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Abstract: Recently, there have been investigations on metformin (Met) as a potential treatment for
bone diseases such as osteoporosis, as researchers have outlined that type 2 diabetes mellitus (T2DM)
poses an increased risk of fractures. Hence, this systematic review was conducted according to
the 2020 PRISMA guidelines to evaluate the evidence that supports the bone-protective effects of
metformin on male animal models with T2DM. Five databases—Google Scholar, PubMed, Wiley
Online Library, SCOPUS, and ScienceDirect—were used to search for original randomized controlled
trials published in English with relevant keywords. The search identified 18 articles that matched
the inclusion criteria and illustrated the effects of Met on bone. This study demonstrates that Met
improved bone density and reduced the effects of T2DM on adiposity formation in the animal
models. Further research is needed to pinpoint the optimal dosage of Met required to exhibit these
therapeutic effects.
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1. Introduction

According to the International Diabetes Federation (IDF) in 2019, approximately
373.9 million adults between the ages of 20 and 79 years have impaired glucose toler-
ance [1]. Malaysia’s National Diabetes Registry Survey (NDRS) and the National Health
and Morbidity Survey 2019 also reported that 3.9 million adults aged 18 and above have
type 2 diabetes, corresponding to 1 in 5 adults having type 2 diabetes [2]. Further inspection
revealed that patients with T2DM experience a 50–80% increased risk of bone breakage [3].
As T2DM is considered to be a risk factor, more research is necessary to identify possible
preventive measures for these patients. On the other hand, Cheung et al. [4] anticipate
that the statistics of hip fractures will grow considerably in Asian countries between 2018
and 2050. The annual medical expenditure is also forecasted to reach USD 10 billion
by 2050, assuming that treatment costs remain constant. These statistics are concerning
when considering the prevalence of T2DM and the status of the disease as a risk factor
for osteoporosis.

Bone health can be described as bones being without compromise in bone density,
unlike bones during osteoporosis. Features integral to bone strength include, but are not
limited, to the cortical bone’s porosity and the trabecular bone’s microarchitecture [5].
Malone and Hansen discussed how although obesity and increased risk of developing
T2DM are closely linked, obesity is not the primary source of the advancement of this
metabolic disease [6]. Inherited insulin resistance is also considered to be one of the many
factors contributing to T2DM by altering the muscle and islet α-cells. Therefore, this
brings forth an upsurge in glucose and insulin release that causes increased production of
glucose by the liver and insulin by the pancreas. The quantification unit for bone health is
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generally bone mineral density (BMD). However, a recent epidemiological study outlined
how although higher BMD has been considered an indicator of lower fracture risk, patients
with T2DM have higher BMD than healthy individuals, but still have an elevated risk of
fracture [7]. Unnanuntana et al. [8] pointed out that when comparing the improvement in
bone density between patients receiving osteoporosis treatment and placebo, translation of
the medication’s effectiveness was only 18% when considering fracture prevention. Hence,
an increase in BMD does not automatically imply a reduction in fracture risk, and other
possible factors can influence a patient’s risk of fracture.

Other elements that can forecast fracture risk should be noted, such as measuring
serum adiponectin levels. Komorita et al. [9] disclosed a correlation between elevated
serum adiponectin levels and heightened risk of fractures in patients with T2DM. Moreover,
Yamamoto, Yamauchi, and Sugimoto underlined how using the trabecular bone score
(TBS) proved to be a more dominant factor in verifying bone fragility in patients with
T2DM [10]. On the other hand, Yu et al. described how increased marrow adipose tissue
(MAT) and reduction in MAT unsaturation are connected to skeletal frailty [11]. In general,
the location of MAT is in the bone marrow, and its expression of MAT originates from
mesenchymal cells of the bone marrow after differentiation. The study also showed an
amplified proportion of MAT in obese T2DM patients, suggesting a connection between
T2DM, MAT, and skeletal health.

There are currently plenty of antidiabetic medications on the market, including but
not limited to the thiazolidinedione class, sulfonylurea, and sodium–glucose cotransporter
(SGLT2) inhibitors [12]. However, the American Diabetes Association (ADA) mentions
that metformin remains the first line of treatment for patients diagnosed with T2DM, due
to its favorable results in terms of efficacy, safety, pricing, and the upside of reducing the
risk of cardiovascular incidents [13]. Exploration of metformin also showed that it could
induce osteogenic effects crucial for bone formation [14]. The Diabetes Prevention Program
reported that overweight participants treated with metformin displayed a substantial
decline in body weight, waist circumference, and prevalence of T2DM by 31% [15]. This
observed mechanism begins with the signaling of AMPK on Runt-related transcription
factor 2 (Runx2), which is responsible for explicitly managing the formation of osteoblasts,
which are cells crucial for bone formation. The activation of AMPK also downregulates
advanced glycation end products (AGEs) and allosteric site activation of insulin receptors
(IRs), reducing glucose uptake and providing a suitable environment for osteoblastogenesis
which, in turn, suppresses the peroxisome proliferator-activated receptor γ (PPAR-γ) and
inhibits the process of adipogenesis. This signaling pathway is crucial, as osteoblasts and
adipocytes share a similar progenitor cell, known as bone marrow stromal cells (BMSCs);
differentiation favoring either pathway could be a factor in contributing to bone formation
or bone loss, respectively [16].

There is a paucity of literature on metformin’s effectiveness in improving bone quality
in animal models. As there is increasing evidence that T2DM is a potential risk factor for
osteoporosis, the interest in researching whether metformin could be used as a preventative
measure or treatment is high. This systematic review aims to identify the possible beneficial
effects of metformin on bone health, focusing on bone density and adiposity, as both of
these factors are indicators of the bone’s wellbeing. It is within expectations that both
conditions’ prevalence will increase soon. Hence, this review aims to provide an overview
of metformin’s effects on bone, along with a plausible change in the management strategy
for the concomitant disease that could benefit public health.

