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Abstract: The aim of multi-agent reinforcement learning systems is to provide interacting agents
with the ability to collaboratively learn and adapt to the behavior of other agents. Typically, an
agent receives its private observations providing a partial view of the true state of the environment.
However, in realistic settings, the harsh environment might cause one or more agents to show arbi-
trarily faulty or malicious behavior, which may suffice to allow the current coordination mechanisms
fail. In this paper, we study a practical scenario of multi-agent reinforcement learning systems
considering the security issues in the presence of agents with arbitrarily faulty or malicious behavior.
The previous state-of-the-art work that coped with extremely noisy environments was designed on
the basis that the noise intensity in the environment was known in advance. However, when the
noise intensity changes, the existing method has to adjust the configuration of the model to learn
in new environments, which limits the practical applications. To overcome these difficulties, we
present an Attention-based Fault-Tolerant (FT-Attn) model, which can select not only correct, but
also relevant information for each agent at every time step in noisy environments. The multihead
attention mechanism enables the agents to learn effective communication policies through expe-
rience concurrent with the action policies. Empirical results showed that FT-Attn beats previous
state-of-the-art methods in some extremely noisy environments in both cooperative and competitive
scenarios, much closer to the upper-bound performance. Furthermore, FT-Attn maintains a more
general fault tolerance ability and does not rely on the prior knowledge about the noise intensity of
the environment.

Keywords: reinforcement learning; attention mechanism; fault tolerance; multi-agent

1. Introduction

Consider the following robotic search and rescue scenario: A group of Unmanned
Aerial Vehicles (UAVs) is sent to find the survivors in a group of high-rise buildings after an
earthquake [1]. The harsh environmental conditions might cause individual robots to fail, or
hackers might take control of some robots and force them to behave in misleading ways [2].
In order to find the survivors as quickly as possible, these robots have to periodically
exchange information with the neighbors and make decisions based both on the local view
and the correct information from the neighbors.

The above-mentioned multirobot cooperation scenario can be modeled as a Multi-
Agent Reinforcement Learning (which we refer to as MARL) problem. MARL systems
aim to provide interacting agents with the ability to collaboratively learn and adapt to
other agents’ behaviors. Plenty of real-world applications can be modeled as multi-agent
systems, e.g., autonomous driving [3], smart grid control [4], and multirobot control [5–11].
Typically, an agent receives its private observations providing a partial view of the true
state of the world. However, in realistic settings, one or more agents that show arbitrarily
faulty or malicious behavior may suffice to allow the current coordination mechanisms

Entropy 2021, 23, 1133. https://doi.org/10.3390/e23091133 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7239-1819
https://doi.org/10.3390/e23091133
https://doi.org/10.3390/e23091133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23091133
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23091133?type=check_update&version=2


Entropy 2021, 23, 1133 2 of 15

fail [12]. An illustrative example is shown in Figure 1: three slower predators (red circles)
learn to cooperate to capture a faster prey (the green circle) with obstacles (dark blue
circles) impeding the way. However, when Predator 2 and Predator 3 obtain the wrong
relative position of the prey (light grey circles), the learning process will become extremely
difficult. In concrete, the predators must reach an agreement on whom to trust along with
learning the action policies. Therefore, fault tolerance and credit assignment have become
of paramount importance in noisy MARL systems.

Figure 1. An illustration of our scenario: the modified predator and prey problem. Three slower
predators learn to cooperate to capture a faster prey with obstacles impeding the way. However,
when both Predator 2 and Predator 3 obtain the wrong relative position of the prey, the learning
process will become extremely difficult since they must learn to trust Predator 1 along with learning
the action policies. All the agents are not aware of whether they have faulted or not.

The existing work on the Multi-agent Deep Deterministic Policy Gradient-Medium
(MADDPG-M) [13] has achieved state-of-the-art performance in extremely noisy environ-
ments. However, the MADDPG-M is designed on the basis that the noise intensity in the
environment is known in advance. When the noise intensity changes, the MADDPG-M
has to adjust the configuration of the broadcasting medium to learn in the new environ-
ment, which limits its practical applications. Furthermore, the MADDPG-M can only
select the correct information in the extremely noisy environments and cannot make a
finer discrimination (i.e., judge whether the correct information is relevant to a specified
agent or not). Therefore, enabling the agents to collaboratively solve the cooperation tasks
with a more general fault tolerance ability is necessary, and we consider two challenges
to achieve this. First, a proper information filtering mechanism needs to be designed for
the agents to extract not only correct, but also relevant information from others and model
the environment without the restriction of noise intensity. Then, the information filtering
mechanism should maintain a stable complexity while keeping the ability to deal with
different kinds of uncertainties in the environment, i.e., accommodate various numbers of
agents with noisy observations without tuning the configuration of the model. In concrete,
the model should maintain the ability to deal with the complex cases where an agent
needs to reach multiple agents’ correct observations at the same time without the prior
knowledge of the noise intensity of the environments.

