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Abstract
The	aim	of	this	study	was	to	develop	a	multistate	model	for	overall	survival	(OS)	
analysis,	based	on	parametric	hazard	 functions	and	combined	with	an	 investi-
gation	of	predictors	derived	from	a	longitudinal	 tumor	size	model	on	the	tran-
sition	 hazards.	 Different	 states	 –		 stable	 disease,	 tumor	 response,	 progression,	
second-	line	treatment,	and	death	following	docetaxel	treatment	initiation	(stable	
state)	in	patients	with	HER2-	negative	breast	cancer	(n	=	183)	were	used	in	model	
building.	Past	changes	in	tumor	size	prospectively	predicts	the	probability	of	state	
changes.	The	hazard	of	death	after	progression	was	lower	for	subjects	who	had	
longer	treatment	response	(i.e.,	longer	time-	to-	progression).	Young	age	increased	
the	 probability	 of	 receiving	 second-	line	 treatment.	 The	 developed	 multistate	
model	adequately	described	the	transitions	between	different	states	and	jointly	
the	overall	event	and	survival	data.	The	multistate	model	allows	for	simultaneous	
estimation	of	transition	rates	along	with	their	tumor	model	derived	metrics.	The	
metrics	were	evaluated	in	a	prospective	manner	so	not	to	cause	immortal	time	
bias.	Investigation	of	predictors	and	characterization	of	the	time	to	develop	re-
sponse,	the	duration	of	response,	the	progression-	free	survival,	and	the	OS	can	be	
performed	in	a	single	multistate	modeling	exercise.	This	modeling	approach	can	
be	applied	to	other	cancer	types	and	therapies	to	provide	a	better	understanding	
of	efficacy	of	drug	and	characterizing	different	states,	 thereby	 facilitating	early	
clinical	interventions	to	improve	anticancer	therapy.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
In	traditional	overall	survival	(OS)	analysis,	a	single	hazard	function	is	applied	to	
the	survival	data	in	the	presence	of	competing	events,	such	as	death	due	to	non-	
cancer	causes	and	censoring.	This	could	lead	to	a	biased	estimation	of	the	hazard.	
Moreover,	immortal	time	bias	originating	from	a	failure	to	adequately	account	for	
time-	dependent	predictors	in	the	OS	model	can	be	a	major	issue.
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INTRODUCTION

Modeling	of	longitudinal	tumor	size	(TS)	data	to	establish	
exposure-	response-	outcome	 relationships	 has	 been	 in-
creasingly	applied	to	facilitate	trial	design	and	the	go/no-	
go	decision	making	in	oncology	clinical	trials.1,2	Time	to	
event	(TTE)	models	allow	investigation	of	the	association	
between	 various	 covariates	 and	 long-	term	 clinical	 end	
points,	such	as	progression-	free	survival	(PFS)	and	over-
all	survival	(OS).	The	developed	TS-	TTE	models	have	the	
potential	 to	predict	PFS/OS	of	a	similar	population	(i.e.,	
same	indication	and	end	points),	for	example,	utilizing	re-
sults	from	phase	II,	and	simulating	event	distributions	in	
phase	III	trials.	In	a	randomized	clinical	trial,	the	efficacy	
of	new	molecule	 is	characterized	 into	different	response	
categories	by	the	response	evaluation	criteria	in	solid	tu-
mors	 (RECIST),3,4	which	 is	based	on	 the	change	 in	sum	
of	 longest	diameters	 (SLDs).	The	TS	 is	 typically	only	re-
corded	until	disease	progression	because	later	to	that,	pa-
tients	receive	a	different	treatment	or	a	sequential	line	of	
cancer	therapy.	The	survival	data	comprise,	however,	the	
full	duration	of	the	time	from	enrollment	into	the	clinical	
trial	 to	 the	event	of	death	or	 censor	 (end	of	 trial	or	 loss	
of	 follow-	up).	 Therefore,	 the	 existing	 TTE	 modeling	 ap-
proach	where	estimation	of	a	single	survival	 function	to	
OS	data	has	problems.	The	model	predicted	tumor	size	(or	

biomarker)	is	typically	extrapolated	until	OS	time	during	
survival	 analysis,5–	7	 leading	 to	 not	 accounting	 the	 effect	
of	the	sequential	therapy.	Immortal	time	bias	originating	
from	a	failure	to	adequately	account	for	time-	dependent	
covariates	in	the	TTE	model	can	be	a	major	issue.	For	ex-
ample,	using	“depth	of	tumor	response”	as	a	covariate	on	
survival	may	introduce	bias	as	a	substantial	decrease	takes	
considerable	 time	 to	achieve.8	Thus,	only	 the	 individual	
surviving	for	considerable	time	will	have	a	large	decrease	
in	 TS.	 Multistate	 models	 could	 be	 a	 way	 of	 addressing	
these	issues	and	describe	the	hazard	over	time	correctly.

In	 traditional	 survival	 analysis,	 a	 single	 hazard	 func-
tion	is	applied	to	the	survival	data	in	the	presence	of	com-
peting	 events,	 such	 as	 death	 due	 to	 non-	cancer	 causes	
and	 censoring.	 This	 could	 lead	 to	 a	 biased	 estimation	
of	 the	 hazard.	 Moreover,	 the	 intermediate	 events	 prior	
to	 OS	 time	 might	 contain	 accompanying	 information	
on	 disease	 status	 and	 hazard	 of	 death,	 for	 example,	 the	
RECIST	 assessment	 of	 progressive	 disease	 from	 stable	
disease/partial	 response	may	 indicate	an	 increase	 in	 the	
risk	of	death.	Multistate	models	have	been	recommended	
and	has	been	increasingly	used	for	such	data.9–	11	For	the	
analysis	of	survival	data,	Beyer	et	al.12	developed	a	multi-
state	model,	where	the	transition	hazards	of	intermediate	
events	were	modeled	using	semiparametric	models	with	a	
treatment	arm	as	a	binary	covariate.	The	implementation	