2. Methodology

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines were referred to while conducting a sizable literature search. This literature
search aimed to encapsulate the effects of metformin treatment on bone marrow density
and adiposity in animal models. The electronic search incorporated the most recent studies
and evidence for this review while reducing the probability of the databases used: Google
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Scholar, Wiley Online Library, PubMed, ScienceDirect, SCOPUS, and SpringerLink. The
results were filtered, and only studies published between 2000 and 2021 were picked,
diminishing the prospect of involuntarily omitting older studies. Studies had to have used
metformin as part of the intervention, the animal model could not have had comorbidities,
and lastly, animal models with the presence of estrogen were excluded, as this influences
the bone mineral density. The inclusion criteria of relevant articles revolved around the
keywords and terms mentioned individually, including “(metformin AND bone AND
type 2 diabetes mellitus AND animal) OR (adiposity)”, replacing bone. The full-text
articles accumulated were then imported to EndNote X9.2 as a repository, where the
search results obtained were exported as EndNote files. Subsequently, using the Covidence
software allowed the co-authors to aid in filtering the gathered manuscripts and possible
duplications, while the remaining results were screened based on their title, abstract, and
relevance to this review to reduce publication bias.

The studies included were controlled animal studies using metformin as the treatment
for T2DM and recording the measurements of interest, such as the animal models’ bone
mineral density and adiposity at baseline and after treatment. Interventions that utilized
metformin for the treatment of T2DM were included. The administration methods, e.g.,
orally or through injection at any dosage, were incorporated and recorded for this review.
The placebo group was the only intervention used as a contrast, and the treatment goals of
all the articles accumulated were conventional.

By assessing the compiled articles, the observed pathological features of T2DM in vivo
were grouped in Table 1 according to how they were analyzed; they included the following.

Table 1. Features that are determinants of bone mineral density and adiposity.

Determinants of Bone
Mineral Density Determinants of Adiposity

Presence or progression of bone porosity Decreased adipocyte size
Low bone mineral density/mineralization Decreased fat mass

Alkaline phosphatase (ALP) Total serum triglyceride (TG)
Tartrate-resistant acid phosphatase (TRAP) Total cholesterol (TC)

2.1. Selection of Studies

The compiled titles and abstracts from the electronic searches were screened inde-
pendently by two authors (D.K.W.L. and N.P.) and assessed to select suitable research
papers, for which we obtained the full text. Should any difference in opinion between the
two authors arise, a third author (A.K.) would step in and solve the dispute and come to
an agreed conclusion. Subsequently, two authors (D.K.W.L. and N.P.) evaluated the entire
document of collected articles against the inclusion criteria. When required to work out
any disagreements, the third author (A.K.) acted as a mediator whenever the two review
authors could not resolve their dispute through discourse. If a study did not present all
essential data, we directly reached out to the authors to seek additional information and,
by observation, if the same set of information was present in more than one paper, we
included the paper with the most significant number of models or the most informative
data. Through assessing manuscripts that met the inclusion criteria, the aforementioned
features were taken into account, and are reported in the table below. The tabulated results
briefly summarize the amassed documents’ similarities and differences.

Three responses are utilized as follows for each section:

• Yes (the phenotypic feature was present).
• No (the phenotypic feature was not present).
• Not reported (NR; the feature not reported in the model).
• Only significant differences from the control were recorded as demonstrating the

phenotype for quantitative data, and the results were then qualitatively assessed.
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2.2. Rodent Selection Criteria

The impact of the female hormone estrogen on bone mass, as documented by Mon-
dockova et al. [17], reported that the insufficiency of this hormone would result in rapid
bone loss. The reduction in estrogen levels also affects the regulation of bone development,
such as its inability to achieve peak bone mass, maintain bone metabolism, and suppress
bone loss. Finkelstein et al. [18] also demonstrated a significant decay in bone formation
during the late perimenopause phase, which was shown to progress at a similar rate as
during the first postmenopausal years. Zhu et al. also mentioned that leptin resistance was
observed due to these hormonal changes, leading to obesity and increased risk of diabetes
and bone loss [19]. Hence, articles incorporating only male animal models were included
in this systematic review, so as to provide a more controlled environment.

3. Results

According to the keywords in the methodology section, the search yielded 3452 records.
Of the 3452 records, 1019 were from Google Scholar, 427 from PubMed, 210 from ScienceDi-
rect, 1274 from Wiley Online Library, and 522 from SCOPUS. The total number of articles
removed was 3415 after filtering the records through the exclusion criteria, comprising
(a) 650 articles that were not original research articles, (b) 268 articles not related to the aim,
(c) 1,027 duplicates, and (d) 1,470 articles not related to the scope of the review (Figure 1).
The remaining 36 articles underwent complete text analysis, and we removed 18 articles,
while the remaining 18 articles were appropriate. The 18 articles selected are summarized
in Tables 2 and 3, and discussed in the present systematic review.
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Table 2. Summary of studies that reported on the effects of metformin on bone mineral density in animal models with type 2 diabetes mellitus.

First Author, Year Mouse Strain Age Duration of
Treatment

Dosage of Treatment
Determinants of Bone Health

Reduced Bone
Porosity

Improved Bone
Mineral Density

Increased
ALP

Decreased
TRAP

Adeyemi, 2020 [20] Wistar 10–12 weeks old 4 weeks 180 and 200 mg/kg/body weight
(b.w.)/per day (p.o.) NR NR Yes Yes

Adulyaritthikul, 2019 [21] Goto-Kakizaki (GK) rats
and Wistar (control) NR 4 weeks 15 mg/kg b.w. twice daily (b.i.d) Yes (cortical, trabecular

and iliac bone) NR Yes NR

Aljalaud, 2019 [22] Albino Wistar 8 weeks old 6 weeks 150 mg/kg/day NR Yes NR NR

Felice, 2017 [23] Wistar 8 weeks old 3 weeks 100 mg/kg/day NR Yes Yes Yes

Bornstein, 2017 [24] C57BL/6J 18 weeks old 6 weeks 300 mg/kg/day Yes Yes NR NR

Molinuevo, 2010 [25] Sprague-Dawley NR 2 weeks 100 mg/kg/day NR NR Yes Yes

Pereira, 2018 [26] Wistar NR 10 days
50 mg/kg/day and 100 mg/kg/day
Poly (lac-tic-co-glycolic acid) (PLGA)

