantia nigra by 7 tesla (T) proton magnetic resonance
spectroscopy. Thirteen individuals with idiopathic PD (Hoehn & Yahr stage 2) and 12 age- and gender-matched healthy
volunteers participated in the study. c-Aminobutyric acid (GABA) concentrations in the pons and putamen were
significantly higher in patients (N = 11, off medications) than controls (N = 11, p,0.001 for pons and p,0.05 for putamen).
The GABA elevation was more pronounced in the pons (64%) than in the putamen (32%). No other neurochemical
differences were observed between patients and controls.

Conclusion/Significance: The GABA elevation in the putamen is consistent with prior postmortem findings in patients with
PD, as well as with in vivo observations in a rodent model of PD, while the GABA finding in the pons is novel. The more
significant GABA elevation in the pons relative to the putamen is consistent with earlier pathological involvement of the
lower brainstem. This study provides in vivo evidence for an alteration in the GABAergic tone in the lower brainstem and
striatum in early-moderate PD, which may underlie disease pathogenesis and may provide a biomarker for disease staging.
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Introduction

Parkinson disease (PD) is a progressive neurodegenerative

disorder characterized by varying combinations of rest tremor,

rigidity, bradykinesia, and postural changes. The major pathologic

marker of PD is the degeneration of nigrostriatal dopaminergic

neurons which leads to a reduction in dopamine (DA) content

within the striatum [1]. While loss of the nigrostriatal dopaminer-

gic neurons represents a hallmark of PD, the pathological

involvement in PD is not restricted to these neurons. Thus, recent

evidence indicates that caudal brainstem structures are involved in

PD pathology even before the nigrostriatal pathology [2]. Several

neuropathological studies have reported the degeneration in non-

dopaminergic pathways, including serotonin [3] and noradrena-

line neurons of the pons [4]. In line with these postmortem

findings, the locus coeruleus (LC) of the pons was reported as the

most affected extrastriatal area in PD with reduction of 18F-dopa

uptake, which is thought to reflect the degeneration of neurons in

this structure [5,6]. In addition, recent studies of patients with

early PD revealed pontomedullary atrophy by voxel based

morphometry [7] and decreased T1 in the pontomesencephalic

junction, indicating neuronal loss in this area [8].

Motivated by these histological, positron emission tomography

(PET) and MRI findings indicative of early functional and

structural changes in PD, we sought to gain further insights into

biochemical alterations in this disease that are thought to precede

structural changes. We utilized in vivo proton magnetic resonance

spectroscopy (1H MRS) that can non-invasively monitor alter-

ations in neurochemical levels and has been used to study

neurochemical alterations in PD with some success [9,10,11].

Most prior MRS investigations in PD reported few neurochem-

icals or their ratios, such as the N-acetylaspartate-to-creatine

(NAA/Cr) ratio, measured at 1.5 tesla (T) or 3T. For example,

only one prior study investigated pontine neurochemistry in PD

during life and reported no difference in the NAA/Cr ratio at 3T

between subjects with PD and controls [12]. MRS findings in

nigrostriatal structures were variable, most of them reporting no

differences in PD vs. controls [9,10,13,14,15]. On the other hand,

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e30918



MRS studies of animal models of PD at higher magnetic fields

found alterations in several metabolites such as the neurotrans-

mitters glutamate (Glu) and c-aminobutyric acid (GABA) [16,17].

If similar alterations in neurotransmitter systems are detectable in

patients, they could lead to increased understanding of PD

pathogenesis and serve as markers of progressive neuronal

dysfunction.

Challenges associated with MRS in deep brain nuclei in

humans include their location, small size and high iron content

[10]. High- and ultra-high field MRS in humans presents

additional challenges including short T2 values and limitations

on the maximum achievable transmit power. Therefore, while the

feasibility of quantifying ‘‘neurochemical profiles’’ in the human

brain at the ultra-high field of 7T was demonstrated previously

[18,19], such studies have primarily been restricted to superficial

volumes-of-interest (VOIs) in the occipital lobe. A recent study

demonstrated the feasibility of quantifying six metabolites by 7T

MRS in deep brain regions from clinical populations [20].