WHAT QUESTION DID THIS STUDY ADDRESS?
The	intermediate	events	prior	to	OS	time	might	contain	accompanying	informa-
tion	on	disease	status	and	hazard	of	death.	A	multistate	model	could	be	a	way	
of	characterizing	 the	 intermediate	events	and	evaluation	of	predictors	 that	are	
specific	to	the	transition,	and	jointly	describing	the	survival	data.	Different	states	
–		stable	disease,	tumor	response,	progression,	second-	line	treatment,	and	death	
following	docetaxel	treatment	in	patients	with	HER2-	negative	breast	cancer	were	
used	in	model	building.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The	developed	multistate	model	operated	by	parametric	hazard	functions,	esti-
mates	the	transition	hazards	of	intermediate	events,	and	allows	investigation	of	
predictors	derived	from	a	longitudinal	tumor	size	model.	Past	changes	in	tumor	
size	prospectively	predicts	 the	probability	of	 state	changes	 the	hazard	of	death	
after	progression	was	lower	for	subjects	who	had	longer	time-	to-	progression.	The	
developed	multistate	model	adequately	described	the	transitions	between	differ-
ent	states	and	jointly	the	survival	data.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Investigation	of	predictors	and	characterization	of	the	time	to	develop	response,	
the	duration	of	response,	 the	progression-	free	survival,	and	the	OS	can	be	per-
formed	in	a	single	multistate	modeling	exercise.	This	modeling	approach	can	be	
applied	to	other	cancer	types	and	therapies	to	provide	a	better	understanding	of	
efficacy	of	drug	and	characterizing	different	states,	thereby	facilitating	early	clini-
cal	interventions	to	improve	anticancer	therapy.
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of	multistate	models	in	a	nonlinear	mixed	effect	(NLME)	
modeling	framework	would	allow	NLME-	derived	covari-
ate	evaluation.13	NLME	implementation	could	also	allow	
for	random	effects14	or	mixture	models	to	be	incorporated	
into	 the	 description	 of	 the	 data.	This	 investigation	 gives	
an	 example	 of	 the	 latter.	 In	 an	 NLME	 framework,	 the	
tumor	 model	 derived	 predictors	 can	 be	 evaluated	 to	 be	
transition-	dependent,	and	could	more	reliably	predict	dif-
ferent	states	(for	example,	time	to	response	and	duration	
of	response)	and	survival.	The	aim	of	this	study	was	to	de-
velop	a	multistate	model	operated	by	parametric	hazard	
functions	using	data	from	docetaxel	treated	patients	with	
HER2-	negative	 breast	 cancer,	 while	 allowing	 investiga-
tion	of	predictors	derived	from	the	longitudinal	TS	model	
on	the	transition	hazards.

METHODS

Data

The	tumor	data	(SLD)	were	available	from	the	docetaxel	
(control)	 arm	 of	 the	 phase	 III	 AVADO	 trial	 where	 the	
efficacy	and	safety	of	combining	bevacizumab	with	doc-
etaxel	were	 investigated	 in	patients	with	HER2-	negative	
metastatic	 breast	 cancer	 (ClinicalTrials.gov	 Identifier:	
NCT00333775).15	In	the	docetaxel	arm	(n = 241),	three	pa-
tients	did	not	receive	therapy,	21	patients	either	received	
one	dose	of	bevacizumab	(n = 7)	or	started	bevacizumab	
before	disease	progression	(n = 14)	and	34	patients	did	not	
have	a	measurable	 target	 lesion	at	baseline.15	Therefore,	
these	58	patients	were	not	included	in	the	multistate	mod-
eling,	hence,	the	study	data	consisted	of	183	patients	with	
HER2-	negative	 metastatic	 breast	 cancer.	 The	 subjects	
were	 women	 with	 a	 median	 age	 of	 55  years	 (range	 29–	
83 years).	Patients	received	docetaxel	100 mg/m2	infused	
over	1 h	on	day	1	of	each	3-	week	cycle.	The	SLD	were	eval-
uated	 from	 computed	 tomography	 scans	 every	 9  weeks	
during	the	first	36 weeks	and	thereafter	every	12 weeks;	
median	follow-	up	was	32 weeks	(range	6–	160 weeks).	The	
TS	response	was	evaluated	according	to	RECIST	version	
1.03	 (i.e.,	 up	 to	 10	 lesions/patient	 were	 followed	 during	
the	trial).	Because	individual	lesion	and	metastatic	organ	
data	were	available,	the	tumor	SLD	were	re-	created	as	per	
the	RECIST	version	1.1	criteria,4	which	consider	measure-
ments	of	up	to	five	lesions/individual	but	not	more	than	
two	 lesions/organ.	 The	 AVADO	 trial	 was	 conducted	 ac-
cording	to	the	Declaration	of	Helsinki,	the	Good	Clinical	
Practice	 guidelines	 of	 the	 International	 Conference	 on	
Harmonization,	and	the	laws	and	regulations	of	the	coun-
tries	involved.	The	protocol	was	approved	by	local	ethics	
committees	 and	 written	 informed	 consent	 was	 obtained	
from	all	patients	before	the	screening.

Tumor model

A	 tumor	 growth	 inhibition	 (TGI)	 model	 was	 applied	 to	
describe	the	change	in	SLD	over	time.16	In	this	model,	the	
tumor	 was	 best	 described	 to	 grow	 exponentially	 with	 a	
first-	order	rate	constant	(kGROW).	The	tumor	size	shrink-
age	during	treatment	was	explained	by	drug	exposure,	the	
drug-	specific	cell	kill	rate	constant	(kSHR),	and	the	emer-
gence	of	resistance	to	the	treatment	(LAMBDA)	(Equation	
1).	As	docetaxel	concentrations	were	not	available,	a	pop-
ulation	 K-	pharmacodynamic	 (PD)	 modeling17	 approach	
(Equation	 2),	 where	 the	 K-	PD	 parameter	 represents	 the	
elimination	rate	constant	in	K-	PD	model,	was	used	along	
with	 the	 TGI	 model	 to	 describe	 the	 docetaxel	 exposure	
over	 time	 (docetaxel (t) ).	 Interindividual	 variability	 was	
tested	on	all	parameters.

where	 IBASE,	 model	 estimated	 baseline	 SLD	 for	 individ-
ual	I;	TS(t),	tumor	time	course;	DOSE,	the	docetaxel	dose,	
kGROW	is	the	tumor	growth	rate;	kSHR	cell	kill	rate	constant;	
LAMBDA,	resistance	parameter;	docetaxel (t),	docetaxel	ex-
posure	over	time;	K-	PD,	the	elimination	rate	constant.

