
NOD2, RIP2 and IRF5 Play a Critical Role in the Type I
Interferon Response to Mycobacterium tuberculosis
Amit K. Pandey1., Yibin Yang2., Zhaozhao Jiang3, Sarah M. Fortune4, Francois Coulombe5, Marcel A.

Behr5, Katherine A. Fitzgerald3, Christopher M. Sassetti1*, Michelle A. Kelliher2*

1 Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 2 Department of

Cancer Biology and the Immunology and Virology Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America,

3 Department of Medicine and the Immunology and Virology Program, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America,

4 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America, 5 Department of Medicine,

McGill University Health Centre, Montreal, Quebec, Canada

Abstract

While the recognition of microbial infection often occurs at the cell surface via Toll-like receptors, the cytosol of the cell is
also under surveillance for microbial products that breach the cell membrane. An important outcome of cytosolic
recognition is the induction of IFNa and IFNb, which are critical mediators of immunity against both bacteria and viruses.
Like many intracellular pathogens, a significant fraction of the transcriptional response to Mycobacterium tuberculosis
infection depends on these type I interferons, but the recognition pathways responsible remain elusive. In this work, we
demonstrate that intraphagosomal M. tuberculosis stimulates the cytosolic Nod2 pathway that responds to bacterial
peptidoglycan, and this event requires membrane damage that is actively inflicted by the bacterium. Unexpectedly, this
recognition triggers the expression of type I interferons in a Tbk1- and Irf5-dependent manner. This response is only
partially impaired by the loss of Irf3 and therefore, differs fundamentally from those stimulated by bacterial DNA, which
depend entirely on this transcription factor. This difference appears to result from the unusual peptidoglycan produced by
mycobacteria, which we show is a uniquely potent agonist of the Nod2/Rip2/Irf5 pathway. Thus, the Nod2 system is
specialized to recognize bacteria that actively perturb host membranes and is remarkably sensitive to mycobacteria,
perhaps reflecting the strong evolutionary pressure exerted by these pathogens on the mammalian immune system.
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Introduction

Mycobacterium tuberculosis (Mtb), the causative agent of human

tuberculosis, is an exquisitely adapted obligate human pathogen

that is thought to persist within as many as one billion individuals

worldwide [1]. This bacterium’s ability to survive and replicate

inside a modified phagosomal compartment of host macrophages

is central to the pathogenesis of this disease [2]. While residing at

this site, Mtb is able to persist for decades. However, a robust cell-

mediated immune response effectively inhibits bacterial replication

in approximately 90% of otherwise healthy individuals, and the

infection can be controlled indefinitely. Deficits in this immune

response result in progressive bacterial replication, necrosis of

infected lung tissue, and spread to other individuals. Thus, like

many other pathogens that cause chronic infections, the long-term

survival of Mtb, depends on a delicate balance between bacterial

virulence and host immunity.

Immunity to tuberculosis depends on both the innate and

adaptive responses of the host. Initial recognition of the bacterium

is mediated by pattern recognition receptors (PRR) such as Toll-

like receptors (TLRs) [3,4] or nucleotide binding oligomerization

domain (NOD)-like receptors (NLRs) [5,6], both of which

recognize conserved microbial structures known as pathogen

associated molecular patterns (PAMPs). TLRs monitor the

extracellular environment and endosomal compartments, and

recognize a variety of microbial components including bacterial

lipoprotein, peptidoglycan, CpG DNA, and double- and single-

stranded RNA [4]. NLRs constitute a more diverse family of

approximately 25 proteins, including the caspase-recruiting

domain (CARD)-containing Nod1, Nod2 and NLRCs, the pyrin

(PYR) domain-containing NLRPs and the baculovirus-inhibitor-

of-apoptosis-repeats (BIRs)-containing NLRBs. Nod1 and Nod2

reside in the cytosol and recognize microbial products in this

compartment [7]. While the functions of most NLR’s remain

undefined, the Nod1 and Nod2 proteins have been shown to

respond to bacterial cell wall fragments. The Nod1 protein

recognizes a fragment of peptidoglycan (PGN) containing the

dipeptide c-d-glutamyl-meso-diaminopimelic acid (iE-DAP) pro-

duced by Gram-negative and some Gram-positive bacteria. Nod2

recognizes muramyl dipeptide (MDP) present on most types of

PGN [8,9,10,11]. While the recognition of these common forms of

peptidoglycan have been extensively studied, bacteria modify their
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cell walls in a myriad of ways and the effects of these modifications

on Nod1/2 recognition are only beginning to be appreciated

(reviewed in [12,13,14]). For example, Listeria monocytogenes removes

a common N-acetyl moiety from the glucosamine of its

peptidoglycan, which renders the cell wall resistant to host

lysozyme and thereby inhibits bacterial recognition by Nod1

[15]. In contrast, mycobacteria, replace the N-acetyl group of the

muramic acid of MDP with a N-glycolyl moiety[16,17], and this

modification significantly increases the potency of this compound

as a Nod2 agonist (Coulombe, F. and Behr, M.A. unpublished

data).

Nod1 and Nod2 functions depend on a downstream signaling

component, Rip2, which belongs to a protein family currently

consisting of 7 members [18]. Like the prototype Rip1, Rip2

contains an N-terminal serine threonine kinase domain followed

by an intermediate region and a C-terminal caspase recruitment

domain (CARD). Rip2 has been shown to be essential for cytosolic

Nod1/2 signaling, and its overexpression stimulates NF-kB

activity and induces apoptosis [19,20]. We have shown that

Rip2 is stably modified with ubiquitin in cells treated with the

Nod2 agonist MDP [21]. This modification is required for Nod1-

mediated NF-kB activation [22], indicating that stable polyubi-

quitination is a critical component of this signaling cascade.

Intact Mtb bacilli are recognized by both TLRs and NLRs,

which cooperatively respond to infection and synergistically induce

NF-kB activation [23]. However, a large fraction of the

transcriptional response to Mtb, including many immunologically

important proteins, such as the chemokines RANTES and IP-10,

and the inducible nitric oxide synthase enzyme NOS2 that is

critical for mycobacterial immunity, are induced independently of

TLR2/4 and the adapter proteins MyD88, MAL and TRIF.

Instead these responses rely on autocrine or paracrine signaling via

type I interferons (IFNa/b), which are induced through largely

undefined pathways [24].

Despite the ability of cell surface localized TLR4 to trigger

IFNa and IFNb transcription, existing evidence indicates that

during genuine bacterial infections, this response instead requires

the recognition of bacterial products in the cytosol. This has been

most clearly demonstrated for pathogens that replicate in the host

cell cytosol, such as Listeria monocytogenes and Francisella tularensis. In

both cases, the bacterium must disrupt the phagosomal membrane

and escape into the cytosol in order to trigger the type I IFN

response in resting macrophages [25,26,27]. Despite its residence

in the phagosome, Mtb still induces rapid and robust IFNa/b
transcription, and this response depends on a specialized secretion

system of the bacterium, ESX1 [28]. This system has been

suggested to contribute to the perturbation of the phagosomal

membrane [29,30,31], indicating that cytosolic recognition might

be critical for IFNa/b responses to diverse bacterial pathogens

including Mtb.