Subsequently, we overcame challenges associated with quantifying

neurochemical profiles of up to 15 metabolites from deep brain

regions at 7T, including those that are of interest for PD

pathology, such as the pons, the substantia nigra (SN) and the

putamen [21]. Therefore, the goal of the current study was to

investigate neurochemical alterations in these regions that are

thought to be progressively involved in PD pathology with MRS at

7T and specifically to determine if alterations in neurotransmitter

levels similar to those observed in animal models of PD would be

detectable in patients with mild-moderate PD.

Methods

Subjects
Thirteen individuals with mild–moderate PD (6 women and 7

men, 56610 years old, mean6SD) and 12 age-matched healthy

volunteers (7 women and 5 men, 5468 years old) participated in

the study after giving written informed consent using procedures

approved by the Institutional Review Board: Human Subjects

Committee of the University of Minnesota. Participants were not

demented (as assessed by the Mini Mental State Exam and

Montreal Cognitive Assessment) and mild-moderate disease

severity of patients was established with the Unified Parkinson

Disease Rating Scale (UPDRS) and Hoehn & Yahr Staging (H&Y)

(Table 1). Patients with PD were off their usual antiparkinsonian

medications for 12 hours prior to imaging.

MR Protocol
MR experiments were performed using a 7T, 90-cm horizontal

bore magnet (Magnex) equipped with a Siemens console. A 16-

channel transmit/receive transmission line array head coil was

used [22]. Images acquired with a 1-mm isotropic resolution

MPRAGE sequence (repetition time TR = 3 s, inversion time

TI = 1.5 s, echo time TE = 3.67 ms, 192 partition-encode steps,

256 phase-encode steps, 256 data points in the read direction,

nominal flip angle = 6u, total acquisition time = 6 min 58 s) were

used for the selection of the pons and putamen VOIs. Images

acquired with a transverse multislice turbo spin echo sequence

(field of view, 1806180 mm2; TR = 3 s; TE = 93 ms; flip

angle = 150u; slice thickness = 3 mm; 48 slices; one average) were

used to select the SN VOI. Destructive B1
+ interferences in the

VOI were reduced by localized B1
+ shimming as described before

[21]. Spectra were measured with a short-echo stimulated echo

acquisition mode (STEAM) sequence (TE = 8 ms, TR = 5 s,

mixing time TM = 32 ms) with variable power RF pulses with

optimized relaxation delays (VAPOR) water suppression and outer

volume saturation [21,23]. Spectra were acquired from posterior

pons (30610615 mm3, number of transients NT = 128), posterior

putamen (1268618 mm3, NT = 128) and SN (6613613 mm3,

NT = 384) (Fig. 1). Pons and putamen data were acquired in all

subjects while SN spectra were acquired from a subset of the

volunteers because this acquisition necessitated a second scanning

session and only 5 patients and 5 controls were able to participate

in a second scan. Pons and putamen data from 11 subjects in each

group were included in the final analysis because spectra from two

patients and one control volunteer were excluded in each case due

to unwanted coherences noted in the spectra. The selection of the

pons and putamen VOIs was based on MPRAGE images

reconstructed in three orthogonal planes. The boundaries of the

VOIs were traced in all slices and their orientation adjusted to

ensure that only pontine or putamenal tissue was included in the

VOI with minimal partial volume effects. The same procedure was

followed with turbo spin echo sequence images to select the SN

VOI although partial volume effects could not be fully eliminated

Table 1. Demographic and clinical characteristics of patients with PD and control subjects and spectral quality measures.

Pons Putamen Substantia Nigra

Control PD Control PD Control PD

(n = 11) (n = 11) (n = 11) (n = 11) (n = 5) (n = 5)

Male/Female 5/6 5/6 5/6 6/5 1/4 2/3

Age 52.768.7 54.469.6 54.068.0 55.969.8 54.4611.4 63.065.8

Age at PD onset NA 48.569.8 NA 50.369.4 NA 58.466.2

UPDRSa part III in ‘‘off’’ state 0.160.3 30.669.2* 0.160.3 28.268.2* 0.060.0 30.867.8*

Hoehn & Yahr Stage in ‘‘off’’ state 0.060.0 2.060.0* 0.060.0 2.060.0* 0.060.0 2.060.0*