+ 10 mg/kg & 100 mg/kg
Yes NR NR NR

Sun, 2017 [27] Wistar 7 weeks old 1 month 100 mg/kg/bw/day NR NR Yes Yes

Tolosa, 2013 [28] Sprague-Dawley 2 months old 2 weeks 100 mg/kg/day NR NR Yes No (Increase)

Zhou, 2020 [29] BKS-Leprem2Cd479 and
C57BLKS (control)

6 weeks old 9 weeks 200 mg/kg/day No (No Changes) No (No Changes) NR NR

Zhou, 2019 [30] C57BL/6 wild-type 6 weeks old 10 weeks 200 mg/kg/day NR Yes NR NR

Zheng, 2019 [31] Sprague-Dawley 5 weeks old 16 weeks 900 mg/kg/day NR NR Yes Yes
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Table 3. Summary of studies that reported on the effects of metformin on adiposity in animal models with type 2 diabetes mellitus.

First Author, Year Mouse Strain Age Duration of
Treatment

Dosage of Treatment Determinants of Adiposity

Decreased
Adipocyte Size Decreased Fat Mass Decreased TG Decreased TC

Lee, 2017 [32] Sprague-Dawley 6 weeks old 8 weeks and
12 weeks 500 mg/kg/day NR Yes Yes NR

Bornstein, 2017 [24] C57BL/6J 18 weeks old 6 weeks 300 mg/kg/day Yes No (No Changes) NR NR

Kim, 2016 [33] C57BL/6 4 weeks old 14 weeks 10 mg/kg and 50 mg/kg Yes NR Yes Yes

Luo, 2016 [34] C57BL/6 8–10 weeks old 4 weeks 250 mg/kg/day Yes Yes NR NR

de Oliveira Santana, 2016 [35] SWISS 4 weeks old 2 months 100 mg/kg/day Yes NR Yes Yes

Ismail, 2013 [36] Wistar 4 weeks old 2 weeks 400 mg/kg/day NR NR Yes Yes

Pei, 2012 [37] Sprague-Dawley 4 weeks old 6 weeks 200 mg/kg/day NR Yes NR NR
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3.1. Attributes of Subjects

Through the accumulation of 18 studies, a total of 790 mice were included—not includ-
ing the work of Bornstein et al. [24], where the number was not explicitly mentioned—and
the age varied from 4 weeks to 18 weeks old. Furthermore, the study with the largest
sample size was that of Pereira et al. [26], with 166 rats, and the study of de Oliveira Santana
et al. [35] was the smallest, with 28. Regarding the strain of the mice, 5 of the 18 studies
used C57BL/6 mice, another 5 used Sprague-Dawley rats, and 4 used Wistar rats.

3.2. Nature of the Studies

According to the tabulated data, the duration of treatment ranged from 10 days to as
long as 16 weeks. Moreover, the metformin dosage also varied, from 10 mg/kg/day to as
much as 900 mg/kg/day. All of the included studies were randomized controlled trials.
Seven studies in this systematic review euthanatized the animals to observe both the tibia
and the femur, whereas the others looked at alveolar bones, and one study investigated
parietal bones. Meanwhile, for adiposity, four studies examined total serum triglyceride,
three examined white adipose tissues, two examined epididymal adipose tissue, and one
examined mesenteric vascular bed adiposity index.

4. Discussion
4.1. Effects of Type 2 Diabetes Mellitus on Bone Mineral Density

The relationship between T2DM and bone health has not been adequately addressed;
therefore, an approach to defining bone health and the risk factors associated with T2DM
patients should provide a clear overview of the ramifications. To identify treatment plans
for managing these diseases, researchers must first understand the pathogenesis of the bone
disease, and recognize the process of bone modeling and remodeling. Bone modeling and
remodeling occur from birth to adulthood, and only remodeling occurs afterwards. During
bone remodeling, osteoclasts’ bone resorption rate is higher than their bone formation.
When osteocytes discern a malformation of the bone or the emergence of microcracks,
they initiate the resorption procedure, leading to the resorption of the damaged area and
repairing the new bone. However, complications arise when the resorption rate increases
further due to other risk factors, such as ageing T2DM, causing further reductions in bone
quality and density, and disrupted microarchitecture. To date, medications prescribed
for osteoporosis can reduce the risk of fractures, but with limitations, including multiple
contraindications and side effects, such as hypocalcemia. Thus, healthcare professionals
are faced with significant challenges when deciding suitable treatment options [38].

Multiple studies have shown that T2DM affects the process of bone turnover through
the reduction of osteoid—a pre-mineralized tissue that transforms into the lamellae after
calcification in the bone matrix [39]—in terms of its thickness, volume, and the osteoblast
surface area when compared to individuals without T2DM of the same age [40]. Fur-
thermore, as the accumulation of AGEs continued, diminished osteoblast formation was
reported in patients with T2DM. AGEs are proteins or lipids modified through the glycosy-
lation process in the presence of sugar; as such, observations of patients with T2DM are
likely to reveal a higher aggregation of AGEs in the body [41]. The buildup of AGEs causes
modifications to the features of collagen and laminin, contributing to frailty and leading to
lower BMD [42]. Both of these parameters influence the generation of osteoblasts, which
are derived from mesenchymal cells, and are responsible for producing type I collagen and
mineralization of the bone, which then matures to form osteocytes [43].

Furthermore, as obesity increases, the buildup of visceral adipose tissue promotes the
production of non-esterified fatty acids (NEFAs), consisting mainly of saturated palmitic
acid that induces inflammation and insulin resistance [44]. Liu et al. [45] also highlighted
how palmitic acid upregulates the transcription and translation process of PPAR-γ and
spindle and kinetochore-associated protein 1 (SKA1). Their study noted that PPAR-γ was
able to bolster the levels of SKA1, and found further evidence of a predicted binding site for
PPAR-γ on the promoter region of SKA1 through the JASPAR database. Overexpression of
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SKA1 is potentially cancer-inducing, as a study conducted by Wang et al. [46] demonstrated
a connection between SKA1 and the advancement of prostate cancer. Furthermore, PPAR-γ
can also alter the BMSC lineage by encouraging adipogenesis through the stimulation
of adipogenic pathways. This action inhibits osteoblastogenesis and the formation of os-
teoblasts, leading to diminished bone quality and mass. Increased bone marrow adipocytes
were able to repress cells of osteogenic descent and support the production of osteoclasts
from hematopoietic stem cells (HSCs) by secreting adipokines, signaling for bone resorption
and, hence, losing bone mass [47].

