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Summary
Allele frequency estimates in admixed populations, such as Hispanics and Latinos, rely on the sample’s specific admixture composition

and thus may differ between two seemingly similar populations. However, ancestry-specific allele frequencies, i.e., pertaining to the

ancestral populations of an admixed group, may be particularly useful for prioritizing genetic variants for genetic discovery and person-

alized genomic health. We developed a method, ancestry-specific allele frequency estimation in admixed populations (AFA), to estimate

the frequencies of biallelic variants in admixed populations with an unlimited number of ancestries. AFA uses maximum-likelihood esti-

mation bymodeling the conditional probability of having an allele given proportions of genetic ancestries. It can be applied using either

local ancestry interval proportions encompassing the variant (local-ancestry-specific allele frequency estimations in admixed popula-

tions [LAFAs]) or global proportions of genetic ancestries (global-ancestry-specific allele frequency estimations in admixed populations

[GAFAs]), which are easier to compute and are more widely available. Simulations and comparisons to existing software demonstrated

the high accuracy of the method. We implemented AFA on high-quality imputed data of �9,000 Hispanics and Latinos from the

Hispanic Community Health Study/Study of Latinos (HCHS/SOL), an understudied, admixed population with three predominant con-

tinental ancestries: Amerindian, European, and African. Comparison of the European and African estimated frequencies to the respec-

tive gnomAD frequencies demonstrated high correlations (Pearson R2 ¼ 0.97–0.99). We provide a genome-wide dataset of the estimated

ancestry-specific allele frequencies for available variants with allele frequency between 5% and 95% in at least one of the three ancestral

populations. Association analysis of Amerindian-enriched variants with cardiometabolic traits identified five loci associated with lipid

traits in Hispanics and Latinos, demonstrating the utility of ancestry-specific allele frequencies in admixed populations.
Introduction

Admixed populations havemultiple ancestral origins, with

different admixture patterns within and between popula-

tions, resulting from historical worldwide migration

of populations.1 Estimation of ancestry-specific allele fre-

quencies in admixed populations can identify ancestry-

specific enriched variants, with higher minor allele

frequencies (MAFs) in one ancestry compared with other

ancestries. Fine mapping of association regions detected

in admixture mapping, where one tests the association

between local ancestry genomic interval (LAI) counts and

a trait, can prioritize ancestry-specific enriched variants

located in the identified regions for conditional associ-

ation testing.2,3 Similarly, genome-wide association studies

(GWASs) of admixed populations can be followed by

replication testing in unadmixed populations from a spe-

cific ancestry chosen based on the associated variant’s

ancestry-specific frequencies. More generally, allele fre-

quencies are important for interpreting sequence variants,

distinguishing between pathogenic and benign variants,4

inferring demographic histories of populations, and deter-
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mining susceptibility to disease.5 Thus, ancestry-specific

allele frequencies can contribute to both research and

personalized medicine of admixed populations. This is

especially relevant for modern-day populations that are

becoming increasingly genetically admixed.6

Several population genetic software packages were previ-

ously developed for admixture and population structure

analyses, producing a byproduct of ancestry-specific allele

frequencies estimation in admixed populations.7,8 Gravel

et al.9 developed an algorithm based on the expectation

maximization (EM) framework relying on LAIs, but their

method is not publicly available. A similar publicly avail-

able algorithm, Ancestry-Specific Allele Frequency Estima-

tion (ASAFE), was developed. However, this method is

available only for a three-way admixed diploid population

and for genotyped markers located in LAIs, and it has not

been implemented for large genome-wide analyses.10

ASAFE was later extended to multi-way admixed popula-

tions in an algorithm that maximizes a multinomial likeli-

hood.11 Unfortunately, the software was not made public.

Here, we developed a computationally efficient method,
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populations (AFA), for the estimation of ancestry-specific

allele frequencies for biallelic variants with no need for

phased data. AFA can be applied to admixed populations

with an unlimited predetermined number of ancestries.

Ourmodel is similar to that proposed by Gravel et al., using

maximum-likelihood estimation by modeling the condi-

tional probability of having a variant allele given local pro-

portion ancestries (local-ancestry-specific allele frequency

estimations in admixed populations [LAFA]). We further

extended the model by leveraging global ancestry propor-

tions (global-ancestry-specific allele frequency estimations

in admixed populations [GAFA]), which are easier to

compute and are more widely available, and we provide

publicly available code. We further improved upon previ-

ous methods by adding accuracy estimates and developing

commonworkflow language (CWL) workflows.We studied

the performance of GAFA and LAFA in simulations and

compared them with existing software. We then imple-

mented the method on high-quality imputed genome-

wide genetic data from the Hispanic Community Health

Study/Study of Latinos (HCHS/SOL), an admixed popula-

tion previously characterized with three predominant con-

tinental ancestries: Amerindian, European, and African,

with varying proportions between individuals.12 We pro-

vide estimated Hispanic or Latino ancestry-specific allele

frequencies estimated based on the HCHS/SOL for all

variants with allele frequency between 5% and 95% in at

least one of the three ancestral populations. Finally, we

performed association analyses of Amerindian-enriched

variants with cardiometabolic traits in the HCHS/SOL

population.

We computed ancestry-specific frequencies through AFA

using the previous global proportion ancestries calculated

by ADMIXTURE12 and LAIs calculated by RFMix.13,14 We

hypothesized that frequency estimates of variants using

local ancestries (LAFA) would be more precise than esti-

mates using global proportion ancestries (GAFA). We

compared our estimated ancestral-specific variant fre-

quencies for European and African ancestries with their

respective frequencies published in gnomAD, expecting

them to be similar though not identical. We provide

estimated Hispanic or Latino ancestry-specific allele fre-

quencies estimated based on the HCHS/SOL for all variants

with allele frequency between 5% and 95% in at least one

of the three ancestral populations. Finally, we performed

association analyses of Amerindian-enriched variants

with cardiometabolic traits in the HCHS/SOL population.
Subjects and methods

Study population
The HCHS/SOL is a population-based longitudinal cohort study of

US Hispanics and Latinos with participants recruited from four

field centers (Bronx, NY; Chicago, IL; Miami, FL; and San Diego,

CA) by a sampling design previously described.15,16 A total of

16,415 self-identified Hispanic or Latino adults 18 to 74 years

old were recruited during the first visit between 2008 and 2011,
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and various biospecimen and health information about risk and

protective factors was collected. Most of the individuals self-iden-

tify with six Hispanic or Latino backgrounds: Cuban, Central

American, Dominican, Mexican, Puerto Rican, and South Amer-

ican backgrounds (Table S1).12 All participants in this analysis

signed informed consent in their preferred language (Spanish or

English) to use their genetic data. The study was reviewed and

approved by the Institutional Review Boards at all collaborating

institutions.
Genetic data
Genotyping and quality control were previously described.12,17 In

brief, genotyping was performed using Illumina MEGA array, and

a total of 11,928 samples and 985,405 genotyped variants passed

quality control. Genome-wide imputation was conducted using

the multi-ethnic NHLBI Trans-Omics for Precision Medicine

(TOPMed) freeze 8 reference panel (GRCh38 assembly).18 This

panel includes �8,000 individuals from the HCHS/SOL, as well

as additional Hispanic or Latino individuals. The improvement

of imputation quality by a previous freeze of the TOPMed panel,

which included multi-ethnic populations, was previously demon-

strated.18 Due to the overlap of samples in our target data and the

TOPMed freeze 8 reference panel (n ¼ 6,201), we recalculated the

estimated imputation quality (R2) using only non-overlapped

samples to avoid over-estimates of the imputation quality. After

filtering variants with R2 < 0.6 and minor allele count %5, a total

of 42,038,818 imputed variants remained for analysis. Coordi-

nates of genotyped and imputed variants were converted from

GRCh38 to GRCh37 using the liftOver tool from University of

California, Santa Cruz (UCSC)19 for LAFA analysis since the LAIs

were based on GRCh37 (as described below).
Global proportion ancestries
Global continental ancestry proportions were previously estimated

