
Data in brief 27 (2019) 104570
Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier .com/locate/dib
Data Article
Denervation and senescence markers data from
old rats with intrinsic differences in
responsiveness to aerobic training

Lemuel A. Brown a, Jennifer L. Judge a, Peter C. Macpherson a,
Lauren G. Koch b, Nathan R. Qi c, Steven L. Britton a, d,
Susan V. Brooks a, e, *

a Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
b Department of Physiology and Pharmacology, The University of Toledo, Toledo, OH, USA
c Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
d Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
e Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
a r t i c l e i n f o

Article history:
Received 13 August 2019
Received in revised form 6 September 2019
Accepted 19 September 2019
Available online 10 October 2019

Keywords:
High response trainers
Nonresponders
Aging
Skeletal muscle
Adaptive exercise capacity
Healthspan
DOI of original article: https://doi.org/10.1016/
* Corresponding author. Department of Molecul

E-mail address: svbrooks@umich.edu (S.V. Broo

https://doi.org/10.1016/j.dib.2019.104570
2352-3409/© 2019 The Author(s). Published by Else
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

The data described below is related to the manuscript “Late life
maintenance and enhancement of functional exercise capacity in
low and high responding rats after low intensity treadmill
training” [1]. Rodents exhibit age-related declines in skeletal
muscle function that is associated with muscle denervation and
cellular senescence. Exercise training is a proven method to delay
or even reverse some aging phenotypes, thus improving health-
span in the elderly. The beneficial effects of exercise to preserve
muscle may be reliant on an individual's innate ability to adapt to
aerobic training. To examine this question, we assessed aged rats
that were selectively bred to be either minimally or highly
responsive to aerobic exercise training. We specifically asked
whether mild treadmill training initiated late in life would be
beneficial to preserve muscle function in high response and low
response trainer rats. We examined gene expression data on
markers of denervation and senescence. We also evaluated mea-
sures of aerobic training and neuromuscular muscle function
through work capacity, contractile properties, and endplate
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1. Data

1.1. Work capacity

The work capacity in aged LRT and HRT female rats had a similar pattern to exercise capacity as
previously reported [1]. By 22months of age, baselinework capacity was 60% greater for HRTcompared
to LRT rats (Fig. 1A). Work capacity dropped roughly the same rate (39e42%) between 22 and 26
months for both LRT and HRT rats that remained sedentary (SED) (p < 0.001; Fig. 1A). Exercise training
allowed LRT rats to maintain their work capacity unlike the LRT-SED group (Fig. 1AeB). After four
months of training the aged HRT rats were able to increase their work capacity by 54% compared to
their pre-training distance (p < 0.001; Fig. 1B).

1.2. Contractile properties

EDL muscles of aged HRT rat generated 8% greater maximum isometric force compared to the LRT
rats (p < 0.033; Fig. 2A). Specific force normalized for total muscle fiber cross-sectional area was also
greater for aged HRT than for LRT rats (p < 0.050; Fig. 2B). Raw data can be found in the supplement
material documents.
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Fig. 1. Total work capacity of aged low response trained (LRT) and high response trained (HRT) sedentary (SED) and trained (EXER)
rats (n ¼ 7e9). Data are shown for (A) 22 mo (black bars) and 26 mo (gray bars) rats that remained sedentary (B) rats before (Pre)
and after (Post) four months of treadmill training. Work capacity of both LRT and HRT rats that remained sedentary decreased with
age, y and HRT rats had a higher work capacity than LRT rats, z. Training increased work capacity in HRT but not LRT rats, #. Work
capacity was calculated as force by distance. In all cases, p � 0.05.
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1.3. Assessment of motor endplates

Therewere no differences in area of endplates in the aged LRT-SED or aged LRT-EXER rats compared
to the young LRT-SED controls (p ¼ 0.112; Fig. 3B). Likewise, there were no differences in area of
endplates in the aged HRT-SED or aged HRT-EXER rats compared to the young HRT-SED (p ¼ 332;
Fig. 3C). The percentage of endplate fragmentation in the aged LRT-SEDwas 5-fold greater compared to
the young LRT-SED group (p < 0.001; Fig. 3D), while the percentage of endplate fragmentation in the
aged LRT-EXER was similarly increased (p < 0.002; Fig. 3D). Age-related increases in endplate frag-
mentationwere also observed in the HRT rats with 9-fold more fragmented endplates in the aged HRT-
SED compared to the young HRT-SED group (p < 0.001; Figs. 3E) and 8-fold more in the aged HRT-EXER
group (p < 0.001; Fig. 3E). Despite age-related increases in endplate fragmentation, the ultimate degree
of fragmentation was similar in each group and exercise did not improve the morphology of the
endplates in either LRT (p ¼ 827; Fig. 3D) or HRT rats HRT rats (p ¼ 870; Fig. 3E).



Fig. 2. Absolute and specific force measures of aged LRT and HRT rats (n ¼ 7e8). Data are shown for (A) absolute force and (B)
specific force of pooled LRT and pooled HRT rats. HRT rats had greater absolute and specific force, *. p � 0.05.
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1.4. Markers of denervation

Figs. 4e7 contain the gene expression data for select markers of denervation examined in the TA
and GTN muscles of LRT and HRT rats. Raw and analyzed data can be found in the supplement material
documents.