The primary pathways leading to IFNa/b induction upon

bacterial infection remain obscure. Since transfection of DNA into

the cytosol of macrophages can induce a Tbk-1 and Irf3-dependent

IFNa/b response similar to that seen upon L. monocytogenes infection,

bacterial DNA has been implicated as the eliciting stimulus [32].

Two different cytosolic DNA sensors have been identified, DAI [33]

and AIM2 [34], but their importance during bacterial infections

remains to be demonstrated. While Nod2 recognition of MDP is not

absolutely required for IFNa/b production [35], it has been shown

to synergize with the cytosolic DNA response and enhance IFN

production during both L. monocytogenes and Mtb infection [36].

However, Nod2 stimulation alone is thought to be insufficient to

induce type I IFN production [36].

In sum, while a large fraction of the macrophage response to

Mtb infection depends on type I IFN [24] and therefore is likely to

rely on a cytosolic signaling pathway, the bacterial products

recognized and the pathways involved remain unknown. We

previously found that Mtb infection of macrophages triggers Rip2

polyubiquitination in a TLR and MyD88 independent manner

[21]. We now show that this stimulation is due to the ESX1-

dependent entry of bacterial products into the cytosol where they

are recognized by Nod2, implicating MDP as the relevant PAMP.

Unexpectedly, this results in IFNa/b production that is dependent

on a novel pathway consisting of Nod2, Rip2, Tbk1, and Irf5. This

work is the first to implicate NLRs in IRF activation and to suggest

a role for Irf5 in anti-bacterial innate immune responses.

Furthermore, we found that the unusual N-glycolyl MDP

produced by Mtb was 10–100 fold more potent than the

commonly studied N-acetylated MDP produced by most bacteria,

and that only N-glycolyl MDP could stimulate Rip2-dependent

IFNa/b transcription in the absence of other stimulants. Thus, the

mammalian Nod2 pathway appears to be remarkably sensitive to

mycobacterial MDP and responds to infection by triggering the

production of type I interferon, which is responsible for a

significant component of the transcriptional response to Mtb

infection.

Results

Mycobacterium tuberculosis infection stimulates the
ubiquitin modification of Rip2 via the Nod2 protein

The ability of Mtb to rapidly modify macrophage signaling and

vesicular sorting pathways [2] suggests that bacterial products gain

access to the cytosol soon after phagocytosis. These products are, in

turn, likely to be sensed by the host and trigger the innate immune

response. Previously, we demonstrated that Mtb rapidly induces the

TLR2/4 independent polyubiquitination of the Rip2 protein [21],

an event that could represent the initiation of cytosolic recognition.

To characterize these events in more detail, we infected the mouse

macrophage cell line RAW 264.7 or primary bone marrow derived

macrophages (BMDM) with live or heat killed Mtb. In both cell

types, we observed that infection with live, but not heat-killed, Mtb

stimulated the rapid polyubiquitination of Rip2. The Mtb-induced

ubiquitin modification reached maximal levels within 1 hour post-

infection and declined by 4 hours (Figure 1A). Furthermore,

pretreatment of cells with cytochalasin D to inhibit phagocytosis

reduced Rip2 polyubiquitination in a dose-dependent manner

(Figure 1B), indicating that the bacteria must be both live and

intracellular to initiate this response.

Since Nod1 and Nod2 have been implicated in the cytosolic

recognition of mycobacterial components [23], we sought to

Author Summary

Bacterial and viral infection stimulates production of
several cytokines and chemokines that are thought to
protect the host against infection. The bacterial strain
known to cause tuberculosis elicits production of type I
interferons, yet it was unclear how the bacteria isolated
within the cell was capable of stimulating this host
response. This study reveals that the bacteria use a
specialized system to cause damage to these cellular
compartments and release bacterial products that activate
intracellular innate immune pathways. In this work, we
demonstrate that Nod2, Rip2, Tbk-1, Irf3 and Irf5 proteins
cooperate to produce type I interferons. Understanding
how these pathways are mediated is likely to aid in the
design of more effective tuberculosis vaccines.

NOD2 and Mtb-Induced IFNa/b
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Figure 1. Live, intracellular Mycobacterium tuberculosis stimulates Rip2 polyubiquitination. A. Live, but not heat killed Mtb (Rv) stimulates
Rip2 polyubiquitination. Bone marrow-derived macrophages (BMDM) were infected with live virulent (Rv) or heat killed (HK-Rv) strains of M.
tuberculosis (strain H37Rv) for the indicated times. Polyubiquitinated Rip2 protein was detected by immunoprecipitating the cell lysates with an anti-
Rip2 antibody followed by immunoblotting with an anti-ubiquitin antibody. Immunoprecipitates were also immunoblotted with a Rip2 antibody
(lower panel) to insure that equal amounts of protein were immunoprecipitated. B. The cell permeable mycotoxin Cytochalasin D inhibits Rip2
polyubiquitination upon Mtb infection. The murine RAW 264.7 macrophage cell line was pretreated with cytochalasin D (cytD) for 1 hour at the
indicated concentrations before being infected with virulent Mtb H37Rv (Rv) for 1 hour. Polyubiquitinated Rip2 proteins were detected as described
above. Treatment with 1 mM cytD caused a 95% decrease in phagocytosis, as described in the Materials and Methods section. C. Mycobacterium
tuberculosis-induced Rip2 polyubiquitination is Nod2-dependent. Wildtype, nod1/nod22/2 or nod22/2 bone marrow-derived macrophages cell
lines were generated (see Materials and Methods) and either left uninfected (2) or infected with live virulent M. tuberculosis (H37Rv) for the indicated
times. Polyubiquitinated Rip2 proteins were detected as described above.
doi:10.1371/journal.ppat.1000500.g001
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determine if Rip2 polyubiquitination depended on these proteins. In

contrast to cells from wild type mice, inducible Rip2 polyubiquitina-

tion was not observed in macrophages derived from mice lacking

Nod1 and Nod2, and was greatly reduced in cells lacking only Nod2

(Figure 1C). These data confirmed that intracellular Mtb is

recognized by a Nod2-dependent pathway and that this protein is

required for the stable ubiquitination of Rip2.