To overcome the challenges, we present an Attention-based Fault-Tolerant (FT-Attn)
model, which can select not only correct, but also relevant information for each agent at
every time step. The multihead attention mechanism enables the agents to learn effective
communication policies through experience concurrently with the action policies. Rather
than simply sharing the specified number of correct observations, FT-Attn estimates the
critic function for a single agent by selecting and utilizing the useful encoded information
from others without the restriction on the filter mechanism. We study the performance of FT-
Attn in the modified cooperative navigation and modified predator and prey environments
and compare our results with the previous state-of-the-art method, the MADDPG-M [13].
The results show a clear advantage of FT-Attn in some extremely noisy environments of
both cooperative and competitive scenarios compared with the baselines. Furthermore,
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FT-Attn maintains a more general fault tolerance ability and does not rely on the prior
knowledge about the noise intensity of the environment. In other words, FT-Attn can be
directly utilized to learn in various kinds of noisy environments with no need to tune the
configuration of the model, while the MADDPG-M has to adjust the amount of information
to be shared among agents. We also visualize the attention weights generated by FT-Attn
to inspect how the fault tolerance mechanism is working. To the best of our knowledge, we
are the first to apply the attention mechanism to cope with the fault tolerance problem in
MARL systems. We mention that FT-Attn is not designed for competing with other models
without considering fault tolerance, but a complementary one. We believe that adding our
idea of fault tolerance will make the existing models much more valuable and practical.

The rest of this paper is organized as follows. Section 2 introduces the related work of
MARL methods in normal and noisy environments. Section 3 introduces the background of
partially observable Markov games and basic reinforcement learning algorithms. Section 4
describes the methodology of our work, as well as the architecture designed for training
and prediction. The validation and evaluation of our work in the modified cooperative
navigation and the modified predator and prey environments is described in Section 5. The
limitations of our approach are discussed in Section 6. We conclude and provide our future
directions in Section 7.

2. Related Work

MARL has been studied for a long time [14]. There are diverse kinds of topics within
Multi-agent Reinforcement Learning (MARL), including learning communication between
cooperative agents [15] and algorithms for optimal play in competitive settings [16]. The
MARL models can be divided into two kinds: designed for normal environments and
designed for noisy environments.

2.1. MARL Models Designed for Normal Environments

In the early stage, References [17,18] studied MARL with decentralized execution.
However, these kinds of methods cannot be applied to complex environments since they
are based on tabular methods. With the development of deep learning technologies, plenty
of deep MARL algorithms [19–21] have been proposed. We now introduce several compet-
ing models in chronological order. The Communication Neural Network (CommNet) [22]
is devoted to obtaining an integrated communication vector for each agent by average
pooling over all messages sent from the other agents. The drawback is that the CommNet
does not perform a fine discrimination of the messages passed by the agents. Differen-
tiable Inter-Agent Learning (DIAL) [23] aims to solve simple communication tasks such
as guessing riddles, but it cannot solve the problem in nonstationary environments. The
Bidirectional-coordinated Net (BicNet) [24] was proposed to handle real-time strategy
games such as StarCraft. A drawback is that it assumes the agents are fully observable for
the environment, which limits its practice in reality. The Multi-agent Deep Deterministic
Policy Gradient (MADDPG) [25] first extended the traditional actor–critic algorithms to the
multi-agent coordination setting. However, it solves coordination by directly introducing
the observations and actions of other agents without filtering, which may lead to the prob-
lem of excessive state space. The Attentional Communication Model (ATOC) [26] focuses
on learning an attention model for sharing information between the policies and can be
applied to large-scale systems with hundreds of agents. To incorporate a filter mechanism
on the basis of the MADDPG, the Multi-Actor-Attention-Critic (MAAC) [27] utilizes an
actor–critic algorithm that trains decentralized policies, using centrally computed critics
that share an attention mechanism. The Scheduling Network (SchedNet) [28] aims to solve
the MARL problem in limited-bandwidth environments. In concrete, SchedNet produces a
weight w for each agent, and the top k agents in terms of their weights w can share their
observations with the others. However, it is not practical to apply a hard-coded param-
eter k to real-world multi-agent settings since the bandwidth usually cannot be known
in advance.
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2.2. MARL Models Designed for Noisy Environments

