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Homeobox genes are essential for both the development of the blood and lymphatic
vascular systems, as well as for their maintenance in the adult. Homeobox genes comprise
an important family of transcription factors, which are characterized by a well conserved
DNA binding motif; the homeodomain. The specificity of the homeodomain allows the
transcription factor to bind to the promoter regions of batteries of target genes and thereby
regulates their expression. Target genes identified for homeodomain proteins have been
shown to control fundamental cell processes such as proliferation, differentiation, and
apoptosis. We and others have reported that homeobox genes are expressed in the
placental vasculature, but our knowledge of their downstream target genes is limited.
This review highlights the importance of studying the cellular and molecular mechanisms
by which homeobox genes and their downstream targets may regulate important vascular
cellular processes such as proliferation, migration, and endothelial tube formation, which
are essential for placental vasculogenesis and angiogenesis. A better understanding
of the molecular targets of homeobox genes may lead to new therapies for aberrant
angiogenesis associated with clinically important pregnancy pathologies, including fetal
growth restriction and preeclampsia.
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INTRODUCTION
Placental angiogenesis has become a focus for the development
of diagnostic tools and potential therapeutics for pregnancy com-
plications. Strategies for pro-angiogenic therapies are grounded
on our knowledge of normal placental angiogenesis and our
understanding of the angiogenic pathways that are disrupted
in pregnancy pathologies. However, it is clear that our com-
prehension of normal angiogenesis in the placenta is lacking
in comparison with other tissues and organs, such as the
cardiovascular system. Furthermore, unique aspects of pla-
cental angiogenesis offer the potential for identifying novel
angiogenic pathways from which new pro-angiogenic factors
could be identified as potential therapeutics for various obstet-
ric complications associated with aberrant angiogenesis. This
review summarizes the genetic and molecular aspects of nor-
mal placental angiogenesis with a focus on placental endothe-
lial cells. Our laboratory has major interest in understand-
ing the transcriptional control of placental angiogenesis, with
a specific focus on a family of transcription factors called
“homeobox genes” and their expression in placental endothelial
cells.

Homeobox genes play an essential role in regulating the
function of vascular systems (Douville and Wigle, 2007). They
coordinate the processes required for proper vascular formation
during development, as well as the maintenance and repair of
the vasculature systems throughout life. Often, homeodomain
proteins work in concert within the vascular cells to achieve
proper vessel function. Homeobox genes regulate the transcrip-
tion of genes necessary for many vascular cell processes such
as cell migration, invasion, proliferation, and tube formation.
Several new downstream targets of specific homeobox genes
have been identified in vascular systems in recent years. How-
ever, there are many homeobox genes that regulate angiogenesis
where we have little or no knowledge of the biological path-
ways they regulate and their target genes of action. This review
focuses on the expression of homeobox genes in placental vas-
cular systems and their potential role in regulating placental
angiogenesis.

THE PLACENTA AND ITS VASCULATURE
An efficient and high capacity materno-fetal exchange system is
crucial for the growth and development of the fetus and the
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outcome of a healthy baby (Boyd and Hamilton, 1970). The pla-
centa acts as a conduit between the maternal and fetal circulations
and facilitates all gaseous and nutritive transfer between mother
and fetus (Page, 1993; Moore and Persaud, 1998). This is achieved
through a structural interface consisting of fetoplacental capillar-
ies encased within terminal branches of the placental villous tree
(i.e., the terminal villi), which are bathed in maternal blood per-
fusing into the intervillous spaces (see Figure 1; Gude et al., 2004).
The metabolic needs of the fetus increase throughout pregnancy
and the placenta adjusts to these demands through the continual
development and adaptation of the placental villous vasculature
thus ensuring sustained fetal growth and well-being (Chaddha
et al., 2004).