Multistate model

Depending	on	the	patient-	level	tumor	response	and	OS	
event	data,	subjects	had	the	possibility	to	transfer	among	
five	 different	 states.	 The	 states	 considered	 were	 stable	
disease	(S1,	time = 0 state),	tumor	response	(S2,	>= 30%	
decrease	in	SLD	from	baseline),	progressive	disease	(S3,	
>=  20%	 increase	 in	 SLD	 from	 tumor	 nadir	 or	 appear-
ance	of	new	lesions	or	progression	of	nontarget	lesions),	
initiated	 second-	line	 treatment	 (S4)	 and	 death	 (S5).	 At	
baseline,	all	individuals	were	assigned	in	the	stable	dis-
ease	 state	 and	 during	 the	 study	 and	 follow-	up	 period,	
after	progression	 they	could	 transfer	 to	other	 states,	as	
shown	in	Figure 1.	In	contrast	to	RECIST	response	eval-
uation,	in	multistate	model	if	a	tumor	response	(>=	30%	
decrease	 in	 SLD	 from	 baseline,	 stable	→response)	 was	
observed,	 then	 the	 subject	 cannot	 move	 back	 to	 stable	
state	(response	→stable)	even	if	it	is	later	observed	that	
the	%decrease	in	SLD	from	baseline	is	less	than	30%,	or	
the	%increase	in	SLD	from	baseline	is	less	than	20%.

(1)

TS0= IBASE
dTS

dt
=kGROW ⋅TS (t) −kSHR ⋅Docetaxel (t) ⋅e

−LAMBDA⋅t
⋅TS (t)

(2)
Docetaxel0=DOSE

dDocetaxel

dt
= −K−PD ⋅Docetaxel (t)
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A	 multistate	 model,13	 where	 the	 transition	 rates	 (�ij)	
between	each	state	were	estimated,	was	developed	to	de-
scribe	the	observed	events	(Equations	3–	7).	The	transition	
intensity	(�)	was	evaluated	with	different	hazard	distribu-
tions	(Exponential	and	Weibull)	and	selected	based	on	the	
likelihood	ratio	test.

Where	 Si-	j,	 different	 states;	 �ij	 transition	 intensities	
between	 state	 i	 (Si)	 and	 state	 j	 (Sj)	 and	 Si-	j0,	 the	 initial	
conditions	for	the	state.

The	hazard	of	death	from	second-	line	treatment	(�45)	
was	set	to	be	the	same	as	the	hazard	for	progression	to	death	
(�45 = �35)	if	it	was	not	statistically	different	from	�35.	A	
mixture	 model	 with	 two	 subpopulations	 was	 evaluated	
on	�34,	where	 the	 first	population	received	second-	line	

treatment	after	disease	progression	and	the	second	pop-
ulation	did	not	receive	second-	line	therapy	(i.e.,	�34 = 0)

.	The	investigated	predictors	on	transition	rates	included	
baseline	 variables:	 age,	 Eastern	 Cooperative	 Oncology	
Group	 (ECOG)	 score	 at	 enrollment,	 TS,	 total	 number	
of	 lesions,	 number	 of	 metastatic	 sites	 involved,	 as	 well	
as	post-	baseline	model-	based	tumor	dynamic	estimates:	
relative	change	in	SLD	from	baseline	to	the	present	SLD,	
relative	change	 in	SLD	between	two	previous	measure-
ments	(dSLD),	relative	change	in	SLD	from	tumor	nadir	
(defined	 as	 the	 lowest	 SLD	 up	 until	 the	 present	 time	
point)	 to	 the	 present	 SLD,	 tumor	 growth	 rate	

(
kGROW

)
,	

and	 rate	 of	 appearance	 of	 resistance	 (LAMBDA).	 Both	
past-	observed	and	model-	predicted	tumor	dynamic	met-
rics	 at	 time	 of	 transitions	 were	 evaluated	 as	 predictors	
of	transition	rate.	Additionally,	reason(s)	of	disease	pro-
gression	(>=	20%	increase	 in	SLD	from	tumor	nadir	or	
appearance	 of	 new	 lesions	 or	 progression	 of	 nontarget	
lesions),	number	of	new	lesions,	and	time	to	progression	
were	 investigated	 on	�35.	 The	 predictors	 were	 investi-
gated	using	proportional	hazards	model	with	a	baseline	
transition	rate	of	�ij;	for	example,	predictor	X 	on	transi-
tion	rate	stable	 to	decrease	 (λ12)	 for	 individual	 i	would	
be:

where	Xi	is	the	value	of	Xfor	individual	I;	Xmedian	is	the	pop-
ulation	median	value	of	X;	�X	is	the	coefficient	of	the	effect	
of	X	on	λ12,	and	e�x	represents	the	hazard	ratio	associated	
with	covariate	X.

In	traditional	survival	analysis,	the	predictors	have	most	
often	been	evaluated	sequentially	but	in	some	cases	as	a	
joint	model.18	The	metrics	derived	from	a	tumor	model,	for	
example,	tumor	growth	rate	(kGROW)	or	time-	to-	regrowth	

(3)
S10=1

�S1

�t
= −S1 ⋅ (�12+�13+�15)

(4)
S20=0

�S2

�t
=S1 ⋅�12−S2 ⋅�23−S2 ⋅�25

(5)
S30=0

�S3

�t
=S1 ⋅�13+S2 ⋅�23−S3 ⋅�34−S3 ⋅�35

(6)
S40=0

�S4

�t
=S3 ⋅�34−S4 ⋅�45

(7)
S50=0

�S5

�t
=S1 ⋅�15+S2 ⋅�25+S3 ⋅�35+S4 ⋅�45

(8)�12i = �12 ⋅ e(�X ⋅ (Xi−Xmedian))