For noisy environments, the Multi-agent Fault-tolerant Reinforcement Learning algo-
rithm (MAFTRL) [29] establishes the agent’s own error detection mechanism and designs
the information communication medium between agents. Besides, the MADDPG-M [13]
addresses the MARL problem characterized by partial and extremely noisy observations,
i.e., only one agent’s observation is correct. To deal with the noisy observations that are
weakly correlated with the true state of the environment, the MADDPG-M forces the agents
to learn whose private observation is sufficiently informative to be shared with others.
However, the communication policy is task-specific, relying on prior knowledge about the
noise intensity, which simplifies the uncertainties of the environments. Furthermore, the
complexity of the MADDPG-M is compounded by a specific experimental evaluation. In
concrete, if the experimental setting changes, MADDPG-M must adjust the configuration
of the information filtering mechanism to learn in the new environments. Besides, when
there exist multiple correct observations (in more general fault-tolerant scenarios), the
MADDPG-M cannot select the relevant information for each agent on the basis of correct
observations. In other words, the MADDPG-M cannot fully exploit the useful information
provided by the environment and may lead to suboptimal performance. Additionally, the
observation-sharing mechanism in practice may introduce redundant information (e.g.,
pixel data) because the raw observations may be high-dimensional. In our work, FT-Attn
utilizes the attention mechanism to enable the MARL system to be fault-tolerant without
the prior knowledge about the noise intensity in the environment.

3. Background

We start by introducing the basic building blocks for our approach: partially observ-
able Markov games, policy gradient and actor–critic algorithms.

3.1. Partially Observable Markov Games

We consider the framework of Partially Observable Markov Games (POMGs) [16],
which is a multi-agent extension of Markov decision processes. The framework contains
N agents with partial observations and is characterized by a collection of true states S,
a set of actions A = {A1, . . . , AN}, a reward function R, a state transition function τ,
a set of private observation functions Q = {Q1, . . . , QN}, a set of private observations
O = {O1, . . . , ON}, and a discount factor γ ∈ [0, 1). Then, a POMG can be defined by
a tuple, G =< S, A, τ, R, Q, O, γ, N >. Each agent can only receive a partial observation
correlated with the true state and cannot gain full access to the whole true state of the
environment s ∈ S, i.e., oi = Qi(s) : S→ Oi. Each agent can take an action based on its own
partial observation according to its action policy θi, i.e., ai = µθi : Oi → Ai, and receives
a reward, i.e., ri = R(s, ai) : S× Ai → R. Then, the environment will move into the next
state S

′
according to the state transition function conditioned on the actions of all agents,

i.e., s
′
= τ(s, a1, . . . , aN) : S× A1 × · · · × AN → S. The aim of each agent is to maximize its

own total expected return, E[Ri] = E[∑T
t=0 γtrt

i ], where T denotes the specified time step
and rt

i denotes the reward received by the i-th agent at time t.

3.2. Policy Gradient and Actor–Critic

The aim of the policy gradient algorithm is to estimate the gradient of an agent’s
expected returns according to the parameters of its policy. The gradient estimate mechanism
works as follows:

∇θ J(πθ) = Ea∼πθ

[
∇θ log(πθ(at | st))

∞

∑
t′=t

γt′−trt′ (st′ , at′ )

]
. (1)

Due to the reason that the term ∑∞
t′=t γt′−trt′(st′ , at′) in the policy gradient estimator usually

leads to high variance, the actor–critic algorithm [30] is then proposed to solve the problem.
The aim of the actor–critic algorithm is to alleviate the issue by replacing the estimator
with a function approximation of the expected returns. In concrete, given a state and an
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action, one specific instance of actor–critic methods learns a function to estimate expected
discounted returns, Qψ(st, at) = E

[
∑∞

t′=t γt′−trt′(st′ , at′)
]
, and then learns through the

temporal difference by minimizing the regression loss:

LQ(ψ) = Es,a,r,s′
[(

Qψ(s, a)− y
)2
]
,

where y = r(s, a) + γEa′∼π(s′)

[
Qψ̄

(
s′, a′

)]
,

(2)

where Qψ̄ denotes the target Q-value function.

4. Our Approach

In this section, we first introduce the problem formulation of our MARL fault-tolerant
setting. Then, we illustrate the core part of our proposed method FT-Attn: the attention-
based fault-tolerant mechanism. Finally, the detailed steps of the training procedure
are described.

4.1. Problem Formulation

We considered partially observable Markov games and made the assumption that
the observations received by some of the agents are noisy and weakly correlated with
the true state, which makes learning optimal policies unfeasible. Denote the policy for
agent i on all N private observations as ai = µi(o1, . . . , oN). The learning process of the
individual policy ai is hard to complete because a large number of oi are uncorrelated
with the corresponding true state s, i.e., the background information provides a poor
representation of the current true state for the ith agent. In concrete, the noises satisfying a
certain distribution are applied to the observation (a vector of real number) of the agents.
In order to solve this challenge, each agent has to explicitly and selectively exploit the
correct and useful observations shared by other agents. In other words, the agents have to
form a common cognition internally before they learn the action policy to cooperate. Due
to the reason that the agents cannot discriminate between relevant and noisy information
on their own, the ability to decide whom to trust must also be acquired through experience.

4.2. Attention-Based Fault-Tolerant Mechanism

More formally, we introduce our multi-head attention-based fault-tolerant mechanism
to learn the critic for each agent by selectively paying attention to other agents’ observations.
Figure 2 illustrates the main components of our approach. The multihead attention-based
information filtering part is the core component of our approach to realize fault tolerance.
We now describe the core part in detail.