The mycobacterial ESX1 system is required for Nod
recognition

Live intracellular Mycobacteria were required to stimulate the

Nod-Rip2 pathway, indicating that the bacterium actively

participated in this process, likely via the translocation of bacterial

products into the cytosol. A specialized protein secretion system,

encoded by the ESX1 locus, has been implicated in the

perturbation of the host membranes [29,30,37] and for stimulation

of the type I IFN response [28] and inflammasome activation [38],

suggesting that this system might contribute to cytosolic recogni-

tion via Nod proteins. In order to test this hypothesis, we infected

the mouse macrophage cell line RAW 264.7 with wild type Mtb or

mutants lacking ESX1 function. No induction in Rip2 poly-

ubiquitination was observed upon infection with a strain of Mtb

harboring the ‘‘RD1’’ mutation, which deletes a portion of the

ESX1 locus [39]. Similarly, a mutant lacking espA, a distally-

encoded gene that is required for ESX1-mediated secretion [40],

also failed to elicit this response (Figure 2). The phenotype of the

latter mutant could be complemented by the expression of espA

from a plasmid vector, demonstrating that the inability to

stimulate Rip2 polyubiquitination was linked to the espA mutation.

Furthermore, M. bovis BCG, an attenuated vaccine strain carrying

the RD1 deletion and therefore lacking ESX1 function [39], was

unable to stimulate Rip2 polyubiquitination. While all of these

ESX1 mutants are less virulent than wild type bacteria, the lack of

Nod2-Rip2 stimulation did not appear to be a nonspecific effect of

attenuation. Two unrelated bacterial mutants that are unable to

grow intracellularly, a biotin auxotroph (DbioF [41]) and a small

molecule efflux mutant (TN::rv1410c [42]), robustly stimulated this

response (Figure 2). Taken together, these observations indicate

that a functional ESX1 secretion system is specifically required for

Nod2 stimulation.

Membrane damage allows Nod2-mediated recognition
of ESX1 mutants

Since the Mtb-induced Rip2 polyubiquitination required ESX1,

we hypothesized that this system might be responsible for the

release of Nod2 ligands into the cytosol, perhaps via the disruption

Figure 2. Rip2 polyubiquitination upon Mtb infection requires ESX-1. The murine RAW 264.7 macrophage cell line was left uninfected (UI),
infected with Mtb H37Rv (Rv), with ESX1 mutant strains of Mtb (DESX1, DespA), with a complemented DespA-C strain, with the attenuated vaccine
strain Mycobacterium bovis BCG or with the unrelated attenuated mutants Tn::rv1410 and DbioF. Cell lysates were immunoprecipitated with an anti-
Rip2 antibody followed by immunoblotting with an anti-ubiquitin antibody. Immunoprecipitates were also immunoblotted with a Rip2 antibody to
insure that equal amounts of protein were immunoprecipitated.
doi:10.1371/journal.ppat.1000500.g002

NOD2 and Mtb-Induced IFNa/b
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of vacuolar membrane integrity. However, it also remained

possible that ESX1-deficient strains simply lacked a critical PAMP

or other Nod2 stimulating activity. To distinguish between these

possibilities, we investigated whether ESX1 function could be

complemented by two exogenous membrane-disruptive activities.

Streptolysin O (SLO) is a cholesterol-dependent toxin that

introduces pores directly into mammalian membranes. Pores can

also be introduced by adding ATP to macrophages, resulting in

stimulation of the P2X7 receptor and the subsequent opening of

the hemichannel, pannexin-1 (PANX1) [43]. We observed that

membrane perturbation by either of these two methods resulted in

robust Rip2 polyubiquitination upon infection with espA-deficient

bacteria, which were otherwise unable to induce this response

(Figure 3). The involvement of PANX1 in the ATP-facilitated

Rip2 ubiquitination was verified by the addition of a competitive

inhibitory peptide of the PANX1 pore. This peptide, but not a

scrambled control peptide, inhibited Rip2 polyubiquitination to

levels observed in cells infected with the DespA mutant (Figure 3).

While the K+ flux subsequent to membrane damage has been

found to stimulate NLRs in some circumstances [5], we found that

the addition of ATP or SLO alone resulted in a minimal response.

These data indicate that SLO, PANX1 and ESX1 are all likely to

promote Nod2 pathway activation via a similar mechanism, by

facilitating the release of a stimulatory mycobacterial component

into the cytosol. Since this pathway appears to be specific for

peptidoglycan fragments, mycobacterial MDP-containing frag-

ments were the most likely candidates.

The cytosolic Nod2-Rip2 pathway contributes to type I
IFN production upon Mtb infection

The inability of ESX1 mutants to stimulate either the Nod2-

Rip2 pathway or the type I IFN response [28] led us to

hypothesize that the Nod2 pathway may mediate type I IFN

expression in this system. To investigate a potential link between

Nod2 and IFNa/b, we infected Nod2- or Rip2-deficient

macrophages with Mtb, and measured the induction of IFNa
and IFNb mRNAs using real time PCR (qRT-PCR). In the

absence of Rip2, IFNb induction was reproducibly reduced

approximately 3-fold, whereas IFNa induction was almost

completely abrogated (Figure 4A and B). Nod2 deficiency had a

similar effect on both IFNa and IFNb transcription, consistent

with its requirement for Rip2 polyubiquitination. Nod1 appears to

play no role in this pathway, as nod12/2 macrophages produced

wild type levels of IFNb (Figure S1). The decreases in mRNA

abundance observed in rip22/2 and nod22/2 cells were

reflected in a similar decrease in protein production, as measured

by ELISA (Figure 4C and D).

In order to assess the importance of Nod2 and Rip2 to the

downstream IFNa/b-dependent macrophage response, we quan-

tified the induction of RANTES mRNA, which depends on type I

IFN secretion and signaling via the IFNab receptor (IFNAR1) in

this infection model [24]. We found that in the absence of Rip2 or

Nod2, Mtb infection failed to induce RANTES expression

(Figure 4E). These data suggest that the effect of a Rip2 deficiency

on downstream type I IFN responses may be even more

pronounced than the IFNb mRNA levels indicate. In contrast,

TNFa mRNA levels were unaffected by Nod2- or Rip2-deficiency

(Figure 4F) indicating that other pattern recognition pathways

remained responsive to Mtb in these cells.

Consistent with previous work [28], we found that infection

with ESX1 mutant bacteria induced significantly less IFNb and

RANTES expression than wild type bacteria (Figure 5). To test

whether ESX1-mediated type I IFN expression was mediated

solely via Rip2, we infected Rip2-deficient macrophages with

ESX1 mutant bacteria and quantified IFNb and RANTES

mRNA levels. We found that in the absence of Rip2, the loss of

ESX1 function resulted in a further decrease in IFNb mRNA

levels (Figure 5A), suggesting the presence of an additional host

pathway(s) that contribute to IFNb induction. However, Rip2

deletion had no significant effect in the absence of ESX1

(Figure 5B), supporting our biochemical evidence that NOD2

stimulation depends entirely the ESX1-dependent delivery of

stimulants into the cytosol.