for 9,864 unrelated HCHS/SOL individuals using ADMIXTURE soft-

ware under the assumption of three ancestral populations (Amerin-

dian, African, and European), based on reference panels represent-

ing these ancestral populations.12 For this analysis, we used

genetic data from 8,933 individuals who consented to genetic

data sharing with the broad scientific community. Overall, the

average ancestral global proportion of the three ancestries in the to-

tal dataset are 55% European, 30.5% Amerindian, and 14.5% Afri-

can. The distribution of the average global proportion of the three

ancestries by background groups is presented in Table S1.
LAIs
Three-way LAIs (Amerindian, African, and European) were previ-

ously inferred in 12,793 HCHS/SOL individuals using the RFMix

software with a reference panel derived from the combination of

the Human Genome Diversity Project (HGDP) and the 1000

Genome Project (using the GRCh37 assembly) representing the

relevant ancestral populations.20 Overall, 15,500 are LAIs dispersed

throughout the genome (14,815 LAI in autosomal chromosomes),

each spanning ten to hundreds of thousands of base pairs. After

excluding individuals to generate a dataset inwhich none of the in-

dividuals are third-degree relatives or closer and individuals who

withdrew consent for genetic studies, 9,512 individuals remained.

All participants in this analysis signed informed consent in their

preferred language (Spanish or English) to use their genetic data.

The study was reviewed and approved by the Institutional Review

Boards at all collaborating institutions.
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Statistical analysis
The statistical model for estimation of ancestry-specific allele

frequencies in admixed populations (AFA)

Suppose that we have a population of n individuals with predeter-

mined K genetic ancestries. Consider a specific biallelic genetic

variant in an autosomal chromosome. Each person has two copies

of a variant potentially inherited from different ancestries. The ge-

netic ancestry of each copy of the variant was inherited from the

local ancestry encompassing the variant. For any given variant

allele g, denote its ancestry-specific frequencies by f1;.; fK in an-

cestries 1; .; K, respectively. Denote further the probability that

person i has local ancestry at the variant by pi;k; k ¼ 1; .;K. We

have that pi;1.; pi;K satisfy 0%pi;k%1 and pi;1 þ.þ pi;K ¼ 1 for

i ¼ 1; .;n; k ¼ 1; .; K. The allele count at the variant on a given

chromosomal copy is sampled from a mixture of Bernoulli distri-

butions, with

Prðgi ¼1Þ¼Prðgi ¼1 j ancesry 1Þ3 pi;1 þ.

þ Prðgi ¼1 j ancestry KÞ3pi;K ¼ f1pi;1 þ/

þ fKpi;K ¼ pi;mix:

For unphased data, or when using genetic ancestry probabilities

that are not specific to the variant (e.g., global ancestries), the

probabilities pi;1; /; pi;K are the same for the two copies of the

allele. Under Hardy-Weinberg equilibrium (HWE) at each ancestry,

we can extend the model above to a binomial distribution with

two alleles. If gi is now a biallelic variant, then

Prðgi ¼ lÞ¼
�
2
l

�
pli;mix

�
1� pi;mix

�2�l

; l ˛ f0;1;2g: (Equation 1)

Assuming ancestral probabilities pi;1;.; pi;K are known, the un-

known frequencies f1;.; fK can now be estimated by maximizing

the log likelihood across the sample of independent individuals.

The standard errors of the estimated frequencies can be used to

compute confidence intervals. We use the base R optim function

with the ‘‘L-BFGS-B’’ optimization method for K > 1 ancestries

and the ‘‘Brent’’ method when estimating allele frequency in

one ancestry (for example, if K � 1 for K > 1 frequencies are

known or assumed).

Choosing probabilities of genetic ancestry at the variant

To maximize the likelihood above, we assume that the ancestral

probabilities pi;1;.; pi;K of the study individuals are known. In

practice, they are estimated. We consider two estimators. First is

the global proportion of ancestry (GAFA). These could be

computed using software packages such as ADMIXTURE or

RFMix with a subset of independent, genotyped genetic variants,

with or without a reference panel.6–8,14 The second estimator is

based on LAIs (LAFA). Local ancestry analysis results in a segmen-

tation of the genome in which each segment, LAI, is assigned a

genetic ancestry. Thus, a given variant g is overlapping with a

certain LAI, say LAIg, which is annotated with two genetic ances-

tries. When these LAIs are unphased with respect to the allele

counts, we first generate a vector of counts of local ancestries

ðci;1;.; ci;KÞ and divide all entries by two, the highest attained

count. In mathematical notation,

pi;k ¼ ci;k
�
2 ¼ �

# genetic ancestries of type k in LAIg
��

2; k

¼ 1;.; K:

The probabilities here take values 0; 0:5; 1. If using phased local

ancestry data, in that local ancestry of each of the two estimated
Hum
chromosomal alleles, the algorithm can use the Bernoulli distribu-

tion with the estimated ancestral distribution as the pi;k, e.g., the

posterior probabilities of ancestry that are provided by RFMix.

A potential limitation of the AFA algorithm is that it uses bino-

mial distribution with the person-specific parameter being a

mixture of the ancestry-specific frequencies. This implies that an

HWE is assumed on the wrong, mixture-level parameter. With

LAFA, we can instead use the Poisson binomial distribution: a

sum of independent Bernoulli variables with potentially different

parameters. More information about LAFA-Poisson binomial is

provided in Note S1. Our simulations (below) address these issues

by comparing implementation options and assessing estimation

and inference accuracy.

Computing ancestry-specific allele frequencies on the X chromosome

The methodology for the X chromosome is similar, with a slight

difference for males, where we use a Bernoulli distribution (or a

Binomial distribution with parameters ðpmix; 1Þ) to account for

the fact that there is a single observed allele.

Handling of boundary conditions

The log likelihood of the binomial distribution cannot be maxi-

mized at the boundaries, i.e., when the data are consistent with

an ancestry-specific frequency at the boundary of the parameter

space, e.g., fk˛f0;1g for some k ¼ 1; .; K. To prevent non-conver-

gence of the estimation algorithm, we implemented a procedure

that generates synthetic observations and adds them to the data.

These are 2K synthetic observations, two for each ancestry,

mimicking a reference and alternate allele from each of the genetic

ancestries. For example, one synthetic observation will have a sin-

gle reference allele for a (simulated) person, and the ancestral

probabilities for this person are pi;k ¼ 1 for ancestry k and pi;l ¼ 0

for all other ancestries lsk; l˛f1; .; Kg. Another synthetic obser-

vation will have a single alternate allele for this variant and the

same values of ancestral probabilities. In addition, the algorithm

allows for setting box constraints on the boundaries.21

An approximation for computing ancestry-specific allele frequency

using imputed data

When imputed data are confidently estimated, the extension of

the algorithm to imputed genotypes is straightforward. For

imputed genotypes with fractions, we cannot compute the log

likelihood based on the probability in Equation 1. Instead, we

notice that we can decompose the function into two parts: ‘‘2

choose l’’ and pli;mixð1� pi;mixÞ2�l. The second part can be computed

for any l, while the first part cannot. Instead, we apply linear inter-

polation to compute a value approximating 2 choose l based on

the values of this function evaluated at the nearest integers higher

and lower than l.

Simulation studies

We studied ourmethod, AFA, in simulations to determine how the

ancestry-specific allele frequency estimation accuracy is influ-

enced by the effective sample size, effn, defined as effnk ¼
Pn
i¼1

pi;k

for ancestry k ¼ 1; .; K, by the expected allele frequencies (rare

versus common variants) and by using the local versus global pro-

portion ancestries (LAFA versus GAFA).