We used multihead dot-product attention to select the correct and relevant observa-
tions for the agents in each time step. Intuitively, each agent inquires about other agents
for information about their observations, as well as the actions and then takes the correct
and relevant information into account for estimating its value function. Denote Qψ

i (o, a) as
the function of agent i’s observation and action, as well as other agents’ contributions; the
value is estimated as follows:

Qψ
i (o, a) = fi(gi(oi, ai), mi). (3)

Here, fi represents the Q-network and gi represents the encoder function. Towards agent
i, the correct and relevant message from other agents mi is a weighted sum of each
agent’s value:

mi = σ

 Concat

∑
j∈\i

αh
ijW

h
v ej, ∀h ∈ H

, (4)

where h denotes an attention head and ej denotes the embedding encoded by the gj function.
Wh

v transforms ej into a “value”. The set of all agents except i is represented as \i and
indexed with j. To calculate the interaction weight of the hth attention head ah

ij between
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agent i and agent j, the input feature of each agent is projected to query, key, and value
representation by each independent attention head. For attention head h, the relation
between i and j is computed as:

αh
ij =

exp
(

τ ·Wh
q ei ·

(
Wh

k ej

)>)
∑r∈\i exp

(
τ ·Wh

q ei ·
(
Wh

k er
)>) , (5)

where τ is a scaling factor, Wh
q transforms ei into a “query”, and Wh

k transforms ej into a
“key”. In the experiments, the multihead attention mechanism was exploited to generate
an aggregated contribution, which contains the correct and relevant information from all
other agents to agent i. The idea behind the multihead mechanism is to make each head
focus on a different weighted mixture of agents. Then, the contributions from all attention
heads are concentrated as a single vector to represent the correct and relevant message.

Encoder Encoder

𝑜1 ,𝑎1  𝑜𝑁 ,𝑎𝑁  

𝑒1 
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Q Network
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.  .  .  .  .  .  .  .

Multi-head Attention

Concatenated Message

.  .  .

Agent 1

Figure 2. FT-Attn is composed of three modules: encoder, multihead attention-based information
filtering part for fault tolerance, and Q-network.

4.3. Training Details of FT-Attn

All critics are updated together to minimize a joint regression loss function because of
the parameter sharing:

LQ(ψ) =
n

∑
i=1

E(o,a,r,o′)∼D[(Q
ψ
i (o, a)− yi)

2], (6)

where:
yi = ri + γEα′∼πθ̄(o′)

[Qψ̄
i (o
′, a′)], (7)

where ψ̄ and θ̄ are the parameters of the target critics and target policies, respectively. Qψ
i ,

the action-value estimate for agent i, receives observations and actions for all agents. Qψ̄
i

denotes the target Q-value function, which is simply an exponential moving average of the
past Q-functions. D represents a replay buffer that stores past experiences. The individual
policies are updated with the following gradient:

5θi J(πθ) = Eα∼πθ [5θi log(πθi (ai|oi))(b(o, a\i)−Qψ
i (o, a))], (8)
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where b(o, a\i) represents the multi-agent baseline used to calculate the advantage function.
We sample all actions, a, from all agents’ current policies to calculate the gradient estimate
for agent i. The multi-agent baseline is calculated by the following manner:

b(o, a\i) = Eai∼πi(oi)
[Qψ

i (o, (ai, a\i))]

= ∑
a′i∈Ai

π(a
′
i|oi)Qi(o, (a′i, a\i)),

(9)

the advantage function here can help solve the multi-agent credit assignment problem [31].
In concrete, by comparing the value of specific action to the value of the average action
for the agent, with all other agents fixed, we can know whether any increase in reward is
attributed to other agents’ actions.

For completeness, the pseudocode for FT-Attn is provided in Algorithm 1. For the
training procedure, our model was trained for 105 episodes with 25 steps each episode. We
added a tuple of (ot, at, rt, ot+1)1...N to the replay buffer with a size of 106 at each time step.
We updated the network parameters after every 1024 tuples added to the replay buffer and
performed gradient descent on the loss function. We used the Adam [32] optimizer with a
learning rate of 0.001. For the other hyperparameters, the discount factor γ was set to 0.99;
the dimension of the hidden state was set to 128; the number of attention heads was set to
4. For the exploration noise, following [33], we used an Ornstein–Uhlenbeck process [34]
with θ = 0.15 and σ = 0.2.

Algorithm 1 Training procedure for FT-Attn.

Input: Initialize the environments with N agents; initialize replay buffer, D.
1: for iep = 1 . . . num episodes do
2: Observe initial state oi for each agent i,
3: for t = 1 . . . steps per episode do
4: Select actions ai ∼ πi(·|oi) for each agent i.
5: Execute the action ai and get o

′
i , ri for all agents.

6: Store transitions (o1...N , a1...N , r1...N , o
′
1...N) in D.