F I G U R E  1  The	multistate	model	describing	different	states	in	patients	with	HER2-	negative	breast	cancer	treated	with	docetaxel.	The	
�ij	represents	the	transition	intensities	between	each	state	and	the	n	along	with	�ij	is	the	number	of	observed	transitions	from	state	i	to	
state	j.	The	n	along	with	different	states	are	the	number	of	clinical	outcomes	at	the	end	of	study.	The	metric	in	the	dotted	box	indicating	the	
associated	predictor	of	the	transition	intensities	in	the	final	multistate	model.	relSLD,	relative	change	from	baseline;	dSLD,	change	in	SLD	
between	previous	two	measurements;	TTP,	time	to	progression;	Age,	age	in	years
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(TTG),	has	been	computed	based	on	all	 collected	 tumor	
data.	In	a	sequential	or	joint	model,	the	computed	kGROW	
or	TTG	information	is	treated	as	baseline	covariate	(i.e.,	as	
it	is	available	at	time	0).	This	does	not	recognize	that	data	
relevant	 for	 its	 estimation	 largely	 is	 obtained	 after	 start	
of	 therapy.	 Whereas	 joint	 models	 with	 estimated	 time-	
varying	 predictors	 (e.g.,	 tumor	 time-	course	 [SLDt])	 to	
some	extent	account	for	the	immortal	time	bias,	they	are	
typically	estimated	based	on	all	the	tumor	data,	including	
the	future	tumor	data.	Thus,	a	 tumor-	OS	joint	modeling	
does	not	completely	eliminate	such	bias.19	In	the	current	
analysis,	 the	 post-	baseline	 time-	varying	 predictors	 were	
investigated	in	a	way	that	 the	future	tumor	observations	
would	not	influence	the	present	predictions	of	transition	
rates.	Thus,	in	contrast	to	the	standard	use	of	population	
pharmacokinetic	(PK)PD	models	where	all	data	contrib-
ute	 to	 defining	 individual	 parameters,	 only	 observations	
up	to	time	t	was	used	to	make	predictions	beyond	time	t	for	
each	individual	parameter.	As	a	consequence,	the	tumor	
dynamic	model	parameters	for	an	individual	will	change	
over	time	as	more	observations	become	available.	The	der-
ivation	of	the	model	predicted	metrics	on-	fly	using	a	joint	
tumor-	multistate	model	or	using	 the	PPP&D	approach18	
could	not	be	applied	here,	as	the	estimates	are	based	on	all	
available	data.	The	proseval	tool	from	PSN20	was	used	
for	 deriving	 tumor	 dynamic	 model	 parameters	 (kGROW,		
LAMBDA,	 and	 model	 predicted	 tumor	 change)	 with	
successive	 increase	 in	 number	 of	 tumor	 measurements	
and	these	metrics	were	available	to	the	multistate	model	
through	the	input	dataset.

Model development and evaluation

Population	 models	 were	 developed	 using	 the	 nonlin-
ear	 mixed-	effect	 modeling	 (NONMEN)	 software	 (ver-
sion	7.4.4).21	Model	development	was	assisted	by	Pirana	
(version	 2.9.9)	 for	 run	 management,	 the	 Perl-	speaks-	
NONMEM	 (PsN)	 toolkit	 for	 handling	 NONMEM	 run	
commands,	R	(version	3.6),	and	Xpose	(version	4.1)	for	
model	diagnostics	and	graphical	analysis.22	The	objec-
tive	function	value	(OFV;	−2	log-	likelihood)	and	graph-
ical	 diagnostics	 were	 used	 in	 the	 evaluation	 of	 model	
performance.	A	randomization	test	(randtest	tool	in	
PsN20)	was	performed	to	determine	actual	significance	
levels	and	an	OFV	decrease	of	5.17	(p < 0.05)	was	con-
sidered	as	significant	for	the	addition	of	one	parameter	
(1  degree	 of	 freedom)	 while	 testing	 predictors	 in	 the	
multistate	model.	An	increase	in	OFV	of	18.9	(p < 0.001)	
was	used	while	testing	�45 = �35	(decrease	in	1 degree	of	
freedom).	 Parameter	 uncertainties	 were	 derived	 using	
the	sampling	importance	resampling	(SIR)23	tool	in	PsN	
(tumor	 model)	 or	 R	 matrix	 (multistate	 model).	 Visual	

predictive	 checks	 (VPCs)	 for	 the	 tumor	 model	 and	
Kaplan–	Meier	VPCs	for	the	multistate	model	were	used	
for	evaluating	the	predictive	performance	of	the	models.	
In	the	tumor	model	VPC,	the	simulated	tumor	data	that	
is	greater	 than	20%	 increase	 in	SLD	 from	tumor	nadir	
along	with	at	least	5 mm	absolute	size	increase	in	SLD	
were	censored	(RECIST	-		Progressive	Disease	based	on	
target	 lesions4).	The	 final	multistate	model	was	evalu-
ated	 using	 the	 case	 deletion	 diagnostics	 (CCD)	 tool	 in	
PsN20	to	identify	any	potential	influential	individual	of	
estimated	parameters/covariate	effects.

To	 investigate	 if	 the	 final	 multistate	 model	 can	 be	
applied	 in	 a	 prospective	 manner	 to	 predict	 hazard	 of	
death	over	 time	for	each	 individual,	 the	“individual	dy-
namic	prediction”	methods	suggested	by	Desmée	et	al.24	
was	 used.	 The	 individual	 dynamic	 predictors	 include,	
time-	dependent	 Brier	 score	 (BS;	 Equation	 9)	 and	 the	
time-	dependent	area	under	 the	receiver	operating	char-
acteristic	 (ROC)	 curve	 (AUC)	 metric	 (Equation	 10).24,25	
The	 methods	 proposed	 by	 Desmée	 et	 al.24	 for	 assessing	
dynamic	predictions	and	calculation	of	BS	and	AUC	were	
here	applied	to	the	tumor-	multistate	model	implemented	
in	NONMEM.	The	individuals’	data	until	landmark	time	
(s)	were	used	for	deriving	a	posteriori	distribution,	from	
this	distribution,	200	samples	were	drawn	to	compute	the	
predicted	hazard	of	death	for	each	individual	in	the	pre-
diction	window	(t).	In	NONMEM,	the	SAEM	estimation	
method	 along	 with	 ETASAMPLES	 argument	 was	 used	
for	obtaining	200	samples	from	the	conditional	distribu-
tion.25	 The	 landmark	 times	 (s)	 considered	 were	 0,	 3,	 6,	
9,	 12,	 and	 18  months	 and	 prediction	 windows	 (t)	 until	
36 months.