We simulated a three-way admixed population, using fixed

effn1 ¼ effn2 ¼ 1,000 and varied effn3 in the range 100–4,000,

and focused on the estimation of f3. We fixed f1 ¼ 0:5; f2 ¼ 0:3

throughout and varied the allele frequency f3˛f0:01; 0:05; 0:1;
0:2 g. First, we simulated local ancestries based on global effn

(where n ¼ effn1 þ effn2 þ effn3). We assumed that each person

has two copies of 10 LAIs of equal lengths. Thus, the overall
an Genetics and Genomics Advances 3, 100096, April 14, 2022 3



number of LAIs of ancestry k˛f1; 2;3g was n3 effnk � 20. Then,
we randomly assigned 20 LAIs (two copies of 10 LAIs) to individ-

uals and computed the global proportion of ancestries for each

individual as the proportion of LAIs of each ancestry. The genetic

variant was assumed to be in the first LAI. Next, we simulated the

allele counts based on the allele frequencies f1; f2; and f3. For each

person and each copy of the first LAI, we sampled the allele from

the Bernoulli distribution with a probability according to the

ancestry at the interval copy. To mimic the real data, which are

unphased, we then summed the allele count across the two

copies for each person. Finally, we estimated ancestry-specific

allele frequencies using the computed global proportion ances-

tries and using the ancestries of the first LAI. We performed

nsim ¼ 1,000 simulation replicates for each setting. We also per-

formed a similar simulation based on a homogeneous population

derived from a single ancestry to compare the expected bias in

frequency estimation in admixed populations with that in a

non-admixed population when using the same algorithm.

Let bf3 ¼ 1
nsim

Pnsim
j¼1

cf3;j denote the mean estimated f3 across simula-

tions. We assessed the frequency estimation accuracy of f3 using

the following measures:

1. Bias: ðf3 � bf3Þ.
2. Inflation: bf3 =f3.
3. RMSE (root-mean-squared error):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nsim

Pnsim
j¼1 ðf3 � cf3;j Þ2q

.

Similarly, we also simulated two-way, four-way, and five-way ad-

mixed populations and assessed the frequency estimation accu-

racy for each scenario. We also simulated a three-way admixed

population and compared the frequency estimation accuracy for

GAFA, LAFA, and LAFA phased data (when the ancestry of each

allele copy is known). We also simulated a two-way admixed pop-

ulation with various scenarios of ancestry-specific frequencies and

ancestry-heterozygosity proportions and compared the frequency

estimation accuracy for LAFA, LAFA phased, and LAFA Poisson

binomial (more information on Note S2).

We further compared LAFA with ASAFE to compare both accu-

racy and computation time. Both methods operate on local ances-

tries and can be applied to a simulated three-way admixed simu-

lated dataset. We fixed effn1 ¼ effn2 ¼ effn3 ¼ 1,000 and f1 ¼
0:5; f2 ¼ 0:3 and varied the allele frequency f3˛f0:1;0:2;0:4g. We

simulated local ancestries similar to the description above.We esti-

mated ancestry-specific allele frequencies using LAFA (Poisson

binomial and binomial) and ASAFE, with a nsim ¼ 1,000 simula-

tion replicates for each setting. We computed the average

computing time, average bias, and RMSE per variant for LAFA

and ASAFE.

Comparing ancestry-specific allele frequency estimates with previ-

ously published estimates

We compared the estimated ancestry-specific frequencies of nine

variants using GAFA and LAFA with previously published esti-

mated ancestry-specific allele frequencies based on the ASAFE

method in the HCHS/SOL dataset.3,22,23 We also compared the

estimated Amerindian frequency of four variants with the previ-

ously published frequencies in Pima-Indians.3

Using ADMIXTURE to estimate ancestry-specific allele frequencies

We used ADMIXTURE to estimate ancestry-specific allele fre-

quencies in HCHS/SOL and to compare them with AFA estimates.

We first performed linkage disequilibrium (LD) pruning in the

HCHS/SOL unrelated dataset, using the –indep-pairwise com-

mand in Plink (window size 50 kb, a shift of 10 variants at each
4 Human Genetics and Genomics Advances 3, 100096, April 14, 202
step, and LD between variants r2 > 0.1), as suggested by the

ADMIXTURE tutorial. We then ran the ADMIXTURE algorithm

on the output file that included n ¼ 1,274,187 genome-wide var-

iants. The resulting P file included ancestry-specific estimates for

these variants. We compared these estimates with the correspond-

ing GAFA estimates.

Comparing estimated ancestry-specific allele frequencies with

gnomAD allele frequencies

We compared the estimated European and African frequencies in

the admixed HCHS/SOL population using GAFA and LAFA with

the gnomAD v.2 liftover (GRCh38) non-Finnish European and Af-

rican frequencies, respectively, by plotting and calculating the

Pearson squared correlation coefficient.We assessed only gnomAD

variants passing quality control filters (FILTER ¼ ¼ ‘‘PASS’’), with

an ancestral minor allele count of R100 respective to the assessed

ancestry. We performed the same comparison between gnomAD

frequencies and ADMIXTURE-estimated frequencies. Finally, we

calculated the percentage of estimated confidence intervals (CIs)

using GAFA and LAFA, which include the corresponding gnomAD

MAFs, binned by MAF categories.

Identification of Amerindian-enriched variants in the HCHS/SOL

population

In populations that have undergone bottlenecks and genetic

drifts, such as the Native Americans and American Indians, it is ex-

pected that some risk variants of large effects have risen in fre-

quency compared with the population of origin.9,24 We thus

sought variants with a substantially higher Amerindian-specific

frequency in the HCHS/SOL compared with the European- and Af-

rican-specific allele frequencies. We defined Amerindian-enriched

variants as those with both European and African MAF< 0.01 and

Amerindian frequency between 0.05 and 0.95.

Associations of Amerindian-enriched variants with cardiometabolic

traits

We performed association tests for the Amerindian enriched vari-

ants using the ‘‘GENESIS’’ R package, with 12 cardiometabolic-

related traits in �11,700 HCHS/SOL individuals who had both

genetic data and cardiometabolic traits. We adjusted for age, sex,

center, log of the sample weights, first five principal components

(PCs), and genetic analysis groups. Genetic analysis groups were

constructed based on a combination of self-identified Hispanic or

Latino background and genetic similarity and are classified as Cen-

tral American, Cuban, Dominican, Mexican, Puerto Rican, and

South American.12 We further adjusted for both linear and squared

age for systolic and diastolic blood pressure and hypertension and

adjusted for BMI for all outcomes except BMI and obesity. Table

S2 lists the 12 cardiometabolic outputs we analyzed and their corre-

sponding covariates and medication adjustments. We used the

Bonferroni correction to determine the p value threshold. To iden-

tify independently associated SNPs, we performed conditional anal-

ysis using the index (most significant) SNP as a covariate.
Results

Simulation studies

Table 1 and Figure 1 summarize the results from simulation

studies of frequency estimation in a three-way admixed

population, based onGAFA or LAFA. For comparison, simu-

lation results based on an unadmixed population under

the same framework, essentially reducing to standard

maximum likelihood estimation, are presented in Table S3
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Table 1. Results from simulation studies of frequency estimation of a biallelic variant in a three-way admixed population, based on AFAs,
by different effective sample sizes and different expected minor allele frequencies

Expected
MAF

Effective
N

Three-way admixed population using GAFA Three-way admixed population using LAFA

MAF
mean

MAF
difference

MAF
ratio RMSE

CI %
coverage

Interval
2.5%

Interval
97.5%

MAF
mean

MAF
difference

MAF
ratio RMSE

CI %
coverage

Interval
2.5%

Interval
97.5%

0.005 100 0.153 0.148 30.556 0.164 0.90 0.0569 0.3284 0.040 0.035 8.001 0.039 0.97 0.0172 0.0797