7: Sample minibatch B← m× (o1...N , a1...N , r1...N , o
′
1...N) ∼ D, and unpack.

8: Calculate Qψ
i (o1...N , a1...N) for all i in parallel, a

′
i ∼ πθ

i (o
′
i), using target policies,

Qψ̄
i (o

′
1...N , a

′
1...N)

9: Set yi = ri + γE
α
′∼πθ̄(o

′ )[Q
ψ̄
i (o

′
, a
′
)],

10: Update critic by minimizing the loss:

LQ(ψ) =
n

∑
i=1

E(o,a,r,o′ )∼D[(Q
ψ
i (o, a)− yi)

2] (10)

11: Update policy:

5θi J(πθ) = Eα∼πθ [5θi log(πθi (ai|oi))(b(o, a\i)−Qψ
i (o, a))] (11)

12: Update target critic and policy parameters:

ψ̄ = τψ̄ + (1− τ)ψ (12)

θ̄ = τθ̄ + (1− τ)θ (13)

13: end for
14: end for
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5. Experiments

To evaluate FT-Attn, we first introduce the experimental setting and baseline methods.
Then, we show the experimental results compared with the baseline methods. Finally, we
give the attention visualization and the corresponding analysis of FT-Attn.

5.1. Experimental Setting and Baseline Methods

To evaluate our proposed approach, we first chose two experimental settings: modi-
fied cooperative navigation and modified predator and prey [13] to test our approach in
cooperative and competitive scenarios, respectively. The reason for selecting these two
modified versions is that the original settings cannot satisfy the basic assumption of noisy
environments. Therefore, we followed the experimental setting of [13] by adding noises to
the observation of each agent for evaluation.

In the original cooperative navigation environment [25], N agents have to cooperate
through actions to reach L landmarks. The agents can observe the relative positions of
the other agents and landmarks. The agents are collectively rewarded according to the
shortest proximity of any agent to each landmark. The agents must learn to infer the
landmark they need to cover cooperatively and move there without colliding with other
agents. For the modified version, as shown in the left part of Figure 3, we followed the
setting in MADDPG-M [13]. In concrete, only 1 gifted agent of N agents can observe the
true position of the landmarks, and all the other agents receive inaccurate information
about the landmarks’ positions. In other words, there exist noises in the other 2 faulted
agents’ observations on the relative positions of the landmarks. The task includes three
different variants of increasing complexity depending on how the gifted agent is defined:
in the “fixed” case, the gifted agent stays the same throughout the training phase; in
the “alternating” case, the gifted agent may change at the beginning of each episode; in
the “dynamic” case, which is the most difficult version, the agent closest to the center of
the map becomes the gifted one within each episode. In other words, the agents must
learn the underlying rule and reach an agreement on whom to trust before mastering the
action policies.

Figure 3. (Left) an illustration of the modified cooperative navigation problem: the gifted agent (red circle) can correctly
observe all three landmarks (grey squares); the other agents (blue and green circles) receive the wrong locations of landmarks.
(Right) an illustration of the modified predator and prey problem: the gifted predator (red circle) can correctly observe the
position of the prey, while the other two predators receive the wrong location of the prey.

In the original predator and prey task [25], there are N slower predators who must
collaborate to capture a randomly faster prey with L obstacles impeding the way. Agents’
observations include the relative positions and velocities of all the other agents. Each time
the cooperative predators collide with a prey, the predators are rewarded while the prey
is penalized. We employed 3 predators and 1 prey in our experiment. In our modified
version, as shown in the right part of Figure 3, only 1 gifted predator can obtain the correct
relative position of the prey. In other words, there exist noises in the other 2 faulted agents’
observations on the relative positions of the prey. Therefore, the predators must learn
to trust the gifted predator and infer the true position of the prey through the relative
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positions. The modified task also includes three different variants of increasing complexity:
fixed, alternating, and dynamic versions.

For the baseline methods, we evaluated FT-Attn against five actor–critic-based base-
lines, the Deep Deterministic Policy Gradient (DDPG) [33], the Multi-agent Deep Deter-
ministic Policy Gradient (MADDPG) [25], the meta-agent [13], the DDPG with Optimal
Communication (DDPG-OC) [13], and the MADDPG-M [13]. The agents in the DDPG
were trained and executed in a decentralized manner. The agents in the MADDPG were
also executed in decentralized manner, but were trained in a centralized manner. The
DDPG and MADDPG were chosen to provide a lower bound of the performance since
each agent’s policy was conditioned only on its own observations. The meta-agent method
was included to test the performance where all the observations were shared without a
filtering mechanism. In concrete, a meta-agent can gain access to all the observations, across
all agents both in the training and execution process. The DDPG-OC baseline utilizes a
hard-coded communication pattern, i.e., the attention weights are assigned optimally using
prior knowledge about the true environment. As the correct communication mechanism
is identified in advance, the agents only need to learn the action policies in this case. The
DDPG-OC was chosen to study what level of performance is achievable when communicat-
ing optimally in environments with different noise intensities. The MADDPG-M enables
concurrent learning of the optimal communication policy and the underlying task, which
enforces the agents to simply trust the agent with the largest sharing desire.