Where	�i	model	predicted	probability	of	death	for	sub-
ject	 i	 in	interval	s	 to	s+t	given	individual	survival	to	time	
s;	BS (s, t),	brier	score	based	on	the	final	multistate	model;	
BSno link (s, t),	brier	score	based	on	the	base	model	without	
any	covariates.

The	time-	dependent	AUC	was	calculated	using	tim-
eROC	 R	 package	 and	 BS	 function	 (R	 script)	 by	 Blanche	
et	al.26	To	account	 for	censoring	bias,	 the	 inverse	proba-
bility	 of	 censoring	 weighting	 approach27–	29	 was	 applied	
in	both	BS	and	AUC	calculations.	Because	the	number	of	
events	and	number	of	subjects	alive	at	that	landmark	time	

(9)BS (s, t) = E
[(
1{s<X<s+t} − 𝜋i (s + t|s)

)2 |X > s
]

(10)

AUC (s, t) = ℙ
(
𝜋i(s + t|s

)
|s > 𝜋j(s + t |s) < Xi

⟨
s + t,Xj

⟩
s + t)

(11)sBS (s, t) = 1 −
BS (s, t)

BSno link (s, t)
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are	 different,	 scaled	 BS	 (sBS;	 Equation	 11)	 was	 used	 for	
comparing	different	landmark	times.30	The	sBS	calculates	
the	relative	improvement	from	the	base	model	in	predict-
ing	individuals’	hazard	of	death	over	time	in	the	final	mul-
tistate	model,	whereas	the	AUC	score	shows	the	how	well	
the	final	model	distinguishes	patients	of	low	and	high	risk	
of	death.

RESULTS

Tumor model

The	 tumor	 data	 consisted	 of	 903	 observations	 and	 the	
median	 SLD	 at	 time	 of	 enrollment	 (SLD0)	 was	 56  mm	
(range,	10–	221).	OS	data	were	collected	for	a	median	of	
108 weeks	(range,	12–	160 weeks)	after	the	start	of	doc-
etaxel	 treatment.	 Ninety-	two	 patients	 (51%)	 had	 death	
event	and	the	median	time	to	death	was	50 weeks	(range,	

13–	145).	 The	 main	 characteristics	 of	 the	 study	 popula-
tion	are	summarized	in	Table 1.	The	TGI	model	described	
the	longitudinal	SLD	adequately	and	the	parameter	esti-
mates	in	the	final	tumor	model	are	provided	in	Table 2.	
The	 typical	 (kGROW)	 was	 estimated	 as	 0.00576  week−1	
(i.e.,	 a	 tumor	 doubling	 time	 of	 ~  2.3  years	 [doubling	
time  =  ln(2)/kGROW]).	 The	 interindividual	 variability	
was	significant	on	all	parameters,	and	kGROW	was	as-
sociated	with	a	large	interindividual	variability	(IIV;	126	
coefficient	 of	 variation	 percentage	 [CV%]).	 The	 predic-
tive	performance	was	adequate	 from	 the	VPC	diagnos-
tics	 (Figure  S1)	 and	 the	 parameter	 uncertainties	 were	
less	than	48%	relative	standard	error	(Table 2).	The	case	
deletion	diagnostics	did	not	identify	any	influential	indi-
viduals	of	the	parameter	estimates	(Figure S2a).

Multistate model

The	 multistate	 data	 consisted	 of	 961	 observations	 that	
includes	 720	 post	 baseline	 tumor	 measurements,	 58	
second	 line	 and	 deaths	 (92)/censor	 (91)	 events.	 There	
were	432	transitions	between	each	event	(Figure 1).	The	
multistate	model	operated	by	parametric	hazard	 func-
tions	 was	 developed	 to	 successfully	 characterize	 the	
different	events	 in	patients	with	HER2-	negative	breast	
cancer	 treated	 with	 docetaxel.	 In	 the	 final	 model,	 the	
transition	hazard	λ12	(stable	to	response	state)	was	de-
creasing	with	time,	indicating	that	the	probability	of	ob-
serving	 response	 state	 diminished	 over	 time.	 The	 past	
observed	relative	change	from	baseline	SLD	was	predic-
tive	of	λ12;	every	10%	reduction	 in	SLD	 from	baseline	
increased	 transition	 rate	 by	 90%.	 The	 longer	 a	 patient	
stayed	in	the	stable	state	the	hazard	of	progression	(λ13)	
became	 higher	 (i.e.,	 λ13	 increased	 with	 time).	 No	 co-
variates	were	significant	in	predicting	λ13.

T A B L E  1 	 Summary	of	patients’	characteristics	and	data

Characteristics Median Range

Total	number	of	patients,	n 183 -	

Age,	years 54 29–	83

Sum	of	longest	diameters	at	baseline,	
mm

56 10–	221

Tumor	follow-	up,	weeks 35 6–	160

ECOG	score	at	baseline,	0/1	(n) 108/75 -	

New	lesion	appearance	(yes),	n 121 68%

Time	of	new	lesion	appearance,	weeks 34 6	–		111

Overall	survival	time,	weeks 108 13–	160

Death	events,	n 92 51%

Time	to	death,	weeks 50 13–	145

Abbreviation:	ECOG,	Eastern	Cooperative	Oncology	Group.