The N-glycolylated MDP produced by Mtb is a potent
stimulator of the Nod2-mediated type I IFN response

While our data indicated that a significant fraction of the IFNa/

b response could be attributed to the Nod2-Rip2 pathway, it has

been suggested that MDP stimulation alone is unable to induce

type I IFNs and can only augment responses triggered by other

pathways [36]. Indeed, we also found that the N-acetylated MDP

that is commonly used to stimulate Nod2 was a very poor inducer

of IFNb and RANTES expression (Figure 6A and B). However,

our preliminary studies investigating Rip2 polyubiquitination

indicated that Mtb was a particularly potent stimulator of this

response [21], and therefore we reasoned that this could be due to

the N-glycolylated form of MDP produced by Mtb. To determine

if this form of MDP was sufficient to induce type I IFN responses,

we compared the ability of N-acetyl- and N-glycolyl-MDP to

stimulate IFNb expression. In contrast to N-acetyl MDP,

treatment with the N-glycolylated form stimulated a robust IFNb
response, which was entirely dependent on Rip2 and Nod2

(Figure 6). In addition, at least 30-fold less N-glycolyl-MDP was

necessary to stimulate the IFNb transcription. Thus, the Nod2/

Rip2 pathway alone is sufficient to induce the production of the

IFN response when stimulated with this potent form of MDP.

Induction of the host type I IFN response upon Mtb
infection requires the Tbk1 kinase and Irf5

Listeria monocytogenes infection induces a potent host type I IFN

response mediated by the Tbk1 kinase and Irf3 [27,32,35,44]. To

test whether Mtb infection triggered similar pathways, we infected

Irf3-deficient and Tbk1/Tnfr1-deficient macrophages with Mtb

and measured IFN induction. The Tnfr1 deficiency was necessary

to suppress the embryonic lethality of Tbk1 deletion [45]. Similar

to the L. monocytogenes model, we found that IFNb induction by

Mtb infection was completely dependent upon Tbk1, and the loss

of Tnfr1 had little effect (Figure 7A). However, in contrast to the

complete dependence on Irf3 observed for L. monocytogenes

[27,32,35], we found IFNb expression was reduced, but not

ablated when Irf3-deficient macrophages were infected with M.

tuberculosis (Figure 7A). This partial dependence on Irf3 was not

changed by varying the multiplicity of infection (Figure S2). These

data prompted us to test whether other IRFs mediate Nod2-

dependent type I IFN responses.

Induction of IFNb expression is dependent on the formation of

the enhancesome which includes the NF-kB, ATF-2, c-jun, Irf3

and Irf7 transcription factors [46]. Irf5 is a related family member

that has also been shown to contribute to induction of type I IFN

responses triggered by TLRs, and overexpression of MyD88 has

been shown to synergize with Irf5 to induce IFNb expression [47].

Based on these studies, we tested whether RIP2 collaborates with

IRF5 or IRF3 to stimulate IFNb luciferase reporter activity.

HEK293 cells were transfected with an IFNb-luciferase reporter

construct, along with increasing amounts of expression plasmids

encoding RIP2, MyD88, IRF3 or IRF5. RIP2 and IRF5

coexpression stimulated IFNb promoter activity in a dose

NOD2 and Mtb-Induced IFNa/b

PLoS Pathogens | www.plospathogens.org 5 July 2009 | Volume 5 | Issue 7 | e1000500



Figure 3. Membrane damage allows Nod2-mediated recognition of ESX1 mutants. A. The mouse RAW 264.7 macrophage cell line was was
treated with ATP (5 mM) or SLO (5 mg/ml) for 15 minutes before infection with virulent wild type (Rv) or ESX1 mutant (DespA) strains of Mtb. After
one hour, cell lysates were immunoprecipitated with a Rip2 antibody followed by immunoblotting with an anti-ubiquitin antibody.
Immunoprecipitates were immunoblotted with a Rip2 antibody to insure that equal amounts of protein were immunoprecipitated. To verify that
ATP was acting via the PANX1 protein, cells were pretreated with 500 mM of either a PANX1 blocking peptide (+P) or control scrambled peptide (+S)
for 15 minutes prior to ATP addition. B. Relative abundance of Rip2 polyubiquitination in each sample as determined by densitometry of the results
in panel A. All values were calculated relative to the uninfected sample (UI).
doi:10.1371/journal.ppat.1000500.g003

NOD2 and Mtb-Induced IFNa/b
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Figure 4. Type I Interferon production upon Mtb infection is reduced in Rip2- and Nod2-deficient macrophages. A, B, E, and F.
BMDM derived from wt, rip22/2 and nod22/2 mice were infected with Mtb (MOI 10) for 4 h. RNA was harvested and IFNa, IFNb, RANTES and TNFa
mRNA levels were quantified using real time PCR. Gene expression is reported as copy number per 1,000 copies of b-actin. Samples were assayed in
triplicate; error bars represent the standard deviation. The experiment shown is representative of at least three. Statistical evaluation was performed
using an unpaired Student’s t test. p-values.0.05 are reported as ‘‘n.s.’’ (i.e. not significant). C and D. BMDM derived from wt, rip22/2 and nod22/2
mice were infected with Mtb (MOI 10) for 18 h, the amount of IFNa and IFNb released in the supernatant was quantified by ELISA. Samples were
assayed in triplicate; error bars represent the standard deviation. N.D. indicates not detected, that is the actual value is below zero in standard curve.
doi:10.1371/journal.ppat.1000500.g004

NOD2 and Mtb-Induced IFNa/b
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Figure 5. Multiple cytosolic pathways lead to IFNb induction. A. BMDM derived from wt, rip22/2 and nod22/2 mice were infected with
virulent Mtb H37Rv (Rv) or with an ESX1 mutant (DESX1) at an MOI of 10 for 4 h. RNA was harvested, and IFNb mRNA levels were quantified using real
time PCR. Gene expression of IFNb is reported as copy number per 1,000 copies of b-actin. Samples were assayed in triplicate; error bars represent the
standard deviation. The experiment shown is representative of at least three. B. BMDM derived from wt, rip22/2 and nod22/2 mice were infected
with virulent Mtb H37Rv (Rv) or with an ESX1 mutant (DESX1) at an MOI of 10 for 4 h. RNA was harvested, and RANTES mRNA levels were quantified
using real time PCR. Gene expression of RANTES is reported as copy number per 1,000 copies of b-actin. Samples were assayed in triplicate; error bars
represent the standard deviation. The experiment shown is representative of at least three.
doi:10.1371/journal.ppat.1000500.g005

NOD2 and Mtb-Induced IFNa/b
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dependent manner and to a similar extent as MyD88 and IRF5

(Figure 7B). In contrast, RIP2 and IRF3 expression failed to

induce this robust response (Figure 7C). RIP2 and IRF5

expression also stimulated IFNa4 promoter activity as well as a

reporter construct containing multimerized ISRE elements (data

not shown).