L-Dopa equivalent dosage (mg/day) NA 380.46298.9 NA 342.66298.2 NA 350.06395.2

Linewidth (Hz) 12.963.0 13.262.3 20.567.1 19.765.9 20.864.9 24.663.9

SNRb 16.261.7 15.161.9 10.562.5 11.062.8 7.561.2 5.861.6

Values given as counts or as mean6SD, as appropriate. NA, not applicable. Statistically significant differences between patient and control groups are marked with.
*p,0.05.
aUnified Parkinson Disease Rating Scale.
bSignal-to-noise ratio of non-weighted spectra calculated by LCModel based on the NAA peak.
doi:10.1371/journal.pone.0030918.t001
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even with a ,1 mL VOI. The putamen and SN VOIs were

selected contralaterally to the more severely affected side of

patients with PD. The location of the putamenal VOI was chosen

based on the known pattern of dopamine depletion in PD.

Namely, dopamine depletion starts from the posterior putamen

and proceeds gradually to other parts of the striatum based on 18F-

dopa PET [24]. In addition, postmortem evidence demonstrates

more severe dopamine depletion in the posterior than the anterior

putamen [25,26]. The location of the pontine VOI was chosen

based on a previous voxel based morphometry study that indicated

atrophy in this region [7]. Localizer images were repeated at the

end of the measurement from each VOI to confirm negligible

gross motion of the volunteer.

Unsuppressed water spectra acquired from the same VOI were

used to remove residual eddy current effects and to reconstruct the

phased array spectra [27]. Single shot spectra were first averaged over

16 scans prior to frequency alignment to the NAA methyl signal.

Determination of anatomical structures encompassed by
the VOI

To delineate exactly which nuclei were included in our VOI,

the MPRAGE and turbo spin echo images were registered by full

affine transformations to the MNI152 space (average T1 weighted

brain image constructed from 152 normal subjects at the

Montreal Neurological Institute, Montreal, QC, Canada) using

FSL-FLIRT (Oxford Centre for Functional Magnetic Resonance

Imaging of the Brain Software (FSL, www.fmrib.ox.ac.uk/fsl)

Linear Image Registration Tool) [28]. The registration matrix

was then used to transform the VOI data onto the MNI152

space. Coordinates and brain regions encompassed by the VOIs

were identified by using Talairach Daemon Labels of FSL [29].

The identification of nuclei included in the posterior pons and SN

VOIs was based on visual comparison with schematic drawings of

gross anatomy obtained from human brainstem atlas [30,31] and

a template of LC [32].

Metabolite quantification
Metabolites were quantified using LCModel [33,34]. The

model spectra of alanine (Ala), aspartate (Asp), ascorbate/vitamin

C (Asc), glycerophosphocholine (GPC), phosphocholine (PC),

creatine (Cr), phosphocreatine (PCr), GABA, glucose (Glc),

glutamine (Gln), Glu, glutathione (GSH), myo-inositol (myo-Ins),

lactate (Lac), NAA, N-acetylaspartylglutamate (NAAG), phos-

phoethanolamine (PE), scyllo-inositol (scyllo-Ins) and taurine (Tau)

were generated based on previously reported chemical shifts and

coupling constants [35,36]. Macromolecule spectra were acquired

from the occipital cortex of 5 volunteers using an inversion

recovery sequence (TR = 2 s, TI = 0.680 s) [37]. Metabolite

concentrations were obtained relative to an unsuppressed water

spectrum acquired from the same VOI assuming a water content

of 72% for pons, 78% for putamen and 76% for substantia nigra

[38,39]. Concentrations were not corrected for T1 and T2 effects

because long TR and ultra-short TE values were used. Metabolites

quantified with Cramér-Rao lower bounds (CRLB, estimated

error of the metabolite quantification) .50% were classified as not

detected, as suggested by the LCModel manual [40]. As a

secondary filter to select reliable metabolite concentrations, only

metabolites quantified with CRLB #50% in at least half of the

spectra from a brain region were reported. This leads to a selection

of neurochemicals with average CRLB #,30% (Fig. S1). If the

correlation between two metabolites was consistently high

(correlation coefficient ,20.5) in a given region, their sum was

reported, such as Glc + Tau, NAA + NAAG (tNAA, total NAA),

Cr + PCr (tCr, total creatine), GPC + PC (tCho, total choline).