T A B L E  2 	 Parameter	estimates	and	their	uncertainty	in	the	final	tumor	model

Parameter Description
Estimated value 
(RSEa )

Interindividual 
variability CV% (RSE)

kGROW Tumor	growth	rate	(week−1) 0.00576	(37) 126	(15)

LAMBDA Rate	of	resistance	appearance	(week−1) 0.0703	(26) 46	(18)

kSHR Docetaxel	specific	cell	kill	rate	(week−1) 0.000809	(43) 48	(16)

IBASE Baseline	tumor	size	(mm) 58.9	(9) 77	(11)

KPD Parameter	relating	drug	elimination	in	KPD	model	(week−1) 0.66	(48) 22	(19)

RUVb	 Residual	unexplained	variability 22%	(7) -	

Abbreviations:	CV%,	coefficient	of	variation	percentage;	RSE,	relative	standard	error.
aProportional	residual	error	model.
bObtained	from	Sampling	Importance	Resampling	(SIR).
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A	constant	hazard	function	described	the	transition	
from	 tumor	 response	 to	 progressive	 disease	 (λ23)	 and	
every	 10%	 increase	 in	 the	 past	 observed	 SLD	 between	
the	 two	 previous	 measurements	 increased	 the	 hazard	
by	 15%.	 A	 mixture	 model	 with	 two	 subpopulations	
best	 described	 the	 transition	 from	 progressive	 disease	
to	second-	line	(λ34),	where	45%	of	disease	progressors	
(pop-	1)	received	second-	line	treatment	within	6 weeks	
after	 disease	 progression	 and	 remaining	 55%	 (pop-	2)	
did	not	receive	second-	line	treatment.	Age	was	a	signif-
icant	predictor	for	the	probability	to	receive	second-	line	
treatment	 (i.e.,	 younger	patients	had	higher	chance	 to	
receive	 second-	line	 therapy	 after	 disease	 progression	
than	older	patients).

The	hazard	of	death	from	the	second-	line	treatment	
state	was	similar	to	the	hazard	for	death	from	the	state	
of	progression	and	the	parameter	could	be	shared	for	the	
two	transitions	(λ45	=	λ35)	and	was	best	described	using	
a	 constant	 hazard	 function.	 The	 hazard	 of	 death	 was	
lower	 for	 subjects	 who	 had	 longer	 treatment	 response	

durations	 (i.e.,	 longer	 time-	to-	progression).	 The	 base-
line	covariates	and	tumor	model	parameters	(kGROW 	or	
LAMBDA)	 were	 not	 predictive	 of	 any	 transition	 rate.	
The	 model	 predicted	 tumor	 dynamics	 did	 not	 retain	
level	 of	 significance	 once	 the	 observed	 SLD	 changes	
at	 the	 previous	 tumor	 measurement	 were	 included	 in	
the	 model.	The	 estimated	 hazard	 of	 death	 from	 stable	
disease	 (λ15)	and	 tumor	 response	 (λ25)	was	estimated	
to	 be	 close	 to	 0,	 and	 hence	 the	 hazards	 were	 fixed	 to	
Gompertz-	Makeham	distribution31	to	allow	for	a	hazard	
no	lower	than	the	expected	age-	specific	hazard.

The	 final	 parameters	 and	 their	 uncertainties	 are	
given	in	Table 3.	The	VPCs	showed	good	predictive	per-
formance	 of	 the	 final	 model	 (proportions	 in	 different	
states,	Figure 2	and	Kaplan–	Meier	VPC	Figure S3).	The	
case	 deletion	 diagnostics	 results	 demonstrated	 no	 in-
fluential	individuals	that	drive	the	parameter	estimates	
and	estimated	covariate	effects	(Figure S2b).

The	 sBS	 (Equation	 11)	 showed	 that	 the	 final	 mul-
tistate	 model	 improved	 5–	26%	 in	 the	 accuracy	 of	

T A B L E  3 	 Parameter	estimates	and	their	uncertainty	in	the	final	multistate	model

Parameter Description Transition
Estimated 
value Hazard ratioa RSEb 

Scale_12 Scale	and	shape	parameter	in	
Weibull	distribution	for	�12c	

Stable	→Response 0.0348 -	 18

Shape_12 0.316 -	 15

Scale_13 Scale	and	shape	parameter	in	
Weibull	distribution	for	�13c	

Stable	→Progression 0.0206 -	 10

Shape_13 1.99 -	 14

�23c	 Exponential	distribution	(week−1) Response	→Progression 0.0372 -	 10

PPOP1 Proportion	of	population	
receiving	second	line	PPOP1

-	 0.445 -	 11

�45_POP1c	 Exponential	distribution	(week−1) Progression	→Second	
line

0.171 -	 17

�45_POP2 Fixed	parameter -	 0.001 -	

�35 Exponential	distribution	(week−1) Progression	→Death 0.050 -	 23

�CHBo on �12 Coefficient	of	the	effect	of	past	
change	in	SLD	from	baselined		
on	�12

−6.42 1.90	for	every	10%	decrease	
in	SLD	from	baseline

16

�TTTP on �35 Coefficient	of	the	effect	of	time	to	
progression	on	�35

−0.0477 0.95	for	every	extra	week	
from	median	TTP	of	
35weeks

16

�dSLDo on �23 Coefficient	of	the	effect	of	past	
change	in	SLDm	on	�23

1.36 1.14	for	every	10%	increase	
in	dSLD

34

�Age on P_POP1 Coefficient	of	the	effect	of	age	on	
PPOP1

−0.0512 1.05	for	every	one	year	less	
from	median	Age	of	
54years

40

Abbreviation:	SLD,	sum	of	longest	diameter.
aHazard	ratio = exp

(
�predicor ⋅ XP

)
;	for	CHB, XP= −0.1	(10%	decrease);	for	TTP, XP= (36–	35) = 1	(week);	for	dSLD, XP= 0.1	(10%	increase);	for	AGE, 	

XP= (53–	54) = −1	(year)	and	�predicoris	corresponding	coefficient	of	effect.
bObtained	from	NONMEM	R-	matrix.
c
�ij,	is	the	transition	intensities.

dPast	observed	SLD	derived	metrics.
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predicting	 survival	 at	 an	 individual	 level	 compared	 to	
the	 base	 model	 (Figure  3)	 along	 with	 a	 systematic	 in-
crease	 in	 the	AUC	values	 (Table S1).	For	early	predic-
tions,	a	landmark	time	of	s = 3 months	was	useful,	and	
the	BS	was	0.19	 (sBS = 0.29,	~30%	 improvement	com-
pared	to	base	model)	but	with	a	smaller	discrimination	
value	(AUC = 0.19).	The	landmark	time	of	s = 6 months	
provided	best	overall	score	for	all	prediction	windows,	
when	both	BS	(sBS	~0.2)	and	AUC	metric	(~	0.25)	were	
considered.	The	sBS	for	landmark	time	t = 0	was	0,	in-
dicating	with	only	baseline	information,	the	base	model	
and	 full	 model	 perform	 similarly.	The	 AUC	 values	 for	
s  =  9  months	 were	 slightly	 better	 than	 the	 AUC	 for	
s = 6 months,	however,	the	sBS	was	less	than	0.15.	The	
AUC	 improved	 (0.27	 to	 0.68)	 with	 a	 longer	 landmark	
times,	whereas	the	sBS	marginally	affected	by	landmark	
time	greater	than	6 months.