To further investigate the contribution of Irf5 to the anti-

bacterial type I IFN response, we infected macrophages from Irf5-

deficient mice and control littermates with either Mtb or L.

monocytogenes, and measured IFNb expression. Consistent with the

luciferase reporter studies, we found that Mtb-induced IFNb
(Figure 7D) and IFNa (Figure S3) expression was impaired in the

Figure 6. Nod2 stimulation is sufficient for type I IFN induction. A and B. N-Glycolyl MDP is more potent than the more common N-
Acetylated derivative. The macrophage cell line RAW 264.7 was treated with the indicated concentrations of N-Glycolyl-MDP or N-Acetyl-MDP for 4 h.
RNA was harvested, and IFNb and RANTES mRNA levels were quantified using real time PCR. Gene expression of IFNb (A) and RANTES (B) was
normalized to b-actin then normalized to untreated control to estimate fold induction. Samples were assayed in triplicate; error bars represent the
standard deviation. The experiment shown is representative of at least three. C and D. The N-Glycolyl-MDP-induced type I IFN response is Rip2- and
Nod2- dependent. Wt, rip22/2 and nod22/2 transformed macrophage cell lines were treated for 4 hours with increasing concentrations of N-
Glycolyl-MDP. RNA was harvested and IFNb and RANTES mRNA levels were quantified using real time PCR. Gene expression of IFNb (C) and RANTES
(D) was normalized to b-actin and compare to untreated control to establish the fold induction. Samples were assayed in triplicate; error bars
represent the standard deviation. The experiment shown is representative of at least three.
doi:10.1371/journal.ppat.1000500.g006
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Figure 7. Mtb-induced type I IFN response is Tbk1-dependent and mediated through both Irf3 and Irf5. A. M. tuberculosis-induced type
I IFN response is Tbk1-dependent and only partially mediated through Irf3. BMDM derived from wt, irf32/2 and tbk12/2tnfr12/2 mice and
littermate controls were infected with virulent Mtb H37Rv (Rv) at an MOI of 10 for 4 h. RNA was harvested and IFNb mRNA level was quantified using
real time PCR. Gene expression is reported as copy number per 1,000 copies of b-actin. Samples were assayed in triplicate; error bars represent the
standard deviation. The experiment shown is representative of at least three. B. Co-expression of RIP2 and IRF5 stimulate IFNb luciferase reporter
activity. HEK293T cells were co-transfected with IFNb-luciferase reporter plasmid (40 ng) together with the indicated concentrations of MyD88, IRF5
and RIP2 expression plasmids. Luciferase activity was measured 24 h later using Dual Luciferase reporter assay system (Promega). Renilla luciferase
gene (40 ng) was co-transfected and used as an internal control. Each experiment was repeated three times. Data are expressed as mean6s.d. of
three replicates. C. Co-expression of RIP2 and IRF3 does not stimulate IFNb luciferase reporter activity. HEK293T cells were co-transfected with IFNb-
luciferase reporter plasmid (40 ng) together with the indicated concentrations of IRF5, IRF3 and RIP2 expression plasmids. Luciferase activity was
measured 24 h later using Dual Luciferase reporter assay system (Promega). The Renilla luciferase gene (40 ng) was co-transfected and used as an
internal control. Each experiment was repeated three times. Data are expressed as mean6s.d. of three replicates. D. Irf5 is required for an optimal
type I IFN response upon Mtb infection. BMDM from irf52/2 or control littermates were infected with virulent Mtb H37Rv (Rv) at an MOI of 10, or
with Listeria monocytogenes (Lm) strain 10403S (MOI 10) for 4 hours. RNA was harvested and IFNb mRNA level was quantified by real time-PCR. IFNb
mRNA levels are reported as copy number per 1,000 copies of b-actin. Samples were assayed in triplicate; error bars represent standard deviation.
Data shown is representative of at least three independent experiments.
doi:10.1371/journal.ppat.1000500.g007
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absence of Irf5. In contrast, the response to Listeria was unaffected

by the loss of Irf5 (Figure 7D). While the related Rip1 adaptor

protein regulates Irf7 activity in innate anti-viral signaling [48], we

found that IFNb induction after Mtb infection was unaffected by

Irf7 deficiency (data not shown). To rule out the possibility that

Irf3 expression levels may also be affected in irf52/2 macro-

phages, we verified that the Irf3 protein level was unchanged in

Irf5-deficient cells (Figure S4). These results indicated that Mtb

infection stimulates type I IFN expression via a pathway that

depends on Nod2, Rip2, Tbk1, and Irf5. This contrasts with the

pathway triggered by L. monocytogenes, which depends entirely on

Irf3 and not Irf5. We reasoned that this dependence on different

Irf proteins might be explained by the preferential stimulation of a

Nod2-Rip2-Irf5 pathway by mycobacterial peptidoglycan. Con-

sistent with this model, we found that the IFNb induction triggered

by N-glycolyl MDP was entirely dependent on Irf5 and

independent of Irf3 (Figure 8), functionally linking Irf5 with the

Nod2 pathway.

Discussion

Mammals first detect microbial infections via an array of PRRs

that include both cell surface TLRs and cytosolic NLRs. However,

not all microbial interactions represent a pathological state, and the

immune system must be able to discriminate to some degree between

colonization by commensal organisms and dangerous infection. One

level of discrimination is provided by the desensitization or

anatomical sequestration of TLRs at sites of chronic stimulation,

such as the gut, which presumably allows for tolerance to normal flora

[49,50]. Bacterial pathogens can still be recognized at these sites via

NLRs, since these systems rely on the specific ability of pathogens to

translocate PAMPs into the host cytosol.

The concept that NLRs are specific for pathogenic organisms

that disrupt host membranes is supported in a number of bacterial

systems in which the loss of specific virulence functions abrogates

NLR signaling. For example, in resting macrophages, cytosolic

recognition of L. monocytogenes requires the pore-forming toxin,

listeriolysin O [26,27]. Similarly, Helicobacter pylori [51] and

Legionella pneumophila [32] mutants lacking a functional type IV

secretion system (T4SS), and Shigella flexneri [52] or Salmonella

enterica serovar typhimurium [52] mutants lacking a functional type III

secretion system (T3SS) fail to stimulate NLR pathways. In each

case, the virulence system in question is responsible for host

membrane damage and the likely translocation of bacterial

products into the cytosol where they can be recognized by NLRs

and/or other cytosolic surveillance systems.

Similarly, we found that the ESX1 specialized protein secretion

system of Mtb is required for Nod2 recognition. While it has been

suggested that type I IFN induction via ESX1 might represent a

specific immunomodulatory virulence strategy [28], analogies to

these other pathogens suggests that perhaps NLR recognition is

simply a byproduct of a membrane damaging function that allows

bacterial products to enter the cytosol. This model is supported by

our observations that other membrane perturbing agents, such as

SLO and PANX1 can substitute for ESX1 function and allow

cytosolic recognition. Thus, in a number of cases it appears that

NLRs can be considered as sentinels for pathogens that rely on

membrane damage as a pathogenic strategy.