A systematic review conducted by Adulyaritthikul et al. [21] demonstrated the effects
of T2DM on the bone by utilizing male type 2 diabetic Goto-Kakizaki (GK) rats as an
example of a non-obese diabetic model, and using a synchrotron computed tomography
(synchrotron CT) machine to scan for changes in bone porosity and microarchitecture. The
results indicated that the percentage of bone porosity of the femur cortical bone of the T2DM
group was significantly higher, with a value of 26.50 % ± 2.42%, compared to the control
group (5.363% ± 0.76%). On the other hand, the porosity for the femur trabecular bone
of the T2DM rats was observed to be higher, with a value of 71.07% ± 2.61% compared to
the control group (38.16% ± 1.84%). The tibial, cortical, and trabecular bone recordings
demonstrated that the former had a higher porosity (33.37% ± 2.87%) compared to the con-
trol (6.054% ± 0.87%). The trabecular bone also exhibited higher porosity (68.88% ± 2.43%)
in contrast to the control group (44.47% ± 2.35%). Lastly, the iliac bone also illustrated a
higher percentage of porosity in the T2DM group (74.28% ± 2.51%) when compared with
the control group (50.67% ± 3.80%). Bornstein et al. [24] recorded several isolated tibia and
femur parameters after inducing obesity and T2DM by providing a high-fat diet (HFD)
(60% kcal from fat) to C57BL/6J mice for 15 weeks. The parameters were measured using a
microtomographic imaging system (µCT). They included trabecular bone volume fraction
(BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), medullary area (Ma.Ar),
cortical area (Ct.Ar), total cross-sectional area (Tt.Ar), and polar moment of inertia. MAT
parameters through osmium tetroxide (OsO4) staining were measured, followed by µCT,
comprising marrow adipose tissue volume, marrow volume, and relative MAT volume.
Based on the data collected, the HFD regimen did not display a significant change in the
BV/TV or Tb.N, but increased the Tb.Th and Ma.Ar which, in turn, increased the polar
moment of inertia. Concerning MAT, it increased the total MAT volume. Inspections
showed no substantial changes in the femur for the variables BV/TV, Tb.N, and Tb.Th,
but showed a small difference in Ma.Ar, as well as in other areas, such as the cortical area,
total cross-sectional area, endocortical perimeter, and periosteal perimeter. On the other
hand, the H&E staining technique quantified the visceral adipose tissue (VAT) and inguinal
adipose, and upon closer inspection, the HFD procedure increased the inguinal adipocyte
size and the VAT adipocyte cell size.

Other articles share similar observations, such as the work of Felice et al. [23] utilizing
Wistar rats fed with a fructose-rich diet (FRD) for five weeks. The bones of interest were
the left femur, tibia, and second lumbar vertebra. The long bones were measured at the
distal femoral or proximal tibial metaphysis section to understand the trabecular bone
better. The parameters evaluated were total bone mineral content (totBMC), total bone
mineral density (totBMD), trabecular bone mineral content (trBMC), and trabecular bone
mineral density (trBMD), using pQCT. On the other hand, parameters such as cortical bone
mineral content (cBMC), cortical bone mineral density (cBMD), cortical thickness, periosteal
circumference, and endocortical circumference were also utilized to analyze the diaphysis
for cortical bone using pQCT. This study also measured the parameters BV/TV, Tb.N,
Tb.Th, and trabecular separation (Tb.S). However, based on the pQCT data, there were no
significant differences in the distal femoral and proximal tibial metaphysis compared to the
control group. The data for the diaphysis also demonstrated no substantial discrepancies
between the experimental groups, which held for the other parameters, such as BV/TV,
Tb.N, Tb.Th, and Tb.S. Molinuevo et al. [25] illustrated that after the introduction of T2DM,
the animal models experienced a decrease in bone thickness when comparing the control
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group (30 ± 1) and the diabetic group (19 ± 1). Pereira et al. [26] conducted their research
and discovered that the introduction of T2DM affected the alveolar bone, and was graded
with a histopathological score of 3, explaining that there was complete reabsorption of the
alveolar process and drastic loss of the cement. BMD decreased to a value of 0.11 g/cm2 in
models with T2DM in the study conducted by Zheng et al. [31], compared to the control
group, with a value of 0.17 g/cm2. Research from Zhou et al. [30] also exhibited an alveolar
bone loss area of 65 × 10−2 mm2 when compared to the control group, which had a value
of 57 × 10−2 mm2.

4.2. Effects of Type 2 Diabetes Mellitus on Marrow Adiposity

On the other hand, bone marrow adipose tissue (BMAT) is fat content commonly
found within the bone marrow space, accounting for roughly 50–70% of the marrow
volume during adulthood and 10% of the total adipose tissue depot in humans. These
tissues were initially considered to inert and to have no functional properties, but recent
studies demonstrated that BMAT could manage metabolic functions. To better understand
how T2DM affects BMAT, the characteristics of BMAT should be well comprehended. The
growth of BMAT commences from the terminal phalanges, followed by the appendicular
skeleton, emerging in the axial skeleton, and finally expecting the bone marrow to transform
into MAT during the human lifespan [48]. In cases of animals with T2DM, there have
been reports of the metabolic disease having a detrimental effect on the BMAT; hence, it is
paramount that the potential pathophysiological changes caused by T2DM that specifically
affect BMAT are well comprehended. As observed in models with T2DM, while the levels
of free fatty acids (FFAs) and triglycerides reportedly increased, the likelihood of PPAR-γ
activation also increased [49]. The activation of PPAR-γ can then stimulate the adipocyte
differentiation process, leading to an increase in adipocyte synthesis and, therefore, an
increase in BMAT.