200 0.109 0.104 21.736 0.115 0.90 0.0407 0.2264 0.023 0.018 4.643 0.021 0.98 0.0102 0.0499

500 0.063 0.058 12.683 0.065 0.90 0.0251 0.1327 0.009 0.004 1.856 0.006 0.99 0.0038 0.0194

1,000 0.040 0.035 7.981 0.040 0.91 0.0145 0.0866 0.007 0.002 1.380 0.003 0.99 0.0029 0.0123

2,000 0.023 0.018 4.542 0.020 0.93 0.0088 0.0471 0.006 0.001 1.105 0.002 0.94 0.0027 0.0091

4,000 0.012 0.007 2.468 0.009 0.93 0.0047 0.0253 0.005 0.000 1.060 0.001 0.94 0.0035 0.0072

0.01 100 0.156 0.146 15.631 0.164 0.90 0.0609 0.3369 0.043 0.033 4.306 0.038 0.97 0.0174 0.0865

200 0.110 0.100 11.013 0.112 0.91 0.0424 0.2340 0.027 0.017 2.651 0.020 0.98 0.0103 0.0563

500 0.066 0.056 6.645 0.064 0.92 0.0247 0.1395 0.014 0.004 1.401 0.007 0.99 0.0043 0.0272

1,000 0.044 0.034 4.383 0.039 0.91 0.0171 0.0928 0.012 0.002 1.156 0.004 0.96 0.0050 0.0195

2,000 0.026 0.016 2.622 0.020 0.93 0.0093 0.0562 0.011 0.001 1.053 0.002 0.95 0.0067 0.0151

4,000 0.016 0.006 1.574 0.009 0.95 0.0061 0.0303 0.010 0.000 1.022 0.001 0.94 0.0074 0.0129

0.05 100 0.176 0.126 3.524 0.149 0.94 0.0685 0.3589 0.071 0.021 1.410 0.034 0.97 0.0271 0.1327

200 0.134 0.084 2.677 0.102 0.94 0.0500 0.2681 0.060 0.010 1.208 0.024 0.95 0.0235 0.1071

500 0.091 0.041 1.810 0.056 0.94 0.0344 0.1757 0.053 0.003 1.063 0.013 0.93 0.0290 0.0797

1,000 0.069 0.019 1.388 0.033 0.95 0.0259 0.1258 0.051 0.001 1.020 0.008 0.96 0.0373 0.0660

2,000 0.056 0.006 1.117 0.018 0.97 0.0265 0.0887 0.050 0.000 1.002 0.004 0.96 0.0413 0.0588

4,000 0.052 0.002 1.035 0.010 0.95 0.0336 0.0716 0.050 0.000 1.004 0.003 0.95 0.0446 0.0561

0.1 100 0.200 0.100 2.003 0.134 0.95 0.0744 0.4059 0.115 0.015 1.152 0.038 0.96 0.0512 0.1863

200 0.164 0.064 1.641 0.093 0.94 0.0611 0.3204 0.107 0.007 1.068 0.026 0.96 0.0627 0.1587

500 0.126 0.026 1.259 0.052 0.95 0.0504 0.2293 0.102 0.002 1.023 0.015 0.96 0.0742 0.1320

1,000 0.110 0.010 1.104 0.033 0.95 0.0512 0.1744 0.101 0.001 1.009 0.010 0.95 0.0823 0.1214

2,000 0.103 0.003 1.031 0.021 0.95 0.0640 0.1433 0.100 0.000 1.001 0.006 0.95 0.0882 0.1131

4,000 0.101 0.001 1.009 0.011 0.97 0.0796 0.1217 0.100 0.000 1.003 0.004 0.95 0.0929 0.1084

0.2 100 0.264 0.064 1.322 0.123 0.96 0.0984 0.4848 0.209 0.009 1.044 0.043 0.96 0.1275 0.2906

200 0.234 0.034 1.171 0.086 0.95 0.0955 0.4126 0.203 0.003 1.015 0.029 0.96 0.1466 0.2588

500 0.214 0.014 1.069 0.059 0.95 0.1062 0.3281 0.201 0.001 1.006 0.018 0.94 0.1655 0.2379

1,000 0.205 0.005 1.023 0.036 0.96 0.1351 0.2749 0.200 0.000 1.001 0.012 0.96 0.1764 0.2217

2,000 0.201 0.001 1.005 0.023 0.95 0.1571 0.2468 0.200 0.000 1.002 0.008 0.95 0.1844 0.2152

4,000 0.200 0.000 1.000 0.013 0.96 0.1755 0.2240 0.200 0.000 1.000 0.005 0.95 0.1895 0.2103

For each of the settings, we tested 1,000 simulation replicates and calculated the mean frequency estimate; the difference; ratio of the mean observed frequency
and the expected frequency; the RMSE of the estimate frequencies; the percentage of CI, including the expected frequency (coverage); and the 95% interval of
the estimated frequencies. The results refer to one of the ancestries. The characteristics of the other two ancestries were the same in all simulations, with effective
sample size of effn ¼ 1,000, one ancestry with MAF ¼ 0.5, and the other with MAF ¼ 0.3.
Abbreviations: AFA, ancestry-specific allele frequency estimation in admixed populations; CI, confidence interval; GAFA, global-ancestry-specific allele frequency
estimation in admixed populations; LAFA, local-ancestry-specific allele frequency estimation in admixed populations; MAF, minor allele frequency; RMSE, root-
mean-squared error.
and Figure S1. As expected, estimated frequencies become

more accurate with increasing effective sample size and

increasing MAF. Likely due to the boundaries of the param-

eter space, the estimated frequencies tend to be biased to-

ward more common MAFs until large-enough effective

sample sizes or allele frequencies (or, in other words,

enough counts of the minor allele) are available. In addi-
Hum
tion, accuracy increased when using LAFA compared with

GAFA. For example, for MAF ¼ 0.01 and effn ¼ 4,000, we

had bias ¼ 0.00574 for GAFA and bias ¼ 0.00022 for

LAFA; for MAF ¼ 0.2 and effn ¼ 1,000, we had bias ¼
0.00453 for GAFA and bias ¼ 0.00028 for LAFA (Table 1).

Similar trends of improved accuracy of frequency estima-

tion with larger effective sample sizes and higher MAFs
an Genetics and Genomics Advances 3, 100096, April 14, 2022 5



Figure 1. AFA simulation studies
Results from simulation studies of frequency estimation of a biallelic variant in a three-way admixed population, based on (A) global-
ancestry-specific allele frequency estimation in admixed populations (GAFA) and (B) local-ancestry-specific allele frequency estimation
in admixed populations (LAFA). Various settings include a different effective sample size of effn (x axis) and different expected minor
allele frequencies (indicated in the upper title of each graph). We performed 1,000 simulation replicates of each scenario. Each dot rep-
resents the mean frequency of 1,000 simulation replicates, and each line represents the 95% interval estimated frequencies across the
simulation replicates.
are observed in the unadmixed population analysis (Table

S3; Figure S1) with, unsurprisingly, higher accuracy

compared with the admixed population. Figure S2 summa-

rizes the results from simulation studies of GAFA or LAFA

ancestry-specific frequency estimation in two- to five-way

admixed populations, showing similar accuracy estima-

tions for each case (while holding the effective sample

size from the ancestral population of interest fixed), empha-

sizing the compatibility of our method to admixed popula-

tions with multiple ancestries. Figure S3 summarizes the

results from simulation studies in a three-way admixed pop-

ulation of GAFA, LAFA, and LAFA using phased data (LAFA-

phased), showing slightly higher accuracy of LAFA-phased

compared with LAFA, as expected. Figure S4 summarizes

the results from LAFA simulation studies in a two-way ad-

mixed population with different ancestry-heterozygosity

proportions. LAFA-phased method is the most accurate;

its performance did not depend on ancestry proportion

heterozygosity. However, a high proportion of ancestry het-

erozygosity affects the accuracy of both LAFA and LAFA
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Poisson binomial, with LAFA being the most sensitive to

high heterozygosity proportion.