1.5. Markers of cell senescence

Figs. 8 and 9 contain the gene expression data for markers of cellular senescence examined in the TA
and GTN muscles of LRT and HRT rats. Raw and analyzed data can be found in the supplement material
documents.

2. Experimental design, materials, and methods

2.1. Experimental rats

Selectively bred low response trainer (LRT) and high response trainer (HRT) rats were obtained from
the Koch and Britton laboratory [2]. Thirty-one aged female rats (22 months) from the 20th generation
of selection, 15 LRT and 16 HRT, and 12 adult female rats (11 months) from the 23rd generation of
selection, 6 LRT and 6 HRT, were studied [1]. Animals were housed in the Unit for Laboratory Animal
Medicine at the University of Michigan and all procedures conducted were approved by the University
Institutional Animal Care and Use Committee.



Fig. 3. Motor endplate morphology and measures of area and fragmentation in extensor digitum longus (EDL) muscles of LRT and
HRT rats (n ¼ 4). Immunofluorescent stains are shown for (A) motor endplates of (a) adult LRT rats, (b) aged LRT rats, (c) aged HRT
rats. Data are shown for average area of endplates of (B) LRT and (C) HRT rats and fragmentation of endplates of (D) LRT and (E) HRT
rats. Fragmentation percentage calculated by five or more acetylcholine receptor segments. Fragmentation was greater in aged SED
and EXER rats compared to adult SED, *. p � 0.05.
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Fig. 4. Gene expression of denervation associated markers in adult and aged LRT and HRT rats (n ¼ 4e7) in the tibialis anterior (TA)
muscles. (A) TA LRT Myogenin gene expression, (B) TA HRT Myogenin gene expression, (C) TA LRT AChRa gene expression, (D) TA
HRT AChRa gene expression, (E) TA LRT MuSK gene expression, (F) TA HRT MuSK gene expression, (G) TA LRT Rapsyn gene
expression, and (H) TA HRT Rapsyn gene expression. Age-related upregulation of genes associated with denervation were observed
in aged sedentary (SED) and exercise (EXER) rats, *. p � 0.05.
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Fig. 5. Gene expression of atrophy related denervation markers in adult and aged LRT and HRT rats (n ¼ 4e7) in the TA muscles. (A)
TA LRT Runx1 gene expression, (B) TA HRT Runx1 gene expression, (C) TA LRT GADD45a gene expression, and (D) TA HRT GADD45a
gene expression. Age-related upregulation of gene associated with denervation were observed in aged sedentary (SED) and exercise
(EXER) rats, *. Exercise-induced gene expression changes in GADD45a were observed in aged rats, #. p � 0.05.
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2.2. Exercise training

LRT and HRT rats that were trained as previously described [1e3]. Sedentary (SED) and exercise
(EXER) groups were introduced to running on a motor driven treadmill (Columbus Inst. Columbus, OH)
for one week and tested for maximal treadmill running capacity on the following week as previously
described [2,3]. After the testing period, rats in the EXER group trained 2e3 times a week, at 60% of
their maximum tested running speed and duration for 16 weeks (37 total trials). SED rats performed
maximal running distance tests for exercise capacity and were placed in non-moving treadmills during
the training period.
2.3. Post-training

At 26 months of age in both SED and EXER groups, maximal treadmill running distance was
measured as previously described as an indicator of exercise capacity [1,2]. Briefly, rats ran on a motor
driven treadmill set at a constant grade of 15� and an initial speed of 10 m/min. Speed was progres-
sively increased 1 m/min every 2 min until exhaustion. Exhaustion was operationally defined as the
third time a rat remained on the shock grid for 2 s. The LRT and HRT rats that participated in treadmill
training were sacrificed two days after their last exercise session.



Fig. 6. Gene expression of denervation associated markers in aged LRT and HRT rats (n ¼ 3e6) in the gastrocnemius (GTN) muscles.
(A) GTN LRT Myogenin gene expression, (B) GTN HRT Myogenin gene expression, (C) GTN LRT AChRa gene expression, (D) GTN HRT
AChRa gene expression, (E) GTN LRT MuSK gene expression, (F) GTN HRT MuSK gene expression, (G) GTN LRT Rapsyn gene
expression, and (H) GTN HRT Rapsyn gene expression. Exercise-induced upregulation of Myogenin was observed in aged HRT rats, *.
p � 0.05.
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Fig. 7. Gene expression of atrophy-related denervation markers in adult and aged LRT and HRT rats (n ¼ 4e6) in the GTN muscles.
(A) GTN LRT Runx1 gene expression, (B) GTN HRT Runx1 gene expression, (C) GTN LRT GADD45a gene expression, and (D) GTN HRT
GADD45a gene expression. Exercise-induced upregulation of Runx1 and GADD45a was observed in aged HRT rats, *. p � 0.05.
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2.4. Contractile force