Further evidence suggests that circumstances that are related to bone loss—such
as ageing, osteoporosis, and T2DM, along with the increased growth of BMAT in this
environment—cause the BMAT to lose its brown-adipose-tissue-like attribute that is nec-
essary to supply the microenvironment that encourages osteogenesis, thus silencing the
osteogenic differentiation process [47]. During this shift in the microenvironment induced
by T2DM, oxidative stress resulting from the heightened levels of pro-inflammatory cy-
tokines and stimulation of the production of reactive oxygen species (ROS) results in a
deviation of the standard cellular pathway. Muruganandan et al. [47] also explained that
due to the divergence of the cellular pathway favoring the FoxO transcription factors that
require ß-catenin, this action diminishes the T-cell factor/lymphoid enhancer-binding factor
(TCF/LEF)-mediated osteogenic signaling in MSCs, as both of these pathways compete
for the same protein substrate. As such, the bone remodeling process runs amok, whereby
osteogenesis is interrupted and adipogenesis is encouraged, leading to unregulated adipose
production levels, reduced bone density, and impaired skeletal health.

Alternatively, another proposed course of action as to how T2DM could affect BMAT
is by inhibiting growth hormone (GH) secretion from the pituitary glands, hindering bone
development and lipolysis, as T2DM and obesity are closely linked. Reducing growth
hormone production can worsen obesity and create a health-threatening cycle [50]. Yang
et al. [51] also concluded that patients with a high body mass index (BMI) experience
negatively growth hormone secretion feedback when analyzed during the growth hor-
mone stimulation test. In a study involving animal models, mice with genetic defects
of both GH receptor and insulin-like growth factor 1 (IGF-1) had reduced bone length
during observations compared to mice with only one of those insufficiencies [52]. GH is
purportedly responsible for synthesizing IGF-1 in rodent chondrocytes, which signals other
cells in a paracrine approach that motivates chondrocyte multiplication and endochondral
ossification, which are crucial in the bone formation process.

Further investigations revealed that the paracrine IGF-1 pathway primarily impacts the
trabecular bone, as was observed in experiments involving the knockout of the osteoblast-
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explicit IGF-1 gene, which resulted in the dwindling of trabecular bone volume, along with
compromised trabecular framework and mineralization. Both GH and IGF-1 play a role in
the cycle of exacerbating obesity, and exploring the 11ß-hydroxysteroid dehydrogenase type
1 (11ß-HSD-1) enzyme can provide a better understanding. The 11ß-HSD-1 enzyme is most
commonly found in adipose tissues and the liver, catalyzing the interconversion of inactive
cortisone to active cortisol [53]. Cortisol has the physiological response of triggering the
process of lipid metabolism, which generates FFAs and glycerol, with the latter required for
gluconeogenesis. However, it was assumed to adopt a lipogenic characteristic and facilitate
lipogenesis when there is an overabundance of free-flowing cortisol due to the increased
glucose production that stimulates insulin release. Hence, insulin was responsible for the
lipogenesis observed [54].

Moreover, the GH-IGF-1–11ß-HSD-1 enzyme interaction is crucial, as both GH and
IGF-1 operate as its inhibitor; therefore, any disruption in the activation of either hormone
could result in increased production of cortisol, leading to a disruption in circulating gluco-
corticoid regulation and increasing the severity of both T2DM and obesity. Additionally,
GH can promote osteoblastogenesis, and these osteoblasts then express IGF-1 through the
stimulation of parathyroid hormone (PTH). In another study involving the outcomes of GH
replacement therapy on PTH in patients with adult GH deficiency (AGHD), the secretion
of PTH increased notably after the treatment as compared to without treatment [55], which
indicates that GH could play a part in promoting PTH and further encouraging bone
development. This pathway increases the yield of IGF-1, which further activates the syn-
thesis of the receptor activator of nuclear factor kappa-B ligand (RANKL) and, in response,
stimulates osteoclast production, with the purpose of breaking up and absorbing the bone
for remodeling. As the quantity of RANKL starts to multiply, the ratio of osteoprotegerin
(OPG) to RANKL becomes disproportionate, leading to extended bone absorption and,
possibly, lower bone mass if the ratio is not maintained. Mrak et al. [56] conducted a study
and found that GH plays a role in preserving the RANKL:OPG ratio by stimulating the
output of OPG to revert the fluctuation. Therefore, understanding the effects of T2DM on
GH and adipose tissues could be a potential area of interest for therapeutic interventions
related to bone diseases such as osteoporosis and obesity.

Furthermore, one of many plausible mechanisms involved in the overproduction of
marrow fat in T2DM is stipulated to be visceral fat [57]. As the glucose levels in the blood
increase, this leads to an elevation in insulin production to restore the disparity. However,
the continuous heightened volume of insulin has detrimental effects, such as amplifying
the process of lipogenesis, which can contribute to the expansion of visceral fat [54]. In
addition, due to the excessive production of visceral fat and suppression of lipolysis, a large
quantity of available FFAs shift towards the liver through the visceral adipose tissue (VAT)
passage channels’ portal vein. The overabundance of adipose tissues further catalyzes the
release of adipokines, encouraging insulin resistance [58]. One of the many adipokines
that are well studied and contribute to the condition of insulin resistance is TNF-α—a
pro-inflammatory cytokine. A study conducted by Hivert et al. [59] mentioned that when
there is an obstruction in the expression of the TNF-α protein, it impedes the initiation
of hyperinsulinemia in murine models. However, the reverse—such as the increase in
the production of FFAs and triglycerides—occurs when TNF-α is administered, which
validates the role of TNF-α in the pathophysiology of insulin resistance. Esposito et al. [60]
conducted a study to understand the effects of a high-fat meal on endothelial function
between patients with T2DM and healthy individuals. The experiment demonstrated
that individuals with T2DM have a hindered response towards L-arginine and higher
TNF-α levels compared to healthy individuals after a high-fat meal, implying impaired
endothelial function in the former group. As endothelial function decreased, Cersosimo and
DeFronzo [61] described how the rate of transport of insulin across the capillary bed was
prolonged, leading to further insulin resistance. Not only that, but TNF-α was also reported
to modify the permeability of the intestinal capillaries, which could hamper the metabolic
action of insulin, further aggravating insulin resistance. Further reports also indicate that



J. Clin. Med. 2022, 11, 4193 11 of 19

elevated TNF-α can directly modify the functioning of ß-cells by provoking their apoptosis,
leading to the disintegration and decline of working ß-cells and, therefore, inducing insulin
resistance [62]. Prolonged insulin resistance will stress the pancreatic ß-cells as they try to
secrete more insulin to combat the high blood sugar levels; however, over time, they will
deteriorate and possibly lose their function, participating in the pathogenesis of T2DM and
obesity, resulting in increased visceral fat and BMAT [63].