Statistical Analysis
Statistical analyses were conducted using SPSS (SPSS, Chicago,

IL). MRS data from the two groups were compared using a one-

way analysis of variance for each metabolite concentration and

CRLB in each brain region. Due to the pilot nature of the study p-

values shown have not been adjusted for multiple testing.

Relationships between clinical scores and metabolite concentra-

tions were evaluated using Pearson correlation coefficients.

Measures of spectral quality (signal-to-noise ratio, SNR, and

linewidth) and demographic and clinical characteristics (age,

UPDRS and H&Y) of the two groups were compared using the

two-tailed, unpaired student’s t-test.

Results

Patient and control groups were not different with regards to

age and gender (Table 1). All patients had late onset, idiopathic

PD and were at H&Y stage 2, considered to be mild-to-moderate

disease severity. All but one of the patients were taking L-Dopa or

other antiparkinsonian medications that were held for 12 hours

prior to the MR scan.

Figure 1. 1H MR spectra obtained in one patient with PD with
STEAM (TR = 5 s, TE = 8 ms) from three VOIs. Processing: Recon-
struction of single scan free induction decays (FIDs) from phased array
data, frequency and phase correction of FID arrays, FID summation,
correction for residual eddy current effects, Gaussian multiplication
(s= 0.1 s), Fourier Transform (FT), zero-order phase correction. Positions
of the VOIs are shown on T1 – weighted images for pons and putamen
and on a T2– weighted image for substantia nigra (SN). tNAA, total N-
acetylaspartate; tCho, total choline; tCr, total creatine; myo-Ins, myo-
inositol.
doi:10.1371/journal.pone.0030918.g001
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Figure 1 shows representative spectra obtained from the 3 brain

regions from a patient with PD. A VOI analysis was performed by

transforming each subject’s anatomical images to MNI152 space.

This approach normalizes brain position and shape and limits

variability of regions due to head size and position. Then, the

boundaries of VOIs were traced in the MNI space and the brain

regions encompassed by the VOIs were identified (Table 2). This

analysis showed that multiple noradrenergic and serotonergic

nuclei were included in the pons VOI and both pars compacta and

pars reticulata were included in the SN VOI.

Artifact free spectra with good SNR and spectral resolution and

excellent water suppression were obtained in all brain regions for

both patients and controls. The full width at half maximum and

SNR values determined by LCModel were not different between

patients and controls for any VOI (p.0.05, Table 1), therefore

spectral quality in patients with PD and controls was similar.

Spectral linewidths were broader in the putamen and SN than

those in the pons, indicative of the iron content in these regions

(Table 1). The spectral patterns were characteristic of each of the

brain regions; note for example the ratio of the creatine and

choline peaks in the pons vs. the putamen and SN spectra (Fig. 1).

This spectral quality enabled the quantification of a neuro-

chemical profile consisting of 11 metabolites in the pons and

putamen and 7 metabolites in the SN (Fig. 2a). The neurochemical

profiles from the SN did not show significant differences between

patients and controls. On the other hand, higher GABA

concentrations were detected in the pons (p,0.001,

1.660.4 mmol/g vs. 1.060.2 mmol/g) and putamen (p,0.05,

2.160.4 mmol/g vs. 1.660.2 mmol/g) in patients with PD relative

to controls (Fig. 3). No group differences were observed for the

other metabolites (Fig. 2a). To ensure that the quality of individual

spectra was sufficient to accurately assess these trends, averaged

spectra from the patient and control groups were quantified

identically and showed the same trends (Fig. 2b). Consistent with

higher GABA concentration in patients, the CRLB of GABA were

lower both in the pons (p,0.001, 20.165.0 vs. 32.166.8%) and

putamen (p,0.07, 21.265.9 vs. 27.466.1%) in patients with PD

relative to controls (Fig. S1).

There were no significant relationships between the GABA

concentrations and either the UPDRS scores (total and part III) or

H&Y scores for any of the VOIs.