Contractile properties of the left EDL muscles were collected as previously described [1,4e6]. The
EDL muscles were then removed from the rat hindlimb and immediately placed in a bath containing
Krebs mammalian Ringer solution supplemented with 11 mM glucose and 0.3 mM tubocurarine
chloride. The bath was maintained at 25 �C and bubbled with 95% O2 and 5% CO2 to maintain a pH of
7.4. Custom designed software (LabVIEW, National Instruments, Austin, TX, USA) controlled pulse
properties and servomotor activity and recorded data from the force transducer. The voltage of pulses
was incrementally increased, and subsequently muscle length was increased or decreased to provide
the length (Lo) that results in maximal twitch force (Pt). Muscles were held at Lo and stimulated with
pulse trains of 300 ms at steadily increasing frequencies to generate isometric contractions.
2.5. Endplate fragmentation

The area and fragmentation of motor endplates were obtained as previously described [7,8].
Proximal or distal ends of the EDL muscles were sectioned at 10 mm using the CryoStar NX50 cryostat
(Thermofisher Scientific, Waltham, MA). Sections were incubated with Alexa-594 conjugated alpha-
Bungarotoxin (#B13423, Molecular Probes, Eugene, OR) for 24 hours in PBS at 4 �C. Sections were
thenwashed for 3 hours in PBS. Motor end plate slides were imaged on a Nikon A1 confocal microscope



Fig. 8. Gene expression of cellular senescence associated markers in adult and aged LRT and HRT rats (n ¼ 5e7) in the TA muscles.
(A) TA LRT Cdkn2d gene expression, (B) TA HRT Cdkn2d gene expression, (C) TA LRT Rb1 gene expression, and (D) TA HRT Rb1 gene
expression. Age-related upregulation of Cdkn2d was observed in aged SED rats, *. Exercise-induced downregulation of Cdkn2d was
observed in aged HRT rats, #. p � 0.05.
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at 20� magnification (Nikon, Tokyo, Japan), and analyzed with ImageJ (NIH, Washington D.C.). Age-
related fragmentation was defined as an endplate with five or more AChR segments. Approximately
100 endplates were analyzed per muscle (n ¼ 4 per group).
2.6. Polymerase chain reaction

cDNA was reverse transcribed from 1 mg of total RNA as previously described [1,9e12]. Real-time
PCR was performed, and results were analyzed by using the CFX Real-Time PCR detection system
(Bio-Rad). cDNA was amplified in a 25 mL reaction containing appropriate primer pairs or probes and
SYBR Green (Bio-Rad) or TaqMan Universal Mastermix (Applied Biosystems) primer pairs used for RT-
PCR were designed as previously described [10] and are listed on Table 1. Fluorescence labeled probes
for Chrna1 (Rn01278033_m1, FAM dye), Gadd45a (Rn01425130_g1, FAM dye), MusK (Rn00579211_m1,
FAM dye), Myog (Rn01490689_g1, FAM dye), Rapsyn (Rn01486207_m1, FAM dye), Runx1
(Rn01645281_m1, FAM dye) and HPRT (Rn01527840_m1, FAM dye) were purchased from Applied
Biosystems and quantified with TaqMan Universal mastermix. Cycle threshold (Ct) was determined,
and the DCt value was calculated as the difference between the Ct value and the 18S Ct value. Final
quantification of gene expression was calculated using the DDCT method Ct ¼ [DCt (calibrator) e DCt
(sample)]. Relative quantification was then calculated as 2^-DDCt.



Fig. 9. Gene expression of cellular senescence associated markers in aged LRT and HRT rats (n ¼ 3e6) in the GTN muscles. (A) GTN
LRT Cdkn2d gene expression, (B) GTN HRT Cdkn2d gene expression, (C) GTN LRT Rb1 gene expression, and (D) GTN HRT Rb1 gene
expression. Exercise-induced downregulation of Rb1 was observed in aged HRT rats, *. p � 0.05.

Table 1
Forward and reverse primer sequences of markers of senescence and housekeeping gene.

Gene
Primer sequences 50-30

Forward Reverse

Rb1 CAGCGGAGTCCAAATTCCA CCATGAGACACGAGTCAGGT
Cdkn2d CTGAACCGCTTTGGCAAGAC CCAGAGGCATCTTGGACGTT
Gapdh AGTGCCAGCCTCGTCTCATA GAGAAGGCAGCCCTGGTAAC
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2.7. Statistical analyses

All data was analyzed using GraphPad (Prism version 7.0, La Jolla, CA). Results are reported as
mean ± SEM. Comparisons between the SED and EXER rats or pooled samples of the LRT and HRT rats
were conducted using a Student's t-tests. In the analysis of adult and aged LRT and HRT rats, a one-way
ANOVAwas performed to analyze dependent variables. A two-way ANOVAwas performed for exercise
capacity to analyze the main effects of age and strain and if there were any interactions between
dependent variables. When significant results were detected in either ANOVA analysis, differences
among individual means were assessed with Tukey post-hoc analysis. Statistical significance was set at
P � 0.05.
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