Lastly, Kim and Schafer [57] delineated how plasma leptin concentration can be consid-
ered a process that increases marrow fat in T2DM. Fat cells commonly secrete the hormone
leptin, including in BMAT [64]. Leptin acts on the hypothalamus at higher concentrations
and induces appetite suppression and energy output to maintain homeostasis. However, in
the case of T2DM, it is suggested that an oversupply of leptin may occur, as the metabolic
condition impairs the functioning of leptin receptors [65]. Over an extended period of
unregulated T2DM, the body develops a lower sensitivity towards leptin, and becomes
resistant to the hormone, reducing its ability to distinguish between satiety and overeating,
encouraging the advancement of obesity and BMAT [66].

Additionally, in a review conducted by Hamrick and Ferrari [67], it was explained that
leptin also plays a direct role in managing the process of bone formation and resorption. As
the BMSCs encompass leptin receptors, their successful binding increases the production
of OPG, followed by the reduction in RANKL, which results in the repression of osteoclast
differentiation that is responsible for bone resorption and bone loss, thus stimulating bone
formation. However, subsequently, higher amounts of leptin prompt the cell death of
BMSCs, which represent bimodal-shape feedback, through which early accumulation of
leptin improves bone development, but consequent elevations damage the bone formation.
Few studies have looked into the effects of T2DM on BMAT, some of which had similar
outcomes in their plasma profiles, such as increased cholesterol and triglyceride levels. First
and foremost, Lee et al. [32] experimented on male Sprague-Dawley rats to understand the
effects of T2DM on mesenteric perivascular adipose tissues and overall plasma profiles in
terms of triglyceride and cholesterol. The results indicated that the instigation of T2DM with
a high-fat and -fructose diet triggered an upsurge in percentages of mesenteric perivascular
adiposity index for both high-fat diets for eight weeks and twelve weeks, with 1.7 ± 0.1
and 1.8 ± 0.1, respectively, as compared to the control group, with values of 0.9 ± 0.04 and
0.8 ± 0.1, respectively.

On the other hand, observations showed that plasma triglycerides increased, with
values of 158 ± 16 and 166 ± 21, respectively, when compared to the control values of 66 ± 9
and 86 ± 9, respectively, further validating the effects of T2DM on adiposity. Furthermore,
Molinuevo et al. [25] aimed at examining the effects of streptozotocin-induced T2DM on
plasma triglycerides in rats, and cholesterol also demonstrated elevated plasma levels,
with a value of 59 ± 2 for cholesterol, compared to the control group (43 ± 4). In contrast,
triglycerides had a value of 62 ± 5, compared to the standard group’s value of 45 ± 4.
Tolosa et al. [28] hypothesized that T2DM could influence bone metabolism by inducing
hypertriglyceridemia, with a fourfold increase compared to the control group, from 62 ± 7
to 252 ± 25. The adipokine TNF-α was also a measured parameter, with values increasing
from 24.7 ± 1.8 to 123 ± 9.0. The H&E stains on the BMAT also demonstrated a significant
increase in the T2DM model compared to its benchmark counterpart.

Moreover, the objective of Bornstein et al. [24] was to identify the effects of T2DM
on BMAT through its quantification using osmium tetroxide (OsO4), along with micro-
computed tomography (µCT). The results demonstrated that the MAT volume, marrow
volume, and relative MAT volume significantly increased in value due to the introduction
of T2DM, compared to the control group. In addition, the researchers also explained that
the conducted lipid profiling displayed a considerable difference in multiple unique lipid
species in HFD murine models. Lastly, the visceral (VAT) and inguinal adipose tissue
were evaluated based on their adipose size, and the HFD group illustrated an escalation
compared to the control batch. Furthermore, an investigation to determine the effects of
T2DM on murine white adipose tissue (WAT) by measuring the average adipocyte area
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utilizing ImageJ software, along with H&E staining for quantification of adipocyte size,
found that T2DM significantly increases both of these parameters, validating its negative
consequences on MAT [34]. The subsequent study gathered the WAT of different groups
and weighed it to compute the difference as percentages in body weight. The outcome
showed that the HFD group significantly rose compared to the other groups, signifying the
overall increase in adipose tissues in the T2DM murine model [37]. de Oliveira Santana [35]
also looked into plasma criteria such as total serum cholesterol, HDL, VLDL, LDL, and
triglycerides of SWISS male mice models fed with a low-carbohydrate HFD (LCHFD) to
observe the variation between the test groups, along with H&E staining of WAT to quantify
the weight of WAT, mesenteric adipose tissue, and retroperitoneal adipose tissue. Based on
the results obtained, the aforementioned adipose tissues displayed a significant increase in
weight in comparison to the control group, while the plasma parameters—such as triglyc-
erides, LDL, and total cholesterol—also exhibited elevation with values of 143.8 ± 16.52
from 106.5 ± 4.35, 46.52 ± 11.10 from 15.76 ± 4.69, and 174.6 ± 6.104 from 113.4 ± 7.250,
respectively. H&E staining also revealed that LCHFD increased the mean diameter of
adipocytes, further supporting the detrimental effects of T2DM on adiposity. Lastly, Is-
mail et al. [36] analyzed the serum variables of mice induced with an HFD, including
cholesterol, triglycerides, LDL, VLDL, and HDL, and obtained values of 190 ± 4.4 from
118.6 ± 2.9, 195.7 ± 10.5 from 98.3 ± 6, 208.6 ± 9.6 from 57.6 ± 4.4, 38 ± 2.1 from 19.6 ± 2.1,
and 23.6 ± 2.1 from 34 ± 1, respectively.