Table S4 summarizes the simulation results comparison

between LAFA and ASAFE. Using three ancestries, the

average ancestry-specific allele frequency estimates are

similar for both methods, and so are the average bias and

RMSE, both low and similar. The average computing time

per single variant was higher for LAFA compared with

ASAFE, and it was substantially higher when LAFA used

the Poisson binomial distribution. However, we developed

CWL workflows for both GAFA and LAFA, which are

portable to multiple computational environments and

demonstrate the time efficiency of our method when

applied on a genome-wide scale (see more details in the

following section).

Hispanic Community Health Study/Study of Latinos

We applied AFA to the HCHS/SOL imputed dataset,

excluding variants with minor allele count less than or

equal to five, setting frequency boundary conditions
2



Table 2. Number of estimated variant frequencies per chromosome in HCHS/SOL that are common,with frequency between 5%and 95%,
in at least one of the three ancestral populations, stratified by boundary condition, calculated via GAFA or LAFA

Chromosome

GAFA LAFA

Total Boundary 1 3 10�5 (%) Boundary 1 3 10�2 Total Boundary 1 3 10�5 (%) Boundary 1 3 10�2

1 731,372 583,809 (79.82) 147,563 733,709 413,042 (56.3) 320,667

2 789,792 629,106 (79.65) 160,686 812,360 448,927 (55.26) 363,433

3 683,573 547,793 (80.14) 135,780 692,240 389,055 (56.2) 303,185

4 699,617 560,836 (80.16) 138,781 703,178 407,366 (57.93) 295,812

5 608,090 488,543 (80.34) 119,547 622,061 343,828 (55.27) 278,233

6 623,354 516,241 (82.82) 107,113 625,767 355,100 (56.75) 270,667

7 557,900 455,514 (81.65) 102,386 557,945 321,508 (57.62) 236,437

8 530,427 419,391 (79.07) 111,036 545,404 294,384 (53.98) 251,020

9 411,577 332,874 (80.88) 78,703 417,816 232,124 (55.56) 185,692

10 483,953 394,154 (81.44) 89,799 481,662 276,438 (57.39) 205,224

11 470,444 378,998 (80.56) 91,446 479,053 269,368 (56.23) 209,685

12 458,340 367,421 (80.16) 90,919 459,471 257,015 (55.94) 202,456

13 348,128 288,100 (82.76) 60,028 353,459 208,717 (59.05) 144,742

14 307,247 250,059 (81.39) 57,188 307,967 171,930 (55.83) 136,037

15 271,244 219,250 (80.83) 51,994 275,865 155,716 (56.45) 120,149

16 285,290 226,155 (79.27) 59,135 279,954 158,444 (56.6) 121,510

17 256,758 207,176 (80.69) 49,582 250,340 140,177 (55.99) 110,163

18 270,605 221,435 (81.83) 49,170 273,281 158,435 (57.98) 114,846

19 215,685 176,195 (81.69) 39,490 202,739 115,992 (57.21) 86,747

20 212,499 169,496 (79.76) 43,003 212,818 118,307 (55.59) 94,511

21 129,185 105,026 (81.3) 24,159 131,628 75,669 (57.49) 55,959

22 127,717 104,683 (81.96) 23,034 123,688 69,062 (55.84) 54,626

X 335,292 235,553 (70.25) 99,739 301,688 139,741 (46.32) 161,947

Total 9,808,089 7,877,808 (80.32) 1,930,281 9,844,093 5,520,345 (56.08) 4,323,748
(low¼ 0.00001; high¼ 0.99999) as arguments to the opti-

mization function. If AFA did not converge for a given

variant, we applied it again with a stricter boundary con-

dition (low ¼ 0.01; high¼ 0.99). We developed workflows

for GAFA and LAFA on BioData Catalyst Powered by

Seven Bridges.25 We processed data in a parallel manner

by batching the workflows by chromosomes and scat-

tering jobs by blocks of 3,000 variants, using the

c5.18xlarge spot instance provisioned on Amazon Web

Services. The workflows are described (represented) in

the CWL open standard26 and are therefore portable to

multiple computational environments. The computation

time for the shortest chromosome (chromosome 21; n ¼
552,556 variants) was 57 min using GAFA and 110 min

using LAFA, with �50 jobs running in parallel. The num-

ber of estimated variant frequencies per chromosome is

summarized in Table S5 stratified by boundary condition

for both GAFA and LAFA. The number of variants for

which we provide estimated variant frequencies, under

the condition that they have a frequency between 5%
Hum
and 95% in at least one of the three ancestral populations,

is summarized in Table 2 stratified by boundary condition

for both GAFA and LAFA. In general, rare variants

required strict boundary conditions (0.01 rather than

0.00001) on the estimated frequencies for algorithm

convergence.

Comparing ancestry-specific allele frequency estimates

with previously published estimates

Table 3 summarizes nine previously published HCHS/SOL

ancestry-specific allele frequencies estimated by ASAFE for

comparison with our GAFA and LAFA frequency estima-

tions. Frequency estimations for all nine variants are highly

comparable, with absolute mean frequency differences for

African ¼ 0.0008, European ¼ 0.0153, and Amerindian ¼
0.0101 for GAFA and African ¼ 0.0023, European ¼ 0.019,

and Amerindian ¼ 0.0094 for LAFA. Table 4 summarizes

four previously published allele frequencies of Pima Indians

to the Amerindian-specific allele frequency estimated in

HCHS/SOL based on GAFA and LAFA. Here, too, the
an Genetics and Genomics Advances 3, 100096, April 14, 2022 7



Table 3. HCHS/SOL ancestry-specific allele frequencies previously published, estimated by ASAFE, compared with GAFA and LAFA
frequency estimations

SNP CHR POS (hg38) Ref. Alt.

Method

ASAFE GAFA LAFA

African European Amerindian African European Amerindian African European Amerindian

rs4133185a 7 15,461,794 A T 0.126 0.180 0.823 0.123 0.172 0.817 0.124 0.175 0.829

rs4628172a 7 15,455,525 T G 0.101 0.175 0.820 0.097 0.168 0.814 0.100 0.171 0.827

rs4721442a 7 15,466,382 T G 0.877 0.821 0.177 0.884 0.828 0.179 0.879 0.826 0.164

rs1458038b 4 80,243,569 T C 0.030 0.250 0.310 0.065 0.257 0.289 0.035 0.248 0.322

rs9366626b 6 25,684,725 G A 0.750 0.620 0.250 0.748 0.627 0.324 0.744 0.615 0.268

rs73156692b 12 101,214,917 A G 0.130 0.230 0.010 0.165 0.242 0.012 0.140 0.244 0.011

rs113719683c 4 40,431,429 T C 1.000 0.926 0.997 0.974 0.872 0.952 0.990 0.866 0.959

rs112178366c 4 40,431,425 A G 1.000 0.927 0.997 0.974 0.873 0.952 0.990 0.867 0.959

rs112927755c 4 40,431,443 G A 1.000 0.927 0.997 0.976 0.879 0.952 0.990 0.873 0.959

Frequencies refer to the ref. allele. ASAFE, ancestry-specific allele frequency estimation.
aBurkart,22 2017
bSofer et al.,3,17 2017
cJian et al.,23 2020
absolute mean frequency differences are low with GAFA ¼
0.03 and LAFA ¼ 0.01.