DISCUSSION

Herein,	 a	 multistate	 model	 was	 developed	 to	 charac-
terize	the	different	intermediate	events	as	per	RECIST	
response	 status	 and	 jointly	 describing	 the	 survival	
data.	The	developed	multistate	model	allows	for	simul-
taneous	estimation	of	transition	rates	along	with	their	
tumor	 model	 derived	 predictors	 and	 their	 effect	 on	
transition	rates.	Changes	in	tumor	SLD	were	predictive	
of	 treatment	 response	 and	 progression,	 whereas	 the	
duration	of	response	or	time	to	progression	was	predic-
tive	of	hazard	of	death	after	progression.

Various	 metrics	 derived	 from	 longitudinal	 models	
(e.g.,	tumor	or	biomarker	model)	have	been	identified	as	
predictors	 of	 OS.2,5–	7,16,30,32–	34	 In	 contrast	 to	 traditional	
tumor-	OS	 analysis,	 the	 multistate	 model	 framework	 is	
quite	 flexible	 model	 for	 describing	 the	 hazard	 of	 death	

F I G U R E  2  Visual	predictive	checks	
of	the	final	multistate	model.	The	sold	
line	represents	the	observed	data	and	blue	
shaded	area	is	95%	confidence	interval	
from	200	simulations

F I G U R E  3  The	95%	confidence	
interval	around	median	scaled	Brier	score	
(sBS)	(left	panel)	and	time	dependent	area	
under	the	curve	for	different	landmark	
times	in	months	(0	[blue],	3	[yellow],	6	
[green],	9	[light	blue],	12	[purple],	and	18	
[light	green]).	There	is	no	improvement	at	
landmark	time	t = 0,	and	sBS = 0
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with	time	and	the	metrics	are	investigated	as	predictors	of	
the	 intermediate	events.	The	 intermediate	events	 jointly	
described	the	hazard	of	death.	In	the	current	analysis,	a	
large	decrease	in	the	relative	change	from	baseline	and	an	
increase	 tumor	size	change	 from	the	previous	 two	mea-
surements	were	associated	with	a	high	transition	rate	of	
λ12	and	λ23,	respectively.	The	metrics	were	evaluated	in	
a	prospective	manner	so	that	there	will	not	be	immortal	
time	bias.

The	hazard	of	death	after	progression	was	higher	 for	
patients	who	had	early	disease	progression	(shorter	time	to	
progression).	Time	to	progression	is	a	similar	predictor	to	
a	frequently	identified	predictor	of	OS	–		time	to	re-	growth	
(TTG).2,16,35–	38	 Time	 to	 re-	growth	 is	 the	 time	 to	 achieve	
tumor	nadir	and	calculated	from	model	parameters.	Time	

to	progression	is	defined	as	an	increase	of	greater	than	or	
equal	to	30%	in	SLD	from	tumor	nadir	or	identification	of	
new	 lesions,	 or	 increase	 in	 nontarget	 lesions,	 and	 could	
be	a	different	time	than	model	derived	TTG.	The	hazard	
of	death	from	second-	line	treatment	and	from	progression	
was	not	statistically	different.	However,	depending	on	the	
cancer	type	and	treatments	the	hazard	could	vary	between	
patients	 who	 received	 second-	line	 treatment	 compared	
to	 patients	 who	 did	 not	 receive	 treatment.	 A	 multistate	
model	 could	 be	 used	 to	 investigate	 the	 hazard	 of	 death	
associated	 with	 second-	line	 treatment	 and	 simulate	 the	
OS	 associated	 with	 the	 primary	 therapies	 (clinical	 trial	
regimens)	without	the	confounding	effect	of	second-	line	
treatment	to	provide	a	fair	comparison	of	control	versus	
treatment	groups.

F I G U R E  4  Multistate	model	forecasted	tumor	size,	intermediate	events,	and	hazard	of	death	of	an	individual.	In	each	panel	(a–	f),	left	
subpanel	shows	observed	tumor	data	(cyan	dots)	along	with	model	predicted	tumor	time	course,	grey	shaded	area	represents	95%	confidence	
interval	around	the	predicted	median	(dashed	red	line)	time	course.	The	loss	of	tumor	follow-	up	after	disease	progression	is	noted	with	
“P”	in	panels	e	and	f.	The	solid	lines	in	the	right	subpanel	shows	the	forecasted	probability	with	time	for	stable	(blue),	response	(green),	
progression	(orange),	second	line	(light	blue),	and	death	(red).	The	dashed	lines	in	the	right	panel	show	the	past	transitions
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The	 multistate	 model	 could	 give	 detailed	 informa-
tion	 compared	 to	 traditional	 TS-	OS	 analysis.	 This	 sin-
gle	 framework	 allows	 investigation	 of	 predictors	 and	
characterization	of	time	to	tumor	response,	duration	of	
response,	PFS	and	OS	(Figure S3).	From	the	developed	
multistate	model	herein	for	docetaxel	therapy	in	patients	
with	HER2-	negative	metastatic	breast	cancer,	the	median	
time	 to	 docetaxel	 response	 was	 12  weeks	 (Figure  S3a;	
i.e.,	after	4	cycles	of	docetaxel	therapy).	Median	duration	
of	response	(time	in	response	state)	was	26 weeks,	and	
this	could	be	interpreted	as	the	median	time	to	develop	
resistance	to	therapy	and	tumor	regrowth	(Figure S3b).