5.2. Performance Comparison in a Modified Cooperative Navigation Scenario

We first followed the experimental settings in [13], which set N = 3 and L = 3.
Figure 4 illustrates the learning curves for FT-Attn and the other baseline methods on
the alternating and dynamic scenario in terms of the mean episode rewards. In these
cases, neither the DDPG nor the MADDPG can master the correct communication and
action policies because they do not allow the observations to be shared. Furthermore,
impacted by the meaningless actions of the faulted agents, even the gifted agent cannot
master a rational action policy. In the test process, we found that the agents of these two
methods only simply move towards the middle of the environment and then wander. The
performance of the DDPG-OC illustrated an upper bound of each experimental setting since
the correct communication policy was specified in advance. For the meta-agent method, the
performance decreased sharply as the complexity of the environment increased and totally
failed to learn in the dynamic setting. The result demonstrated that a filtering mechanism is
necessary and the agents need to select the correct information to master the action policies.
Conversely, both the MADDPG-M and FT-Attn can learn a rational behavior because of
the message-selecting mechanism. However, the performance of FT-Attn was better than
that of the MADDPG-M in both the alternating and dynamic settings, much closer to the
upper-bound performance. The results showed that FT-Attn enables the agents to select
more correct and relevant information to learn more effective communication policies in
extremely noisy environments.
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Figure 4. (Left) learning curves for all models in the alternating version of the modified cooperative navigation scenario.
(Right) learning curves for all models in the dynamic version of the modified cooperative navigation scenario.
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We ran an additional 1000 episodes after training to collect the performance metrics
and report the averages for the three scenarios. Table 1 shows the mean episode rewards
for FT-Attn and all baselines in the three scenarios. FT-Attn beat the MADDPG-M in the
complex cases (alternating and dynamic versions) and performed quite similarly to the the
upper-bound DDPG-OC. The standard deviation within one method was large because
of the difficulty in the experimental setting. Besides, the mean reward improvements
could reflect the performance improvements sufficiently because the test experiments
were implemented 1000 times. This superiority demonstrated that the multihead attention
mechanism maintains a better ability to select correct and relevant information to deal with
extremely noisy observations. In order to further investigate the superiority of FT-Attn
compared with the MADDPG-M, we further tested the communication accuracies of the
two methods in the three variants in Table 2. In concrete, we implemented an additional
1000 episodes and recorded the times when the true gifted agent was trusted by the other
faulted agents. In FT-Attn, we judged by selecting the agent with the maximum attention
weight. In the MADDPG-M, we just selected the agent with the maximum sharing desire.
From Table 2, we can see that the communication accuracies of FT-Attn were higher than
those of the MADDPG-M, especially in the dynamic setting.

Table 1. Mean (standard deviations) episode rewards for all baselines in all 3 scenarios among 1000 episode tests. The larger
the better, and the closer to the upper-bound the better. The bold best performance in each scenario does not consider the
DDPG-OC since it reveals the upper-bound performance.

Method Fixed Alternating Dynamic

Meta-agent −39.95 ± 4.50 −51.42± 7.70 −60.98 ± 8.82
MADDPG −54.00 ± 7.43 −58.67± 8.90 −63.44 ± 9.88

DDPG −56.00 ± 8.96 −56.50± 8.51 −60.66 ± 8.68
MADDPG-M −39.73 ± 5.09 −43.34 ± 7.29 −43.91 ± 7.75

FT-Attn −40.89 ± 5.42 −43.30 ± 7.83 −42.48 ± 7.36
DDPG-OC (upper-bound) −39.26 ± 4.45 −43.44 ± 5.92 −41.25 ± 5.24

Table 2. Mean (standard deviation) communication accuracies for FT-Attn in the three modified
cooperative navigation scenarios when N = 3 among 1000 episode tests.

Method Fixed Alternating Dynamic

MADDPG-M 99.98% ± 0.02 99.54% ± 0.56 88.82% ± 5.91
FT-Attn 99.23% ± 0.33 99.68% ± 0.42 91.76% ± 5.34