Discussion

Here using ultra-high field MRS we demonstrate elevated

GABA levels in the pons and putamen of patients with mild-

moderate PD as compared to age- and gender-matched healthy

controls. The striatal GABA elevation is consistent with postmor-

tem findings in patients with PD [25] and with in vivo observations

in an animal model of PD [16,17]. The pontine GABA finding is

novel. Furthermore, the GABA elevation was greater in the pons

(64%) than in the putamen (32%). Data obtained from the SN in a

subset of the volunteers revealed no group differences.

Since Braak suggested a caudorostral progression of a-synuclein

pathology in PD starting in the medulla oblongata [2,41], only one

study has investigated the neurochemistry of the pons in PD with

MRS [12]. Ratios of NAA, creatine and choline were investigated

in this study, and no differences were seen between patients and

controls. Nonetheless, neuronal loss in the pons including the

noradrenergic neurons of the LC [4] and the serotonergic neurons

of the raphe nucleus [3] is a well documented postmortem finding.

Additionally, neuronal loss in the pons has been indicated by

several in vivo MRI studies as a reduction in the neuromelanin-

related signal localized to the LC [42] and atrophy of the pons/

medulla detected by voxel based morphometry [7]. Another recent

MRI study reported decreased T1 in the pontomesencephalic

junction [8] and concluded that gray matter loss was likely the

major determinant of this T1 decrease. Thus, a neurochemical

abnormality was expected in the caudorostral extent of the pons.

The most likely neurochemical alteration to indicate neuronal loss

would be a lower NAA level [43], which we did not observe, likely

due to partial volume effects. On the other hand, we did observe a

robust GABA elevation, indicating that this neurochemical

difference was more widespread within the pontine VOI. The

pontine VOI in this study encompassed some non-dopaminergic

brainstem nuclei, such as the right and left LC, the reticular

formation and the raphe nuclei (Table 2). It remains to be

determined if the GABA abnormality relates to changes in these

nuclei. Most likely this change is a result of alterations in several

classes of neurons of the brainstem. For instance, others have

shown a reduction in 18F-dopa uptake in the LC region in patients

with more advanced PD (H&Y 2–3) indicating a progressive loss of

noradrenergic terminal function [5,6,44]. In addition, a reduction

in median raphe serotonin 5-hydroxytryptamine receptor 1A

binding in PD has been reported [45]. Thus an elevated GABA

tone can plausibly contribute to a functional deficit in the LC and

raphe nuclei, which are under GABAergic regulation. Therefore,

elevated GABA levels in GABAergic interneurons and terminals

present in these nuclei [46,47] may suppress the activity of the

noradrenergic and serotonergic neurons that project to the SN.

Consequently this would affect the activity of the nigral

dopaminergic neurons that project to the striatum (Fig. 4). Taken

together, these data suggest that altered GABAergic regulation of

non-dopaminergic neurons of the pons may be relevant to PD.

Regarding our putamenal findings, postmortem studies of

individuals with advanced disease demonstrated elevated striatal

GABA levels, particularly in the putamen [25]. A negative

correlation between GABA and DA was observed in the putamen

in this postmortem work; suggesting that the striatal GABA

elevation was associated with dopaminergic terminal loss [25,48].

In line with the postmortem findings in patients, a significant

increase in GABA concentration was shown in the striatum of the

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse

model of PD [16,17]. The involvement of striatal GABAergic

neurotransmission in PD was further evaluated by quantification

of messenger RNA coding for the 67 kDa isoform of glutamic acid

Table 2. The anatomical structures and nuclei encompassed
by the three VOIs identified using Talairach Daemon Labels of
FSL.