Comparing estimated ancestry-specific allele

frequencies with gnomAD

Figure 2 compares the estimated European- and African-

specific allele frequencies in HCHS/SOL for variants on

chromosome 2 using GAFA and LAFA with the gnomAD

non-Finnish European and African frequencies, respec-

tively, and stratifies to genotyped variants and imputed

variants with different imputation quality thresholds. Cor-

relations with gnomAD frequencies were similar for all sets

of variants. All other chromosomes’ comparisons with

gnomAD are presented in Figures S6 (GAFA) and S7

(LAFA). All estimated frequencies were highly correlated,

with Pearson R2 ¼ 0.97–0.99. We further calculated the

percentage of gnomAD allele frequencies that are included

in the corresponding CI estimated in HCHS/SOL by GAFA

or LAFA, binned by gnomAD frequency categories (Table

5). The mean range of CIs was also calculated for each cate-

gory and was consistently smaller for LAFA compared with

GAFA since the ancestral determination for each variant is

more accurate when using LAIs. Thus, LAFA resulted in a

lower percentage of included gnomAD allele frequencies

relative to GAFA; however, this does not indicate a superi-

ority of GAFA over LAFA because of potentially true differ-

ences in ancestry-specific allele frequencies in HCHS/SOL

compared with gnomAD. Themean ranges of CIs are lower

in low-frequency variant bins compared with the common

frequency bins, both for GAFA and LAFA.

We also estimated ancestry-specific allele frequencies on a

pruned dataset subset of 1,274,187 variants from HCHS/

SOL using ADMIXTURE. The total running time was

�45h on a Linux cluster. Figure S8A compares the estimated

ancestry-specific allele frequencies using GAFA and ADMIX-
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TURE for all three ancestries. Correlations were high (R2 >

0.99), as expected. Figures S8B and S8C compare the esti-

mated ancestry-specific allele frequencies for the pruned

subset using ADMIXTURE or GAFA with the corresponding

gnomAD frequencies, presenting similar correlations.

Correlation of estimated ancestry-specific allele

frequencies between the GAFA and LAFA for each of the

three ancestries

Figure 3 presents strong correlations of the chromosome 2

estimated ancestry-specific allele frequencies in the HCHS/

SOL population between GAFA and LAFA for each of the

three ancestral populations. The European’s correlation is

stronger than the Africans and Amerindians. This is prob-

ably due to their larger effective sample size in the HCHS/

SOL, enabling a more precise estimation of the alleles’ fre-

quencies (effn based on global proportion ancestries: Afri-

can ¼ 1,296, European ¼ 4,912, and Amerindian ¼ 2,725).

All other chromosomes’ correlations are presented in

Figure S9.

Correlation of the estimated ancestry-specific allele

frequencies between different ancestries

Figure 4 presents weak correlations of the estimated

ancestry-specific allele frequencies for chromosome 2 vari-

ants in the HCHS/SOL population between the three

ancestral populations, for both GAFA and LAFA. The

squared Pearson correlation coefficient is strongest when

comparing Amerindian-specific to European-specific fre-

quencies (GAFA: R2 ¼ 0.78; LAFA: R2 ¼ 0.76), followed

by the comparison of African to European (GAFA: R2 ¼
0.71; LAFA: R2 ¼ 0.71), and weakest in the comparison of

African to Amerindian (GAFA: R2 ¼ 0.61; LAFA: R2 ¼
0.6). Similar correlations of all other chromosomes are pre-

sented in Figures S10 (GAFA) and S11 (LAFA).
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Table 4. Previously published Pima Indians allele frequencies, compared with our GAFA and LAFA Amerindian frequency estimations in
the HCHS/SOL

SNP CHR POS (hg38) Ref. Alt. Pima Indians freq.

GAFA LAFA

Freq. est. CI low CI high Freq. est. CI low CI high

rs75432840a 6 34,143,031 C G 0.28 0.398 0.379 0.417 0.287 0.272 0.303

rs138977532a 6 36,382,025 C T 0.59 0.635 0.620 0.650 0.587 0.572 0.602

rs139139046a 11 71,452,308 G C 0.87 0.831 0.819 0.844 0.823 0.813 0.833

rs72849841a 17 80,298,494 C T 1.00 0.987 0.978 0.996 0.996 0.994 0.998

Frequencies refer to the ref. allele.
aSofer et al.,3,17 2017.
Evaluating the algorithm convergence rate of GAFA and

LAFA by frequency boundary conditions

Summary statistics of HCHS/SOL alleles calculated using

AFA versus alleles that failed calculation are presented in

Table S6. For variants on chromosome 2, 92.3%were calcu-

lated using GAFA (n ¼ 3,299,310,366) and 88.8% were

calculated using LAFA (n ¼ 3,175,914). Low MAF is likely

the main reason for failed AF calculations. LAFA’s success-

ful calculation percentage is lower compared with GAFA,

since the LAIs do not encompass the whole genome, and

the liftover from GRCh38 to GRCh37 (in order to match

each variant to its LAI) also failed for some variants. The

number of overlapped calculated variants in bothmethods

on chromosome 2 is n ¼ 3,102,863, while n ¼ 192,993

variants were successfully calculated only in GAFA and

n ¼ 70,641 variants were successfully calculated only in

LAFA. This emphasizes the importance of developing

both methods and their potential to complement each

other.

Association of Amerindian-enriched variants with

cardiometabolic traits

Results for association analyses of the Amerindian-en-

riched variants (n ¼ 112,824) with 12 cardiometabolic

traits are presented in Figure S12 (qq-plots) and

Figure S13 (Manhattan plots). At the Bonferroni signifi-

cance level of 0.05/112,824 ¼ 4.4 3 10�7, 13 variants

were significantly associated with one or two outcomes

(Table 6), comprising five independent loci. Table S7 sum-

marizes the annotation for these variants using Functional

Annotation of Variants – Online Resource (FAVOR). Three

of these associations (rs17119918 with triglycerides,

rs78950101, and rs4939873 with high-density lipoprotein

[HDL]) would not pass the traditional genome-wide signif-

icance threshold of 53 10�8, demonstrating the advantage

of testing only the ancestry-enriched variants. Our main

finding is a region spanning seven variants (�350 Kbp,

with Amerindian allele frequencies between 0.13 and

0.32), located in chr11q23.3 and associated with triglycer-

ides. One of the variants, rs191206329, was also associ-

ated with HDL. The most significant association was

rs139961185 with triglycerides (p ¼ 1.4 3 10�15), an

imputed variant in an intronic region in the SIK3 gene.

Conditional analyses adjusting for this variant suggest
Hum
this region is composed of two parts, one associated with

higher triglycerides and lower HDL and the other region

associated with lower triglycerides (Table 6). This variant

was previously associated with triglycerides in a Mexican

cohort27 and a multi-ethnic non-European GWAS28

showing similar direction effects. Another interesting re-

gion is chr1p13.3 (111 Kbp) showed a significant negative

association for both total cholesterol and low-density lipo-

protein (LDL), with Amerindian allele frequencies between

0.1 and 0.2. All four variants fall on intronic regions span-

ning three genes: KIAA1324, SARS, and CELSR2.

Global Lipids Genetics Consortium (GLGC) has recently

published aggregated GWAS results, including results for

n ¼ �48,000 Hispanic individuals, including the HCHS/

SOL.29 Table S8 presents these results for the lipid-associ-

ated variants that we identified in HCHS/SOL. All associa-

tions presented the same direction of effect as in HCHS/

SOL and passed the traditional GWAS threshold of 5 3

10�8, including the three associations identified only by

the Bonferroni significance level, suggesting that these

are true associations.
Discussion

We developed amethod for estimating AFA based on either

the rather widely available global proportion ancestry

(GAFA) or LAIs (LAFA). Simulations have shown high accu-

racy of the estimated frequencies for both options, with

increasing accuracy dependent on effective ancestry-spe-

cific sample size and MAF and with a slight advantage for

LAFA over GAFA.We applied our method to the high-qual-

ity imputed genomic data of admixed Hispanics or Latinos

from HCHS/SOL with three predominant continental

ancestries, European, African, and Amerindian, and

demonstrated speed, simplicity of calculation, and a high-

ly successful ancestry-specific frequency estimation rate.