Based on their common role in protein secretion and in

facilitating cytosolic recognition, it is tempting to speculate that

ESX1 and Gram-negative T3SS and T4SS function analogously

to deliver effector proteins into the host cytosol. Despite these

similarities, the role played by ESX1 during infection remains

unclear, since no translocated effectors have been identified to

date. In both Mtb and M. marinum, a related pathogen of

ectotherms, ESX1 has been implicated in host membrane

disruption and one of the major substrates of this system, EsxA,

has been proposed to possess a membrane-lytic activity [30,37].

Figure 8. The N-Glycolyl-MDP-induced type I IFN response is Irf5-dependent and Irf3 independent. BMDM derived from irf32/2 and
irf52/2 mice and their littermate controls were left untreated or treated for 6 hours with 10 mg/ml of N-Glycolyl-MDP. RNA was harvested, and IFNb
mRNA levels were quantified using real time PCR. IFNb mRNA levels are reported as copy number per 1,000 copies of b-actin. Samples were assayed
in triplicate; error bars represent the standard deviation.
doi:10.1371/journal.ppat.1000500.g008
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This single activity could be sufficient to account for the delivery of

MDP and other PAMPs to the cytosol. It remains to be

determined whether perturbing host membranes is the only role

played by ESX1 during infection, or if this system also serves

additional functions analogous to the specialized secretion systems

of other pathogens.

A major consequence of the cytosolic recognition of Mtb is the

induction of type I IFN. While the importance of this response in

viral defense is clear and virtually universal, its role in antibacterial

immunity appears to vary. Mice deficient in the type I IFN receptor,

Ifnar1, are significantly more susceptible to several Gram-positive

and -negative bacterial infections [53,54,55,56], indicating that

IFNa/b are important for immunity to many bacteria. However,

Ifnar1 mutation has the opposite effect on the outcome of L.

monocytogenes infection [57], suggesting that IFNa/b can also

exacerbate disease. The role played by IFNa/b in Mtb infection

remains somewhat uncertain. The induction of several immuno-

logically important genes, including NOS2, depend on IFNa/b,

suggesting a protective role. Initial studies of mouse and human

infections appeared to support this view [58,59]. However, like the

L. monocytogenes system, mutation of the IFNa/b receptor has in most

cases been associated with decreased bacterial burden in mouse

models of tuberculosis [28,59,60,61,62]. IFNa/b may fail to protect

against disease because Mtb inhibits the response to these cytokines

in infected macrophages [63]. The ultimate influence of IFNa/b on

Mtb infection appears to depend on a number of experimental

factors, which might include host species, bacterial strain, route of

infection and dose. Despite these differences however, some

important themes emerge from these studies. Most importantly,

the effect of IFNa/b is most apparent after the onset of adaptive

immunity and not before, suggesting that the major role-played by

type I IFNs during tuberculosis may be to instruct the priming or

maintenance of the adaptive immune response and perhaps to

control the differentiation of regulatory T cells [59].

A variety of bacterial pathogens trigger the type I IFN response,

and a paradigm has begun to emerge regarding the induction of

this response by bacteria. One current model suggests that

bacterial DNA translocated into the host cytosol is the major

eliciting agent. This model is based largely on the observations that

infection with L. monocytogenes or L. pneumophilla, or transfection of

DNA into the cytosol induces a similar IFNb response that is Rip2

independent, and Tbk1- and Irf3-dependent [32]. Other PAMPs,

such as MDP, can provide a synergistic IFN-inducing stimulus, but

have not appeared to be sufficient for induction of IFNb in the

absence of other triggers [36].

In contrast, our data support a model whereby Nod2

stimulation by Mtb infection induces the polyubiquitination of

Rip2, which acts via the Tbk1 kinase to stimulate the activity of

Irf5 and induce transcription of IFNa/b. This differs from the

pathway triggered by other bacteria such as L. monocytogenes, which

depends entirely on Irf3 in resting macrophages [32] and does not

involve Irf5 (Figure 7). Although Irf5 has previously been shown to

be activated by the MyD88-dependent TLR7 and TLR9

pathways, this work reveals a novel role for this protein in Nod2

signaling, and a new link between Nod proteins and the type I IFN

response. Furthermore, we found that unlike the N-acetylated

MDP found in many bacteria, stimulation with the N-glycolylated

MDP derivative found in mycobacteria was sufficient to stimulate

the IFN response in the absence of other stimuli.

A significant component of IFNb induction remains intact upon

Mtb infection of Rip2-deficient macrophages (Figures 4 and 5),

indicating that additional pathways are also involved. Since

virtually all IFNb expression is ESX1-dependent, it appears that

the residual induction observed in rip22/2 macrophages also

depends on cytosolic recognition pathways. These pathways could

certainly include a DNA sensor that acts via Irf3, as proposed for

other infections, since Irf3 deficiency had a moderate effect on

IFNb expression in our experiments (Figure 7A and S2). Thus, our

data do not imply that Mtb is stimulating IFNa/b in a

fundamentally different manner from other bacteria. Instead, it

is likely that bacterial pathogens stimulate the IFN response via

multiple, partially redundant pathways, and that the relative

importance of each is determined by the unique biology of the

infection. In the case of Mtb, we speculate that the N-glycolylation

of its peptidoglycan, and perhaps a paucity of other stimulants

such as DNA, favor recognition via Nod2. It is also possible that

the balance of these pathways might be affected by the activation

state of the macrophage. When resting macrophages are infected

with L. monocytogenes, the IFN response requires LLO and is

completely Irf3 dependent. In contrast, IFNc-stimulated cells are

able to deliver this bacterium to the lysosome, where the cell wall is

degraded to produce abundant peptidoglycan fragments. In this

situation, a significant component of the IFNb induction depends

on Nod2 and not Irf3 [64]. While Irf5 was not investigated in this

study, it is possible that this represents another situation in which

robust Nod2 signaling promotes a Nod2- and Irf5- dependent type

I IFN response.

While we found that loss of Nod2-Rip2 signaling only partially

reduces the induction of IFNb, Rip2 deletion completely

abrogated IFNa and RANTES expression. These results can be

explained by the structure of the IFN regulatory circuit. Initially,

only IFNb is expressed, and subsequently IFNa and other

interferon regulated genes (IRGs), such as RANTES, are induced

via an Ifnar1 and Irf7-dependent autocrine/paracrine signaling

pathway [65]. Thus, it appears that the decrease in IFNb
expression that we observe is sufficient to severely impair

downstream IRG induction, at least in this cell culture model.