Traditionally,	 tumor	 shrinkage	 (response)	 or	 growth	
is	evaluated	as	an	early	marker	of	efficacy	of	an	antican-
cer	 therapy.	 In	 clinical	 trials	 involving	 newer	 therapies	
like	 immunotherapies	 and	 regimens	 involving	 multiple	
molecules,	identifying	the	proportion	of	responders	at	an	
early	 stage	 as	 compared	 to	 a	 clinical	 trial	 with	 cytotoxic	
therapy	 could	 be	 challenging.39	 Moreover,	 when	 patients	
are	allowed	to	switch	to	secondary	therapies,	regardless	of	
whether	secondary	therapies	consisting	of	drugs	are	from	
the	same	class40	or	a	chemotherapy	cocktail,	the	traditional	
survival	analysis	becomes	weaker	to	identify	any	treatment	
benefit	of	the	new	treatment.	Beyer	et	al.12	demonstrated	
the	 application	 of	 multistate	 models	 in	 oncology	 trials.	
Furthermore,	the	multistate	model	can	be	used	to	predict	
the	probability	of	intermediate	events	(states)	for	a	future	
clinical	trial	population.	In	drug	development,	forecasts	of	
study	populations’	treatment	response	trajectory	and	pre-
diction	of	time	to	disease	progression/OS	is	very	valuable	
information	that	could	help	in	the	optimization	of	the	trial.

Multistate	 models	 can	 also	 be	 used	 for	 optimizing	
treatment	 at	 an	 individual	 level.	 The	 BSs	 showed	 that	
data	collected	until	3 months	is	enough	to	get	good	in-
dividual	predictions	up	until	9 months	 (s = 3 months,	
t = 6 months)	and	if	data	until	6 months	(s = 6 months)	
is	 used	 in	 the	 multistate	 model,	 individuals’	 hazards	
of	death	were	predicted	accurately	for	the	first	2 years.	
The	 forecasts	 from	 the	 multistate	 model	 using	 varying	
amount	of	follow-	up	data	of	a	representative	individual	
from	the	study	population	is	given	in	Figure 4.	The	mul-
tistate	 model	 forecasts	 that	 at	 the	 first	 scheduled	 post	
baseline	 measurement	 (12  weeks),	 there	 is	 an	 ~  40%	
probability	to	observe	response	state	(i.e.,	>30%	decrease	
in	tumor	size	from	baseline;	Figure 4a).	The	patient	had	
an	 initial	 treatment	 effect	 (Figure  4b),	 however,	 at	 the	
second	 visit	 (at	 24  weeks),	 the	 decrease	 in	 tumor	 size	
was	not	as	high	as	what	was	observed	at	 the	 first	 visit	
(at	12 weeks),	and	the	multistate	model	predicts	around	
30%	 risk	 of	 disease	 progression	 at	 the	 next	 scheduled	
visit,	at	week	36	(Figure 4c).	After	being	assessed	as	pro-
gressive	 disease,	 and	 initiation	 of	 second-	line	 therapy,	
the	increase	in	hazard	of	death	with	time	was	forecasted	

reasonably	 by	 the	 model	 framework	 (Figure  4d–	f).	
The	prediction	of	 treatment	benefit	duration	and	early	
identification	 of	 patients	 at	 higher	 risk	 of	 disease	 pro-
gression	would	guide	early	clinical	interventions	to	en-
hanced	benefits	for	patients.

There	 were	 34	 patients	 out	 of	 58	 excluded	 subjects	
who	had	no	measurable	target	lesion	at	baseline	but	re-
ceived	docetaxel	until	disease	progression,	whereas	the	
remaining	24	patients	had	received	bevacizumab	before	
disease	progression.	These	24	patients	were	not	consid-
ered	for	inclusion	in	the	analysis	because	of	treatment	
crossover.	 When	 34	 patients	 (who	 received	 docetaxel	
until	disease	progression)	were	included	in	the	analysis,	
they	had	a	longer	“stable	state”	before	they	had	disease	
progression,	 compared	 to	 the	 other	 patients,	 whereas	
the	 uncertainty	 of	 λ12	 and	 λ13	 increased.	 Moreover,	
these	 individuals	 could	 not	 be	 included	 in	 the	 tumor	
modeling	and	should	be	excluded	during	 investigation	
of	 tumor	model	derived	metrics	as	predictor	of	 transi-
tion	intensities	thus	they	were	not	included	in	the	final	
analysis.	 There	 were	 five	 patients	 who	 had	 stable	 dis-
ease	 after	 an	 observed	 response	 state	 (<30%	 decrease	
from	 baseline	 and	 <20%	 increase	 from	 nadir).	 In	 the	
multistate	 model,	 these	 patients	 were	 allowed	 to	 con-
tinue	 in	 the	 response	 state	 with	 the	 assumption	 that	
they	 have	 the	 same	 risk	 of	 death	 and	 progression	 as	
that	 of	 response	 to	 progression/death.	 Moreover,	 this	
assumption	will	not	 influence	the	PFS	and	OS	derived	
from	the	multistate	model.

CONCLUSION

The	 developed	 multistate	 model	 adequately	 described	
the	 transitions	between	different	possible	 states	 in	pa-
tients	 with	 HER2-	negative	 metastatic	 cancer	 treated	
with	 docetaxel.	 The	 model	 jointly	 characterized	 the	
overall	 outcome	 events	 in	 the	 data,	 including	 both	
PFS	and	OS.	The	multistate	model	allows	 for	 simulta-
neous	 estimation	 of	 transition	 rates	 along	 with	 their	
tumor	 model	 derived	 predictors.	 The	 investigation	 of	
predictors	 and	 the	 characterization	 of	 time	 to	 develop	
response,	duration	of	response,	PFS,	and	OS	can	be	per-
formed	 in	 a	 single	 multistate	 modeling	 exercise.	 This	
modeling	approach	can	be	applied	to	other	cancer	types	
and	therapies	to	provide	a	better	understanding	of	effi-
cacy	of	drug	and	characterizing	different	states,	thereby	
facilitating	early	clinical	interventions	to	improve	anti-
cancer	therapy.
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