In order to further test the fault tolerance ability of FT-Attn and the baseline methods,
we set N = 5 and L = 5 and gradually decreased the number of faulted agents from 4 to 1
in the fixed setting. We ran an additional 1000 episodes after training to collect the mean
episode rewards and report the averages on the four scenarios when there are different
numbers of faulted agents. Table 3 shows the mean episode rewards for FT-Attn and all
baselines on the four scenarios. From Table 3, we can see that FT-Attn can easily achieve a
better performance compared with the MADDPG-M without tuning the configurations
(i.e., with no need to tune the hyperparameters for sharing the top (k) observations in terms
of the weight values). Furthermore, the superiority of FT-Attn against the MADDPG-M
was more evident when the number of faulted agents decreases and much closer to the
performance of the upper-bound DDPG-OC. The reason is that FT-Attn can further select
the relevant information on the basis of the correct information, while the MADDPG-M
can only learn to select the correct observations. Note that the performance improvements
should be measured on the basis of the upper-bound performance (DDPG-OC). In other
words, the performance of FT-Attn was much closer to the upper-bound performance
compared with the MADDPG-M, although the improvements seemed not to be very large.
The results demonstrated that FT-Attn can better exploit the correct and useful information
provided by the environment and achieve the scores closest to the upper-bound DDPG-OC.
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Furthermore, the stable performance of FT-Attn demonstrated that FT-Attn can directly
be used to learn cooperative behaviors in various kinds of noisy environments without
tuning the configuration of the model.

Table 3. Mean (standard deviations) episode rewards for all baselines in 4 scenarios among 1000 episode tests where the
number of faulted agents is different in the N = 5 version of the modified cooperative navigation scenario. The larger
the better, and the closer to the upper-bound the better. The bold best performance in each scenario does not consider the
DDPG-OC since it reveals the upper-bound performance.

Method 1 Faulted 2 Faulted 3 Faulted 4 Faulted

Meta-agent −66.31 ± 5.48 −66.98 ± 6.12 −67.92 ± 7.27 −69.73 ± 6.25
MADDPG −72.50 ± 8.35 −72.83 ± 7.42 −72.79 ± 9.56 −72.68 ± 8.65

DDPG −72.20 ± 7.12 −72.67 ± 5.79 −73.03 ± 5.62 −72.95 ± 5.43
MADDPG-M −66.73± 5.43 −66.89 ± 8.43 −67.13 ± 6.64 −66.95 ± 6.65

FT-Attn −65.20 ± 4.38 −66.25 ± 8.62 −66.68 ± 6.57 −67.00 ± 6.25
DDPG-OC (upper-bound) −64.92 ± 4.23 −65.89 ± 7.73 −66.14 ± 6.42 −66.42 ± 7.78

5.3. Performance Comparison in the Modified Predator and Prey Scenario

In the modified predator and prey scenario, the predators learn to collaborate to
surround and seize the prey, while the prey aims to perform temptation and evasion. In
our experiments, we focused on the cooperation between the predators rather than the
competition between the predators and prey. In other words, the predators need to reach
an agreement on whom is the gifted predator and infer the true position of the prey by
trusting the gifted agent. For each method, the predators and prey were trained together
so the termination state was that the rewards of the two reached a balance.

We implemented a cross-comparison between FT-Attn and the baseline methods to
evaluate the policies learned. In concrete, we performed the modified scenario using
predator and prey policies of the same method or FT-Attn predators against the baseline
preys. As illustrated in Figure 5, we show the results in terms of the 0–1 normalized mean
predator score of 30 test runs for the alternating, dynamic, and fixed version, respectively.
For each subfigure, there exist two bar clusters divided from the middle. The first bar
cluster illustrates the scenarios between the predators and prey of the same training method.
We can see that although the environment was noisy, the scenario setting was always more
suitable for predators since all the methods obtained positive predator scores. The second
bar cluster illustrates the scores in the settings where the FT-Attn predators were against the
MADDPG, DDPG, MADDPG-M, DDPG-OC, and meta-agent preys. The predator policy
learned from FT-Attn beat that of the MADDPG-M in both the alternating and dynamic
scenarios since the normalized score of FT-Attn vs. the MADDPG-M was higher than that
of the MADDPG-M vs. the MADDPG-M. We can conclude that FT-Attn predators learn
stronger and more robust policies than the baseline methods except the DDPG-OC, since
FT-Attn predators obtained higher scores than the baselines when confronted with the same
prey policy. Therefore, we argue that FT-Attn maintains a better fault-tolerant performance
even in the competitive scenarios, and the learned policies in noisy environments can be
generalized to the opponents with different policies.

5.4. Attention Visualization

To understand how the use of the attention mechanism contributes to the fault toler-
ance ability, we examined the “entropy” of the four attention weights from the attention
heads in Figure 6. The initial value 0.69 represents the maximum possible entropy (i.e.,
uniform attention across all agents). Lower entropy indicates that the head is focusing on
specific agents. We found that the agents are more willing to utilize head1 and head2, and
each agent appears to use a different combination of the four heads.



Entropy 2021, 23, 1133 12 of 15

(a) Alternating version. (b) Dynamic version.

(c) Fixed version.

Figure 5. Cross-comparison between FT-Attn and the baseline methods in terms of the predator score in the different
versions of the modified predator and prey scenario.
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Figure 6. Attention entropy for each head over the course of training for the three agents in the “dynamic” situation of the
modified cooperative navigation scenario. From (left) to (right): attention entropy of Agent 1, Agent 2, and Agent 3.