This enabled us to select Amerindian-enriched variants

and identify previously known associations with cardio-

metabolic-related traits in Hispanics or Latinos.

Comparison of the GAFA and LAFA European and

African estimated ancestry-specific allele frequencies in

HCHS/SOL to the respective gnomAD frequencies demon-

strated strong positive correlations. We did not expect
an Genetics and Genomics Advances 3, 100096, April 14, 2022 9



Figure 2. Ancestry-specific variant fre-
quencies’ comparison of HCHS/SOL
(based on AFA) and gnomAD
Scatterplots of estimated ancestry-specific
allele frequencies in HCHS/SOL chromo-
some 2 to corresponding gnomAD non-
Finnish European and African frequencies,
respectively, (A)usingGAFA (no. variants:Af-
rican¼ 1,239,958; European¼ 819,710) and
(B) using LAFA (no. variants: African ¼
1,168,271; European ¼ 775,749), stratified
to genotyped variants and imputed variants
withdifferent imputationquality thresholds.
perfect correlation with the respective gnomAD fre-

quencies, since evolutionary forces, such as genetic drift,

mutagenesis, and natural selection, are expected to accumu-

late and result in frequency differences between the gno-

mAD allele frequencies and the Hispanics or Latinos

ancestry-specific allele frequencies. Similarly, there are likely

differences in ancestry-specific allele frequencies between

the various Hispanic or Latino background groups, due to

their different population histories. In this work, we did

not evaluate such differences due to low power; however,

we expect them to be minor, based on the results from

the gnomAD comparison. The correlation between esti-

mated European-specific frequencies and gnomAD non-

Finnish Europeans frequencies is somewhat stronger

compared with the respective African comparison. This is

likely due to two reasons: first, individuals of African ances-

tries are characterized by a greater level of genetic diversity

compared with Europeans,30 so allele frequency compari-

sons between two populations of African ancestral origin

will demonstrate a larger difference compared with fre-

quency comparisons between two populations of European

ancestral origin. Second, the effective sample size of Euro-

pean ancestry in the HCHS/SOL was substantially larger

than the African effective sample size, enabling a more pre-

cise estimation of allele frequencies. We provide a genome-

wide dataset of USHispanic or Latino ancestry-specific allele

frequencies estimated based on the HCHS/SOL for all vari-

ants with a frequency between 5% and 95% in at least
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one of the three ancestral populations,

using GAFA (n ¼ 9,808,089) and LAFA

(n ¼ 9,844,093). A previous publica-

tion based on sequence data of 66

Mexicans, 60 Colombians, and 55 Pu-

erto Rican individuals from the 1000

Genomes project has published a list

of estimated allele frequencies of the

Native American ancestry propor-

tion.9 Here, we add a substantial in-

crease in the sample size (n ¼
�9,000), in the diversity of theHispan-

ic or Latino background groups, and in

the relative proportion of the Amerin-

dian ancestry (30%), by using high-

quality imputed genomic data based
on a reference panel that includes whole-genome sequences

of >8,000 Hispanic or Latino individuals. Inter-HCHS/

SOL ancestry-specific allele frequencies present the stron-

gest correlations between Amerindians and Europeans,

followed by the Africans and Europeans, followed by Afri-

cans and Amerindians. These findings agree with the

dominant paleoanthropology hypothesis of the African

origin ofmodern humans, followed bymigration to Europe,

followed by other migrations to Asia and America.31

Stronger bottlenecks (founder effect) in Amerindians led

to more drifts and hence more differences in Amerindian

compared with African frequencies. Thus, our dataset can

serve as a unique resource for genetic epidemiology studies

supporting research of personalized health in admixed

populations.

We demonstrated the utilization of the ancestry-specific

allele frequency in HCHS/SOL by conducting association

analysis of Amerindian-enriched variants with 12 cardio-

metabolic traits. We detected 13 variants located in five as-

sociation regions significantly associated with lipid traits.

GWAS results from the GLGC for Hispanics (n ¼ 48,000)

support all our findings, demonstrating proof of concept.

This highlights the advantage of focusing on ancestry-

enriched variants when studying small understudied ad-

mixed populations, enabling more lenient thresholds

and ancestry-unique findings. Further analysis of the asso-

ciated variants and genes encompassing them is needed to

determine biological insights.



Table 5. Percentage of non-Finnish European and African gnomAD frequencies included in the corresponding CI estimated in HCHS/SOL
by GAFA and LAFA, binned by gnomAD frequency categories

AF categories

GAFA LAFA

In (%) Out (%) Na CI lengthb In (%) Out (%) Na CI lengthb

African <0.05 0.47 0.53 6,154,256 0.019 0.71 0.29 5,722,679 0.015

0.05–0.1 0.47 0.53 2,484,933 0.032 0.53 0.47 2,306,660 0.023

0.1–0.2 0.58 0.42 2,179,468 0.049 0.38 0.62 2,024,874 0.031

0.2–0.3 0.53 0.47 1,139,908 0.063 0.31 0.69 1,059,791 0.039

0.3–0.4 0.49 0.51 749,960 0.072 0.31 0.69 696,775 0.044

0.4–0.5 0.48 0.52 557,597 0.076 0.31 0.69 516,965 0.046

0.5–0.6 0.48 0.52 454,150 0.077 0.31 0.69 421,517 0.047

0.6–0.7 0.48 0.52 404,407 0.074 0.30 0.70 376,436 0.045

0.7–0.8 0.48 0.52 365,295 0.068 0.30 0.70 339,991 0.040

0.8–0.9 0.49 0.51 341,980 0.056 0.29 0.71 319,042 0.032

0.9–1 0.56 0.44 298,032 0.033 0.39 0.61 279,494 0.018

European <0.01 0.81 0.19 764,738 0.009 0.64 0.36 713,699 0.006

0.01–0.05 0.40 0.60 2,630,848 0.010 0.30 0.70 2,444,070 0.007

0.05–0.1 0.31 0.69 1,180,341 0.016 0.22 0.78 1,097,724 0.011

0.1–0.2 0.31 0.69 1,379,163 0.023 0.21 0.79 1,287,160 0.015

0.2–0.3 0.31 0.69 913,809 0.028 0.21 0.79 853,249 0.018

0.3–0.4 0.30 0.70 698,053 0.031 0.20 0.80 652,017 0.020

0.4–0.5 0.31 0.69 555,041 0.033 0.21 0.79 518,228 0.021

0.5–0.6 0.31 0.69 460,852 0.033 0.21 0.79 430,399 0.021

0.6–0.7 0.31 0.69 396,445 0.032 0.21 0.79 369,703 0.021

0.7–0.8 0.32 0.68 329,217 0.029 0.21 0.79 306,753 0.019

0.8–0.9 0.32 0.68 272,693 0.024 0.21 0.79 254,014 0.016

0.9–1 0.32 0.68 391,595 0.013 0.14 0.86 366,541 0.008

We assessed only gnomAD variants passing quality control filters (FILTER¼ ‘‘PASS’’), with an ancestry-specific minor allele count ofR100 respective to the assessed
ancestry. The Europeans have an extra category for rare variants (<0.01), since their calculation is based on a larger dataset compared with Africans.
AF, allele frequency.
aNumber of variants.
bMean confidence interval lengths.
The advantages of our method are the ability to estimate

ancestry-specific allele frequencies and CIs of genotyped or

imputed variants in admixed populations with an unlim-

ited number of ancestries, with no need for phased data,

on a genome-wide scale. The estimated ancestry-specific

frequencies are similar to their corresponding frequencies

in ADMIXTURE; however, ADMIXTURE is tuned to apply

to a limited number of pruned genome-wide variants

only and does not produce accuracy estimates. Our

method can be applied to imputed data; however, imputa-

tion quality depends on the representation of the ancestral

populations in the reference panel and will likely affect the

quality of the ancestry-specific allele frequency estimation.