Multiple steps of this pathway are likely to depend on stable

ubiquitin modifications. Not only did we observe that Rip2 is

polyubiquitinated upon infection, but we also found that a Rip2

point mutant that cannot be stably ubiquitin modified is unable to

mediate IFNa/b induction in response to Mtb infection (Figure

S5). Collectively, these data suggest that polyubiquitinated Rip2 is

required for Mtb-induced type I IFN expression via Irf5.

Interestingly, MyD88-dependent activation of Irf5 involves

formation of a tertiary complex that includes the E3 ubiquitin

ligase, Traf6 [66,67]. This E3 ubiquitin ligase associates with Rip2

upon MDP stimulation, raising the possibility that a Rip2-Traf6-

Irf5 complex might exist and that the activity of Irf5 might also be

regulated by ubiquitin.

The specificity of the innate immune system has been shaped by

the very powerful natural selection imposed by microbial

pathogens. Our work suggests that upon infection with Mtb, a

particularly potent form of MDP is translocated into the host cell

cytosol where it triggers a novel signaling pathway leading to the

robust induction of the type I IFN response. It is unlikely to be

coincidental that the active component of our most potent

adjuvant, complete Freund’s adjuvant (CFA), consists of myco-

bacterial cell fragments. The specific pathway described in this

work might play a major role in this adjuvant’s effectiveness, since

IFNa/b production is required for CFA to promote antigen-

specific immune responses (55). Thus, while PAMPs are often

regarded as invariant microbial components, it is clear that

functionally important pathogen-specific differences exist in the

composition of these molecules, and that the immune system can

differentiate these subtly distinct structures.

Given the potent adjuvant activity of mycobacterial compo-

nents, it is somewhat surprising that the attenuated vaccine strain
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M. bovis BCG, which produces the same PAMPs present in CFA,

provides poor protection against pulmonary TB in adults [68,69].

The lack of ESX1 function in this strain appears to be at least

partially responsible, since the reconstitution of ESX1 improves

the efficacy of this vaccine [70,71]. While this effect has previously

been attributed to either the secretion of additional antigens or

altered antigen presentation, it is also possible that ESX1 activity

improves immunity by delivering crucial PAMPs into the cytosol

where they are optimally recognized. Understanding both the

details of PAMP trafficking, as well as the precise specificity of

PAMP recognition, promises to aid in both the design of improved

adjuvants and more effective tuberculosis vaccines.

Materials and Methods

Mice
C57BL/6 mice ages 8–12 weeks were obtained from the Jackson

Laboratory. rip22/2 mice were a kind gift from Dr. Vishva M. Dixit

(Genentech, Inc. South San Francisco, CA). nod22/2 mice were

provided by Dr. Peter J. Murray (Department of Infectious Diseases,

St. Jude Children’s Research Hospital, Memphis, TN). nod12/2 and

nod12/2nod22/2 mice were provided by Dr. Gabriel Nunez

(University of Michigan Medical School, Ann Arbor, MI). irf32/2,

irf52/2, tbk1+/+tnfr12/2 and tbk12/2tnfr12/2 mice and their

littermate controls were provided by Dr. Kate A. Fitzgerald

(University of Massachusetts Medical School, Worcester, MA). Mice

were housed under specific pathogen-free conditions, and in

accordance with the University of Massachusetts Medical School,

IACUC guidelines.

Bacteria
The WT strain of M. tuberculosis used in these studies was the

H37Rv strain. All the mutants were derived from the wild type

strain. DESX-1 was obtained from D. Sherman (SBRI, Seat-

tle.WA) [39]. DBioF, DRv3616 and DRv3616-complemented

strains have been described previously [40,41]. TN::Rv1410

contains a himar-1 transposon inserted at nucleotide #688 of

the 1557 bp predicted open reading frame [72]. All strains were

cultured in 7H9 medium containing 0.05% Tween 80 and OADC

enrichment (Becton Dickinson). Pre-titered stocks of Listeria

monocytogenes strain 10403 stored at 280uC (kindly provided by

Victor Boyartchuk) were recovered for 1 hr at 37uC in 9 ml of

Tryptic Soy Broth (BD Biosciences). Bacteria were then washed

and resuspended in PBS prior to infection.

Antibodies and reagents
Anti-Rip2 (Rabbit) and anti-ubiquitin (Mouse) antibodies were

obtained from Santa Cruz Biotechnology. Anti-Irf3 antibody was

obtained from Zymed. Anti-Irf5 antibody was obtained from

Abcam. Anti-b-actin antibody was obtained from Sigma. MDP

was obtained from InvivoGen. Mouse TNF-a was obtained from

Sigma. LPS derived from Escherichia coli strain 0111.B4 was

purchased from Sigma, dissolved, treated with deoxycholate, and

re-extracted with phenol/chloroform as described in [73]. The

pannexin-1 mimetic blocking peptides panx1 (WRQAAFVDSY)

and the scrambled peptide control were synthesized by GeneScript

Corporation (Piscataway, NJ) and have been described previously

[74]. Streptolysin O (SLO) a pore forming protein derived from

Streptococcus and Adenosine 59- triphosphate (ATP) were purchased

from Sigma. N-glycolyl muramyl dipeptide (N-glycolyl MDP) was

custom synthesized (Carbohydrate Synthesis, Oxford, UK) and

shown to be more than 95% pure by NMR spectrometry. This

preparation was found to be free of endotoxin contamination using

the Limulus amebocyte lysate assay (Pyrotell, Cape Cod Inc., MA).

Macrophage infections
Bone marrow from 8- to 10-week-old mice was harvested from

femurs and differentiated into macrophages for 7 days in Dulbecco’s

modified Eagle medium (DMEM) supplemented with 10% L929-

cell conditioned medium, 10% fetal bovine serum, 2 mM L-

glutamine and 1 mM sodium pyruvate. After 7 days in culture,

bone marrow derived macrophages (BMDMs) were washed with

phosphate-buffered saline (PBS) and seeded into tissue culture plates

for infection. RAW 264.7 macrophage cell line was cultured in

Dulbecco’s modified Eagle medium (DMEM) supplemented with

10% fetal bovine serum. All Mtb strains were cultivated in 7H9

broth, grown to exponential phase and washed thoroughly in

DMEM media prior to infection. Bacterial clumps were removed by

passing the washed suspension through a 5 mm syringe filter. For the

peptide blocking studies, the cells were pre incubated with the

desired peptides for 30 minutes followed by ATP or SLO for

additional 15 minutes. Macrophages were infected at an MOI of 10

for 1 or 2 hours after which filtered cell lysates were immunopre-

cipitated with anti-Rip2 antibody (Santa Cruz). Heat inactivation

was achieved by incubating the bacteria at 80uC for 30 minutes.