To further test how the number of attention heads impacts the performance of FT-Attn,
we recorded the learning curves for FT-Attn with different numbers of attention heads in
the dynamic variant of the modified cooperative navigation scenario. From Figure 7, we
observe that choosing 4 attention heads achieved the highest rewards, especially in the last
training stage. Fewer attention heads did not achieve a satisfying performance, which was
attributed to the abundant and comprehensive information focused on by the 4 attention
heads. In concrete, the attention heads may divide their attention on the velocity, relative
positions towards the landmarks, relative positions towards the other agents, and so on.
We additionally tested the performance when the number of attention heads was set to 8.
However, 8 attention heads did not affect the performance significantly, having no obvious
difference from that of 2-head version. We determined the reason to be that the experience
in the replay buffer suited the computational cost of 4 attention heads the most. To make
the figure clear, we do not report the result of the 8-attention-head version here.



Entropy 2021, 23, 1133 13 of 15

-40

-45

Cl) 

e -50
rn 

(I) 

O'.'. -55

(I) 
"'O 

0 -60
Cl) 
·-

a. 

w 
C -65
rn 
(I) 

� -70 4 heads 

2 heads 
-75 1 head 

-80 .... .._-�-----r-------T--...----r------r------r------r-------T-------,

0 20,000 40,000 60,000 80,000 100,000

Episodes 

Figure 7. Learning curves of FT-Attn in the dynamic version of the modified cooperative navigation
scenario with different numbers of attention heads.

We further visualize the attention weights generated by FT-Attn to understand the
interactions in the N = 5, L = 5 scenarios of the modified cooperative navigation envi-
ronment containing a different number of gifted agents. Each agent’s attention weight
was calculated from the heads that the agent appeared to use the most. We picked the
scenarios containing four different combinations of the gifted agents (with the number
of gifted agents set to 1, 2, 3, and 4, respectively) and show the related heat maps of the
interaction matrix generated by FT-Attn in Figure 8. We can see that the agents acquired
the ability to select the correct observations (self-attention is avoided in FT-Attn) since
each agent’s attention weights on the gifted agents were larger than those on the faulted
ones. Furthermore, the agents can also select the relevant and useful information among
the correct observations. In other words, the agents did not pay uniform attention to the
gifted agents, but instead with a fine discrimination, which demonstrated the superiority
compared with the simple information-sharing mechanism in the MADDPG-M.
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Figure 8. Attention weights generated by FT-Attn in the fixed case of the modified cooperative navigation scenario when
N is set to 5. Scenario 1 to Scenario 4 are listed from left to right. Scenario 1: only the observation of Agent 1 is correct;
Scenario 2: the observations of Agent 2, and Agent 3 are correct; Scenario 3: the observations of Agent 1, Agent 2, and Agent
4 are correct; Scenario 4: the observations of Agent 1, Agent 2, Agent 3, and Agent 4 are correct.

6. Discussion

The biggest limitation hindering our approach from being applied in practice is the
number of agents supported. Our approach can currently support up to 16 agents due to
the exponential explosion problem of the state space. We will exploit the parameter-sharing
mechanism to learn efficient and effective communication for large-scale multi-agent
cooperation. Besides, we will create more complicated environments where each agent
should interact with a large group of agents where selective attention is needed. The setting
naturally models real-life scenarios in which multiple agents are organized into clusters,
such as a school, work, or family, where the agent needs to interact with a small number of
agents from many groups.
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To apply our approach in practice, a more useful representation is needed to avoid sim-
ply sharing the high-dimensional observations, which may contain redundant information.
In practice, the environment is usually bandwidth-limited or there is a high communication
cost. Therefore, the agents need to learn how to schedule themselves to suit the practical
scenarios. In our future work, we will increase the number of agents and optimize our
model to suit for limited-bandwidth scenarios. We believe that in such complicated scenar-
ios, our approach will achieve a satisfactory performance combined with some advantages
exhibited by other approaches.

7. Conclusions

We proposed a model, FT-Attn, for coping with the fault tolerance problem in multi-
agent reinforcement learning systems. The key idea was to utilize the multihead attention
mechanism to select the correct and useful information for estimating the critics. We
evaluated the performance of FT-Attn in the modified cooperative navigation and modified
predator and prey environments compared with the MADDPG-M, the previous state-of-
the-art model dealing with extremely noisy environments. The empirical results showed
that FT-Attn beat the baseline methods in some extremely noisy environments for both
cooperative and competitive scenarios. Furthermore, FT-Attn does not rely on the prior
knowledge about the noise intensity of the environment. In other words, FT-Attn can be
directly utilized to learn in various kinds of noisy environments with no need to tune the
configuration of the model. FT-Attn can effectively deal with the complex situation where
an agent needs to reach multiple agents’ correct observation at the same time. We believe
that adding our idea of fault tolerance will make the existing models much more valuable
and practical. In our future work, we will make our approach more practical and further
highlight the advantages of the fault tolerance ability in MARL systems.
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