4.3. Effects of Metformin on Bone Mineral Density

As previously mentioned, T2DM influences glucose metabolism by instigating the
production of ROS and AGE, causing oxidative pressure and provoking the redirection
of MSCs towards developing HSCs and osteoclasts responsible for bone resorption [68].
While the disease advances, the PPAR-γ receptor is activated, and promotes the process of
adipogenesis, increasing visceral fats in the body, leading to the accumulation of BMAT and
the pathogenesis of obesity, which further exacerbates the symptoms of T2DM. Healthcare
professionals commonly prescribe metformin to relieve and manage the high glucose levels
found in a T2DM patients and, additionally, to reverse the increased BMD and adiposity
caused by the illness. A study to identify the effects of metformin on bone mineralization
in male Wistar rats showed that the administration of metformin at 200 and 180 mg/kg
body weight (b.w.) per day orally, three days after the induction of T2DM for four weeks,
raised the levels of bone development indicators such as osteocalcin (OCN) and total
alkaline phosphatase (TALP). In contrast, the bone resorption marker tartrate-resistant acid
phosphatase (TRAP) was significantly reduced compared to the untreated group. Therefore,
Adeyemi et al. [20] proposed that metformin usage can maintain the wellbeing of bones in
models with T2DM. Adulyaritthikul et al. [21] aimed to investigate the effects of metformin
treatment on bone porosity in male T2DM Goto-Kakizaki rats. The diabetic rats were given
15 mg/kg body weight of metformin twice daily through oral gavaging for four weeks, and
the microarchitectures of different sections of bone were analyzed and observed through
synchrotron computed tomography and imaging. The results indicated that metformin
could successfully reduce femur cortical, tibial cortical, and iliac bone porosity, where the
authors concluded that the usage of metformin treatment is favorable for bone health. The
study by Aljalaud [22] also found similar results—the bone thickness was significantly
enlarged compared to the diabetic control group when given 150 mg/kg/day of metformin
for six weeks. Felice et al. [23] hypothesized that T2DM alters the orderly conservation of
bone architecture, and that metformin can inhibit that side effect. The rats were allocated
100 mg/kg/day of metformin through their drinking water for three weeks, but did not
display any significant changes in BMC, BMD, or the other structural criteria previously
mentioned. The authors noted that although there were no visible changes based on the
analysis conducted, this does not imply that the condition of the bone is not affected by
T2DM or metformin, as BMD may not be a suitable evaluation tool for assessing bone
quality. Moreover, the purpose of another article chosen for this systematic review was to
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evaluate the effects of metformin treatment on bone tissue reconstruction in male T2DM
rats fed with 100 mg/kg/day for two weeks. The results indicated that the introduction of
metformin promoted an increase in bone thickness and area of reossification; the researchers
concluded that metformin could promote bone recovery in T2DM rat models [25]. On the
other hand, there are reports of reductions in bone loss caused by metformin in T2DM rat
models with periodontal disease. The study included two groups with different dosages of
metformin: one with 50 mg/kg/day and the other with 100 mg/kg/day, with the latter
showing lesser degradation and destruction of the alveolar process and cement [26]. In a
subsequent investigation, Sun et al. [27] aimed to assess the effects of metformin utilization
on orthodontic tooth movement, defined as the process when compulsion applied instigates
bone resorption on the pressure section and bone apposition on the tension section in T2DM
models [69]. The route of administration was intragastric, with a dosage of 100 mg/kg/day
for a month, and the results suggested that metformin can favorably repair the damage
caused by T2DM by increasing the availability of ALP, reducing TRAP production, and
regularizing tooth movement. Furthermore, a group of researchers mentioned that T2DM is
detrimental to bone metabolism and further harms the microarchitecture of the long bone,
and speculated that metformin could hinder these setbacks. The male Sprague-Dawley
rats were given 100 mg/kg/day of metformin in their drinking water for two weeks,
which reduced TRAP activity, thus moderately improving the bone microarchitecture [28].
Additionally, a different article intended to understand the preventive impact of metformin
on T2DM models, and discovered that supplying 900 mg/kg/day of metformin also
significantly increased ALP, OCN, and BMD [31]. Although Zhou et al. [30] investigated
the effects of metformin on inflammatory signaling, they also observed slight alveolar
bone loss and tooth movement when provided 200 mg/kg/day of metformin for 10 weeks.
A study headed by Zhou et al. [29] administered 200 mg/kg/day of metformin to BKS-
Leprem2Cd479 db/db male mice for nine weeks, demonstrating partial reversion of the
alveolar and periodontal bone loss induced by T2DM. Furthermore, Bornstein et al. [24]
managed to illustrate that metformin could partially rescue some areas of the bone—such as
the cortical bone area fraction, which was affected by T2DM—but did not affect other areas,
such as the trabecular thickness, when given metformin of 300 mg/kg/day for six weeks.

4.4. Effects of Metformin on Marrow Adiposity

Based on current literature, T2DM plays a part in complicating the fate of MSCs
by tilting the balance between osteoblastogenesis and adipogenesis, favoring the latter.
However, metformin can reduce marrow adipocytes’ numbers and size by inhibiting PPAR-
γ and the formation of adipocytes caused by T2DM [70]. In this study, 500 mg/kg/day of
metformin was given through drinking water for two different durations: one group for
8 weeks, and another for 12 weeks. The results demonstrated that metformin prevented
the increase in the adiposity index compared to the diabetic untreated group for both
durations. Therefore, the researchers concluded that metformin could prevent visceral
adiposity accumulation in the T2DM rat model [32].