Immortalized macrophage cell lines from wild type, rip22/2,

nod22/2 and nod12/2nod22/2 mice were established by

infecting bone marrow cells with a v-raf/mil and v-myc retrovirus

in the presence of GM-CSF and polybrene [75,76]. These rip22/2,

nod22/2 and nod12/2nod22/2 macrophage cell lines express

CD11b and Gr-1 and are capable of phagocytosing antibody coated

beads. To determine the effect of cytochalasin D on the phagocytic

function of the macrophages, we used the Vybrant phagocytosis assay

kit to quantify the uptake of fluorescent E. coli. This assay was

performed according to the protocol provided by the manufacturer.

Immunoprecipitation and Western blot analysis
For the immunoprecipitation and ubiquitination assays, cell

lysates were prepared in radioimmune precipitation assay (RIPA)

buffer (150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 1% NP40,

0.25% deoxycholate, 0.1% SDS, 1 mM EDTA), supplemented

with protease inhibitors (Roche Applied Science) and 5 mM N-

Ethylmaleimide (Sigma), immunoprecipitated with anti-Rip2 anti-

body (Santa Cruz). Polyubiquitinated Rip2 proteins were detected

by immunoblotting with an anti-ubiquitin antibody (Santa Cruz).

Total immunoprecipitated Rip2 protein was measured by immu-

noblotting with anti-Rip2 antibodies (Santa Cruz).

Luciferase reporter assay
HEK293 cells (26104) seeded in 96 well plates were transfected

with 40 ng of the IFNb luciferase reporter plasmid together with a

total of 100 ng of various expression plasmids using GeneJuice

(Novagen). The total amounts of transfected DNA were kept

constant in all experiments by adjustment with empty vector.

Luciferase activity was measured 24 h later using Dual Luciferase

reporter assay system (Promega). The Renilla luciferase gene

(40 ng) was co-transfected and used as an internal control plasmid.

IFNb luciferase reporter activity was normalized to Renilla

luciferase reporter activity. Each experiment was repeated three

times. Data are expressed as mean6s.d. of three replicates.

Real time quantitative PCR analysis
To measure IFNa/b mRNA levels upon MDP treatment or Mtb

infection, total RNA was extracted from the macrophage cultures

using Trizol reagent (Invitrogen) according to the manufacturer’s

directions. cDNA was prepared from 2 mg of total RNA and

quantitative real-time PCR performed using SYBR green as a label

with the following primers: mIFNa-F, 59-AAGATGCCCT-
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GCTGGCTG; mIFNa-R, 59-TTCTGCTCTGACCACCTCCC;

mIFNb-F, 59-CGTCTCCTGGATGAACTCCAC; mIFNb-R,

TGAGGACATCTCCCACGTCA; b-actin-F, 59-CGAGGCCCA-

GAGCAAGAGAG; b-actin-R, 59-CGGTTGGCCTTAGGGTT-

CAG; mTNFa-F, CAGTTCTATGGCCCAGACCCT; mTNFa-

R, CGGACTCCGCAAAGTCTAAG; mRANTES-F, GCCCAC-

GTCAAGGAGTATTTCTA; mRANTES-R, ACACACTTG-

GCGGTTCCTTC. Results shown are representative of more

than three separate infection experiments, with each PCR

performed in triplicate. All values reported were in the linear range

of the experiment and were normalized to b-actin values. Standard

curves were generated by linear dilution of a cDNA sample

generated from poly I:C-stimulated macrophages.

ELISA
IFNa protein in cell culture supernatants was performed using a

custom ELISA as described previously [77]. IFNa concentrations

were calculated using a recombinant IFNa (HyCult, Biotechnol-

ogy, Uden, Netherlands) standard curve performed in quadrupli-

cate using linear regression, and expressed in units per ml. IFNb
protein in cell culture supernatants was measured similarly using a

custom ELISA as described in [78].

Supporting Information

Figure S1 Type I Interferon production upon Mtb infection is

reduced in Rip2- and Nod2-deficient macrophages but not in

Nod1-deficient macrophages. BMDM derived from wt, nod12/2,

rip22/2 and nod22/2 mice were infected with Mtb (MOI 10) for

4 h. RNA was harvested, and IFNb mRNA levels were quantified

using real time PCR. Gene expression is reported as copy number

per 1,000 copies of b-actin. Samples were assayed in triplicate;

error bars represent the standard deviation.

Found at: doi:10.1371/journal.ppat.1000500.s001 (0.23 MB PDF)

Figure S2 Mtb-induced type I IFN response is only partially

mediated through Irf3. BMDM derived from wt and irf32/2

mice were infected with virulent Mtb H37Rv (Rv) at an MOI of 1,

3 and 10 for 4 h. RNA was harvested, and IFNb mRNA level was

quantified using real time PCR. Gene expression is reported as

copy number per 10,000 copies of b-actin. Samples were assayed

in triplicate; error bars represent the standard deviation.

Found at: doi:10.1371/journal.ppat.1000500.s002 (0.23 MB PDF)

Figure S3 Irf5 is required for an optimal type I IFNa response

upon Mtb infection. BMDM from irf52/2 or control littermates

were infected with virulent Mtb H37Rv (Rv) at an MOI of 10, or

with Listeria monocytogenes (Lm) strain 10403S (MOI 10) for 4 hours.

RNA was harvested, and IFNa mRNA level was quantified by real

time-PCR. Gene expression of IFNa is reported as copy number

per 1,000 copies of b-actin. Samples were assayed in triplicate;

error bars represent standard deviation.

Found at: doi:10.1371/journal.ppat.1000500.s003 (0.23 MB PDF)

Figure S4 Irf3 and Irf5 expression levels in irf32/2 and irf52/2

macrophages. BMDM derived from irf32/2 and irf52/2 mice

and their littermate controls were lysed in RIPA buffer and the Irf3

and Irf5 expression levels was determined by immunoblotting of

anti Irf3 (Zymed) and Irf5 (Abcam) antibodies. Protein loading level

was measured by b-actin antibody (Sigma).

Found at: doi:10.1371/journal.ppat.1000500.s004 (0.40 MB PDF)

Figure S5 Rip2 polyubiquitination is required for the Mtb-

induced Type I IFN response. The rip22/2 transformed

macrophage cell line was infected with the retroviral vector alone

or with retroviruses expressing wild type Rip2 or a form of Rip2

(K209R) that cannot be ubiquitin modified [22]. The rip22/2

reconstituted macrophage cell lines were then infected with Mtb

(MOI 10) for 4 h. RNA was harvested, and IFNb mRNA levels

were quantified using real time PCR. Gene expression is reported

as copy number per 1,000 copies of b-actin. Samples were assayed

in triplicate; error bars represent the standard deviation. Rip2

expression levels in each of the rip22/2 reconstituted macro-

phage cell lines were examined by immunoblotting to insure that

equivalent expression levels of Rip2 were achieved.

Found at: doi:10.1371/journal.ppat.1000500.s005 (0.23 MB PDF)
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