Therefore, we generally recommend applying this method

on variants with high imputation quality and interpreting

results with caution when the imputation quality is

low. The algorithm is applicable for phased data as well.

Thus, our method is simple, computationally efficient, ver-
Hum
satile, and enables a wider usage compared with previous

methods. It can be applied using either global proportions

of genetic ancestries (GAFA) or LAI proportions encom-

passing the variant (LAFA). GAFA is a computationally

simpler process compared with LAFA, and it encompasses

all regions of the genome. However, it assumes a uniform

distribution of ancestries throughout the genome, which

is slightly less precise. Comparison of both GAFA and

LAFA shows strong correlations for variants calculated by

both methods and shows some variants could be calcu-

lated by using only one of the methods, complementing

each other and emphasizing the advantage of using both

options. Specifically, LAFA is more precise, but the algo-

rithm may not converge when using LAFA so that fre-

quency estimates were not obtained, while GAFA may

converge for these variants. We think that this is likely

due to local ancestry inference errors: when using LAFA,

the ancestral probabilities assigned by the algorithm at
an Genetics and Genomics Advances 3, 100096, April 14, 2022 11



Figure 3. Scatterplots of the estimated ancestry-specific allele frequencies in chromosome 2 in the HCHS/SOL population between
GAFA and LAFA for each of the three ancestral populations.
the segment take values pi1;.; piK˛f0;0:5;1g. Thus, if in all

LAIs from a specific ancestry, the observedMAC is 0, it may

lead to non-convergence. Non-convergence may also arise

from a lack of HWE in LAIs from a certain ancestry. De-

pending on effective population sample sizes, AFA may

perform less well for lowMAF variants. First, estimation de-

pends on the effective sample sizes of the ancestral origins

and the ancestry-specific frequencies (e.g., having enough
12 Human Genetics and Genomics Advances 3, 100096, April 14, 20
counts). Second, AFA methods apply maximum-likelihood

estimation of binomial likelihoods, which cannot be eval-

uated by the optimization algorithm at the boundaries of

the parameter space (i.e., at frequencies of 0 or 1, though

the likelihood is computable at the boundary). Therefore,

very few minor allele counts in one of the genetic ances-

tries may lead to non-convergence of the algorithm, unless

box constraints are placed (e.g., limiting the frequencies to
Figure 4. Scatterplots of the estimated
ancestry-specific allele frequencies in
chromosome 2 in the HCHS/SOL popula-
tion between the three ancestral popula-
tions
(A) GAFA and (B) LAFA.

22



Table 6. Significant associations for Amerindian-enriched variants in the HCHS/SOL with cardiometabolic traits

Trait rsID Chr
Position
(hg38)

Effect
allele

Non-
effect
allele R2a MAC MAF

Ancestry-specific MAF based
on GAFA HCHS/SOL Association Conditional analysis I Conditional analysis II

African European Amerindian
Effect
estimate SE p value

Effect
estimate SE p value

Effect
estimate SE p value

TC rs142336293 1 109,152,113 G A 0.99 1,387 0.059 0.005 0.006 0.193 �6.244 1.235 4.29 3 10�7 �3.340 1.695 4.88 3 10�2

TC rs146236384 1 109,220,029 T TG 0.97 1,268 0.054 0.003 0.009 0.169 �7.203 1.309 3.78 3 10�8 �28.735 11.908 0.0158b

Trig rs17119918 11 116,714,897 A G 0.99 998 0.043 0.003 0.002 0.144 �15.844 2.997 1.24 3 10�7 �14.444 2.993 1.40 3 10�6 16.363 10.932 1.34 3 10�1

Trig rs146714678 11 116,726,114 G T 0.99 981 0.042 0.003 0.003 0.141 �17.789 3.015 3.65 3 10�9 �16.111 3.015 9.16 3 10�8 17.732 74.427 0.812b

Trig rs141882698 11 116,730,622 C A 0.99 985 0.042 0.003 0.003 0.142 �17.729 3.011 3.92 3 10�9 �16.026 3.012 1.03 3 10�7 �1.720 32.901 9.58 3 10�1

Trig rs191206329 11 116,755,683 G C 1.00 1,649 0.070 0.002 0.006 0.228 18.516 2.384 8.09 3 10�15 12.003 2.987 5.85 3 10�5 17.246 2.397 6.22 3 10�13

Trig rs145796806 11 116,779,468 T C 0.99 959 0.041 0.003 0.003 0.138 �17.885 3.056 4.83 3 10�9 �16.229 3.055 1.09 3 10�7 �4.247 13.520 7.53 3 10�1

Trig rs139961185 11 116,936,627 A G 0.95 2,368 0.101 0.003 0.004 0.329 16.558 2.073 1.40 3 10�15 35.099 16.535 0.0338b 15.832 2.077 2.47 3 10�14

Trig rs144818596 11 117,067,138 G T 0.91 2,280 0.097 0.003 0.003 0.318 16.886 2.131 2.31 3 10�15 11.886 6.562 7.01 3 10�2 16.226 2.134 2.85 3 10�14

HDL rs191206329 11 116,755,683 G C 1.00 1,650 0.070 0.002 0.006 0.228 �1.770 0.320 3.09 3 10�8

HDL rs78950101 16 56,898,811 C T 0.98 2,203 0.094 0.009 0.005 0.310 �1.475 0.289 3.35 3 10�7

HDL rs4939873 18 49,535,684 T G 0.95 2,047 0.087 0.007 0.005 0.283 1.589 0.297 9.29 3 10�8

LDL rs142336293 1 109,152,113 G A 0.99 1,387 0.059 0.005 0.006 0.193 �5.885 1.068 3.60 3 10�8 �1.928 1.467 1.89 3 10�1

LDL rs1815307 1 109,182,202 T C 0.97 1,258 0.054 0.004 0.006 0.173 �6.693 1.133 3.45 3 10�9 �1.534 2.015 4.46 3 10�1

LDL rs146236384 1 109,220,029 T TG 0.97 1,268 0.054 0.003 0.009 0.169 �7.773 1.133 6.80 3 10�12 �27.076 10.308 0.0086b

LDL rs189575997 1 109,263,516 T C 0.90 686 0.029 0.005 0.006 0.092 �8.572 1.563 4.16 3 10�8 �3.730 1.943 5.49 3 10�2

HDL, high-density lipoprotein; LDL, low-density lipoprotein; MAC, minor allele count; MAF, minor allele frequency; SE, standard error; TC, total cholesterol; Trig, triglycerides.
aImputation quality.
bIndex variant for conditional analysis.
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be estimated within the interval [0.01, 0.99]), so that fre-

quencies outside the interval cannot be estimated.

Data and code availability

We provide a publicly available GitHub repository, https://

github.com/tamartsi/Ancestry_specific_freqs, which in-

cludes (1) code for GAFA and LAFA for computing

ancestry-specific allele frequencies, (2) simulation code,

and (3) a dataset of Hispanic or Latino ancestry-specific

allele frequencies and their CIs estimated based on the

HCHS/SOL using GAFA and LAFA for all variants (geno-

typed or imputed) with an estimated frequency between

5% and 95% in at least one of the three ancestral popula-

tions. This dataset will also be available through FAVOR

v.2 data release in both the single variant query (Allele Fre-

quency Block) and batch query, http://favor.genohub.org.

CWL workflows for GAFA and LAFA are also available via

dockstore and https://github.com/cwl-apps/ancestral-maf-

admixed-population.
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Supplemental information can be found online at https://doi.org/
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