Furthermore, Molinuevo et al. [25] showed that metformin at 100 mg/kg/day for
two weeks diminished cholesterol and triglyceride levels, which are markers of increased
adipocyte formation in male Sprague-Dawley rats. A study conducted with the feeding
of metformin at 100 mg/kg/day through the drinking water of the rats for two weeks
was able to avert the buildup of BMAT compared to the diabetic model [28]. Moreover,
Bornstein et al. [24] aspired to depict the effects of metformin on BMAT, and found that the
administration of 300 mg/kg/day of metformin for six weeks reduced the accumulation of
BMAT catalyzed by T2DM. Additionally, the C57BL/6 mice treated with metformin at two
different dosages—10 mg/kg and 50 mg/kg daily—for 14 weeks were able to lessen the
impact of T2DM on their lipid profiles by reducing the total cholesterol, LDL-cholesterol,
and triglyceride levels. Moreover, the quantity and diameter of fats found in visceral fat also
shrunk in the group treated with metformin [33]. The study conducted by Luo et al. [34]
demonstrated that metformin delivery at 250 mg/kg/day for four weeks reduced adipocyte
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size and volume in ob/ob C57BL/6 mice. The study performed by Pei et al. [37] contem-
plated the consequences of administering 200 mg/kg/day of metformin for six weeks, and
found that the weight of the WAT was notably reduced in the group treated with metformin
compared to the diabetic group. Subsequently, this study used SWISS male mice models to
explore the effects of oral metformin at 100 mg/kg/day on the lipid profile and adipose
tissues for two months, to observe any possible development. The research demonstrated
reduced adipose tissue weight and cholesterol levels, signifying the suppression of PPAR-γ
and adipogenesis [35]. Lastly, Ismail, Soliman, and Ismail [36] noted that using metformin
at 400 mg/kg/day for two weeks improved the lipid profile parameters, such as cholesterol,
triglycerides, LDL, and VLDL, while restoring HDL levels.

5. Strengths and Weaknesses

As murine models are inexpensive due to their small size and lower housing mainte-
nance compared to other animals closer to the human genome—such as chimpanzees—they
are still the most preferred animal models for research [71]. Furthermore, mice have simpler
physiology than other model animals, and can mimic the pathophysiology of human dis-
eases and, in this context, T2DM [72]. Moreover, as it mimics the pathophysiology of T2DM,
the effects of metformin on bone could also be observed. The selected articles included a
wide range of metformin dosages, from 15 mg/kg/bw to 900 mg/kg/bw, making it easier
to analyze which dosage yielded the best results.

However, a significant limitation of this systematic review is the utilization of only
animal models, and the translation to human studies would mean needing to cross the
species barrier, requiring much time. Another discrepancy among the articles was the
route of administration of metformin. There are scarce data on the differences between
administering the drug ad libitum in drinking water, by oral gavaging, or intravenously, as
animal models may not drink as much of the metformin dissolved in water, affecting the
actual dosage provided to the animal. Hence, this warrants further investigations of the
potentially different medication routes, potency levels, and other functional characteristics
between the courses of administration, as the variation in the route may lead to compli-
cations and cause other unwanted obstacles. It would also be a fair and easy comparison
when the study includes force-feeding or ad libitum feeding.

6. Future Directions

All 18 articles discussed in this systematic review presented very encouraging results
as to the beneficial effects of metformin on bone mineral density and adiposity. Through
the literature search, there were some studies conducted on humans to learn more about
metformin and its effects on BMD and adiposity, but there were too few studies that had
done so to conduct a systematic review.

By incorporating a more detailed, time-dependent, and concentration-dependent
analysis, the studies of the effects of metformin could be improved. Although higher
concentrations may risk unwanted side effects such as hypoglycemia and gastrointestinal
complications, they may also exhibit unknown effects that could be noteworthy to increase
the library of research on metformin, as previous studies have mainly focused on T2DM,
but not on BMD and adiposity. Moreover, regulatory and expression studies are vital. More
researchers should explore the regulatory pathways and protein expression after metformin
administration, further elucidating the mechanisms affected by metformin administration.
Moreover, other therapies—such as GLP1-RA or SGLT2 inhibitors—and their potential
effects on bone mineral density and adiposity could also be an interesting perspective.

A study concluded on the usage of metformin-hydrochloride-loaded poly(D, L-lactide-
co-glycolide) (PLGA) demonstrated better results in managing blood glucose levels, in-
flammation, and bone loss found in the experimental periodontal disease model as com-
pared to the conventional drug preparation [26]. The author also stated that using this
polymeric nanoparticle—a biocompatible and biodegradable synthetic polymer—offers
improved therapeutic effectiveness, consistent and drawn-out drug release, decreased
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toxicity, stability, and lower drug decomposition. Conducting an investigative study on the
safety and toxicity profiles of the metformin variants’, along with their pharmacokinetics
and pharmacodynamic profiles, could also help further enumerate the information pool
about metformin.

7. Conclusions

In this systematic review, an attempt was made to compile and discuss the effects of
metformin on bone mineral density and adiposity, and the result are simplified in Figure 2.
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The studies indicate that metformin exhibits a preventative and ameliorative effect
by restoring BMD and adiposity before or after the detrimental effects of type 2 diabetes
mellitus in various in vivo animal models. When administered, metformin activates the
AMPK pathway, which improves insulin sensitivity, suppressing adipogenesis and creating
an environment suitable for MSCs to favor osteoblastogenesis. Moreover, by restoring
the homeostasis of bone metabolism, the rate of bone resorption can be reduced, as the
PPAR-γ is inhibited, thus promoting bone formation and remodeling to restore the loss
of bone density. The reviewed articles demonstrate the benefits of metformin on bone
mineral density, such as reduced bone porosity, improved bone mineral density, increased
ALP, and decreased TRAP. Meanwhile, for the benefits on adiposity, the studies exhibit
decreased adipocyte size, fat mass, TG, and TC. Further studies should be conducted to
ensure that metformin can act as a promising drug that relieves T2DM symptoms and
osteoporosis. Through this systematic review, the effects of metformin on the associated
pathways of bone mineral density and adiposity demonstrated a strong interconnection,
and this prospect should be further explored.
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