VOI Brain Regions

Pons Locus Coeruleus (Noradrenergic center)

Raphe Nuclei (Serotonergic center)

Medial Parabrachial Nucleus (Noradrenergic center)

Pontine Reticular formation

Abducens Nucleus

Nucleus Reticularis Centralis

Facial Nucleus

Putamen Posterior Putamen

Substantia Nigra Pars Compacta

Pars Reticulata

Ventral Tegmental Area

doi:10.1371/journal.pone.0030918.t002
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decarboxylase (GAD67), one of the two GABA synthesizing

enzymes. A significant increase in GAD67 mRNA levels was

measured in the putamen of MPTP-treated monkeys and rats

relative to controls [49,50], consistent with elevated GABA

concentrations in this region. Interestingly, manganese-exposed

workers who are at high risk for PD also show significantly higher

GABA levels than controls in a brain region containing the

thalamus, putamen and globus pallidus [51]. In the current study

we showed that elevated striatal GABA is present in vivo in patients

with mild-moderate PD. This GABA elevation in the putamen

likely stems from striatal GABAergic neurons, rather than

GABAergic afferents, because the primary afferents to the striatum

are glutamatergic and dopaminergic, while the predominant cell

type in the striatum is the medium sized GABAergic spiny

neurons. Animal models of PD have shown that experimental

lesions of the dopaminergic nigrostriatal pathway result in elevated

striatal GABA content [52], which may explain the GABA

elevation observed in the putamen in PD. We did not observe a

relationship between GABA levels and disease severity based on

clinical measures. The lack of a correlation between GABA levels

and clinical scores is likely due to the similarity of the clinical stage

of our patients, i.e. a small dynamic range (all were at H&Y stage

Figure 2. Neurochemical profiles determined by LCModel fitting of (a) individual and (b) averaged spectra from the 3 regions-of-
interest in patients with PD and healthy controls. Only metabolites quantified with Cramér-Rao lower bounds (CRLB) #50% in at least half of
the spectra from a brain region were included in the profiles. Metabolites that were significantly different between the two groups are marked with
*p,0.05, **p,0.001 in (a). Error-bars: inter-subject SD in (a) and CRLB expressed as mmol/g in (b). Asc, ascorbate; GABA, c-aminobutyric acid; Gln,
glutamine; Glu, glutamate; GSH, glutathione; myo-Ins, myo-inositol; scyllo-Ins, scyllo-inositol; tNAA, total N-acetylaspartate; tCho, total choline; tCr,
total creatine; Glc, glucose; Tau, taurine.
doi:10.1371/journal.pone.0030918.g002
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2), and awaits further investigations with larger groups of patients

in a wider range of disease stages. It remains possible that the

elevated GABA concentration in the posterior putamen is

secondary to a loss of nigrostriatal DA terminals, and therefore

may provide complimentary information to the striatal DA

depletion detectable by PET scanning [53]. Future cross-sectional

and longitudinal investigations of DA by PET and GABA by MRS

in parallel could aid in monitoring disease progression. In

addition, evaluation of individuals scanned on and off medication

may help clarify if the GABA elevation is secondary to DA loss.

While we scanned subjects off medications for 12 hours,

intermediate- and long-lasting effects of antiparkinsonian medica-

tions on the current findings cannot be excluded. Thus medication

effects can be limited by studying drug-naı̈ve patients. Prospective
1H MRS studies to investigate the consequences of striatal GABA

alterations in other regions could also provide further insight.

Specifically, investigations of GABA concentrations in the medial

pallidal segment and motor thalamic nuclei would be critical since

these regions play an important role regarding the outputs of the

basal ganglia to the cerebral cortex.

The main limitation of our study is the small sample size. This

may have prevented the detection of neurochemical alterations in

the SN. Alternatively, the very small size of the VOI (,1 mL)

necessitated by the anatomy of the SN (resulting in low SNR), and

high iron content (causing broader intrinsic linewidths, Fig. 1,

Table 1) may have obscured neurochemical differences (note the

higher standard deviations in SN vs. putamen and pons in Fig. 2a).

Similarly, in a prior study of the SN at 4T, we had detected trends,

but no statistically significant neurochemical differences, between

10 patients with mild-moderate PD vs. 11 age- and gender-

matched healthy controls [10]. The SN VOI utilized in the

current study was ,half of the size of the VOI used in our prior

study [10] and also obliqued to better conform with nigral

anatomy.

We reported raw p-values here due to the pilot nature of the

study, although note that the GABA difference in the pons remains

significant after a strict Bonferroni correction for the multiple

metabolites measured (significance at p,0.05/11 = 0.0045) and

therefore the finding is robust. The difference in the putamen was

less significant, which may reflect the earlier involvement of the

pons in PD pathogenesis. Alternatively, the CRLB cut-off (CRLB

#50%) we used to select reliable concentrations may have biased

the GABA concentration estimates of controls in the putamen. In

the putamen, seven of eleven control subjects’ GABA concentra-

tions met our reliable quantification criterion and four subjects’

GABA concentrations had CLRB in the range of 50–55% and

hence were excluded from the analyses. These excluded GABA

concentrations were around ,1 mmol/g and their inclusion would

lower the average GABA concentration in the control group and

increase the significance level of the GABA difference in putamen

(p,0.001). On the other hand, a larger GABA difference in the

pons (52%) vs. the putamen (20%) was supported by evaluation of

averaged spectra (Fig. 2b) that overcomes issues with insufficient

SNR in spectra from individuals.

Recent developments involving editing techniques have allowed

reliable in vivo measurements of GABA without other overlapping

resonances in the human brain [54,55,56]. In this study, we chose

to utilize unedited spectroscopy to quantify a neurochemical

Figure 3. GABA concentrations in pons and putamen by
subject groups, together with means (boxes) and standard
deviations (error bars).
doi:10.1371/journal.pone.0030918.g003

Figure 4. Proposed changes in pontine-nigral-striatal pathways
in PD. Enhanced pontine GABAergic activity (wider arrows) onto
serotonergic (5HT) locus ceruleus (LC) and/or noradrenergic (NE) raphe
neurons could result in a reduction in excitatory outflow (dashed
arrows) to substantia nigral neurons. As a result, this may decrease
nigral dopaminergic activity to the striatum (indicated by thin dashed
arrow).
doi:10.1371/journal.pone.0030918.g004
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profile and to simultaneously assess potential differences in both

neuronal and glial markers, such as NAA and myo-inositol,

respectively, and in neurotransmitter levels, such as glutamate

and GABA. Based on the findings of the current study, future

studies can utilize edited spectroscopy to focus on measurements of

GABA in PD. However, edited MRS measurements of GABA

require larger VOI than those utilized here because of longer echo

times and consequently lower SNR. Also, edited GABA

measurements need to take potential differences in T2 between

patients and controls into account when interpreting concentra-

tion differences. Such potential T2 differences are negligible at the

ultra-short echo times used in the current study. While T2

differences between patients with PD and controls are unlikely for

the pons and putamen based on similar linewidths we observed

(Table 1), they could potentially confound the quantification of

GABA concentration using edited spectroscopy in the SN based

on the linewidths we observed in this VOI. Consistently, PD-

dependent iron deposition in SN has shown a strong correlation

with T2 shortening in this region [57].

In conclusion, the present study demonstrated an elevation in

pontine and putamenal GABA levels in mild-moderate PD that

may underlie aspects of disease pathogenesis and pathophysiology.

Whether these are primary or secondary alterations and the

impact of treatment on them remain to be determined. These

novel findings suggest that further studies with 1H MRS may aid in

assessing pathogenetic theories of PD and in disease staging

together with other noninvasive neuroimaging modalities.

Supporting Information

Figure S1 Cramér-Rao lower bounds (CRLB) from the 3

regions-of-interest in patients with PD and healthy controls. Only

metabolites quantified with CRLB #50% in at least half of the

spectra from a brain region were included. CRLB of metabolites

that were significantly different or showed a trend between the two

groups are marked with *p,0.07, **p,0.001. Error-bars: inter-

subject SD. Asc, ascorbate; GABA, c-aminobutyric acid; Gln,

glutamine; Glu, glutamate; GSH, glutathione; myo-Ins, myo-

inositol; scyllo-Ins, scyllo-inositol; tNAA, total N-acetylaspartate;

tCho, total choline; tCr, total creatine; Glc, glucose; Tau, taurine.

(TIF)
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NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46: 451–456.

20. van den Bogaard SJ, Dumas EM, Teeuwisse WM, Kan HE, Webb A, et al.

(2011) Exploratory 7-Tesla magnetic resonance spectroscopy in Huntington’s

disease provides in vivo evidence for impaired energy metabolism. J Neurol;doi:

10.1007/s00415-00011-06099-00415.

21. Emir UE, Auerbach EJ, Van De Moortele PF, Marjanska M, Uğurbil K, et al.
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