In early placental development, villous vascularisation is pre-
ceded by trophoblast-mediated invasion of maternal uterine spiral
arterioles, which establishes a maternal blood supply (Jaffe et al.,
1997; Kingdom et al., 2000). The maternal blood filled lacunae
then coalesce to create intervillous spaces, interposing pillars of
trophoblasts, which gradually collapse and allow entry of blood
from the uterine circulation (Lyall, 2005). The placental villous

tree begins to form around day 13 post-conception, when rem-
nants of the trophoblastic pillars proliferate into the intervillous
spaces (Kingdom et al., 2000). A week later, vascularisation occurs
by the de novo process of vasculogenesis (Risau, 1997; Kingdom
et al., 2000). The villi are invaded by extraembryonic mesenchyme,
which differentiates into endothelial and stromal support cells
(Charnock-Jones et al., 2004). From these cells, a primitive pla-
cental vascular network is assembled and eventually connects with
the embryonic circulatory system around day 32 post-conception
(Kaufmann et al., 2004).

To perform the exchange functions required of it, the
highly immature placental vasculature subsequently under-
goes a phase of branching angiogenesis, which dramatically
increases the number of villous blood vessels (Kaufmann et al.,
2004). During this period, there is a corresponding rise in
end-diastolic blood flow velocity, most likely reflective of
a rise in fetal blood pressure (Hendricks et al., 1989). The
increased villous capillary density improves fetoplacental blood
flow to accommodate progressively increased fetal requirements
(Ahmed and Perkins, 2000).

FIGURE 1 | Schematic representation of a human placenta. (A) A
representative drawing of the fetal placental circulation. Note the dotted
line which shows the position from which drawings of a section
through the chorionic villous at ∼10 weeks (B) and term (C) are taken.
(B) Chorionic villous the presence of syncytiotrophoblast, a layer of
cytotrophoblast cells, connective tissue of the villus containing

fibroblasts and the fetal capillaries. (C) At term, in some areas the
placental membrane is so thin such that the syncytiotrophoblast comes
into direct contact with the fetal capillary endothelium, and is thus
called the vasculo-syncytial membrane. Adapted and modified from
http://imueos.wordpress.com/2010/05/25/placenta-function/ and from
http://php.med.unsw.edu.au/embryology/ASA_Meeting_2013_-_Placenta
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Around 26 weeks’ gestation, villous vascular development
enters the final phase of non-branching angiogenesis, character-
ized by longitudinal growth of capillaries exceeding that of the villi
themselves. The capillary loops bulge into the overlying villous tro-
phoblasts, forming structures called terminal villi (Kingdom et al.,
2000). Focal sinusoids, which are unique to the placenta because
they possess a continuous endothelium and complete basal lam-
ina, may also form in the fetoplacental capillaries, causing the
outer vessel wall to be separated from maternal blood only by a
very thin layer of syncytiotrophoblast called the vasculo-syncytial
membrane (Burton and Tham, 1992). Terminal villus formation
occurs exponentially during the third trimester (Chaddha et al.,
2004). The end result of terminal villus formation is a dramatic
increase in the surface area to volume ratio (Charnock-Jones, 2002;
Chaddha et al., 2004) and the terminal villi form the major sites for
diffusional exchange between the maternal and fetal circulations
(Kingdom et al., 2000; Charnock-Jones et al., 2004; Kaufmann
et al., 2004).

Therefore, the adaptation of the placental vasculature to
increasing fetal demands follows two main strategies. Firstly,
blood flow per se increases by lowering vascular impedance
(Kaufmann et al., 2004). Branching angiogenesis initially cre-
ates parallel vessels of reduced mean length, and hence reduced
impedance (Kaufmann et al., 2004). As capillaries lengthen due to
non-branching angiogenesis, the sinusoids formed in them coun-
terbalance the effect on total fetoplacental vascular impedance
(Charnock-Jones, 2002). Secondly, the rate of diffusion across
the placenta is improved by an increase in available surface area,
and a reduction in villous membrane thickness; the vasculo-
syncytial membrane separating maternal blood from fetal blood
can be as thin as 1−2 μm (Charnock-Jones, 2002). Angiogen-
esis and the formation of terminal villi are the main processes
that culminate in remodeling the placental vascular bed (Mayhew,
2003).

IMPAIRED ANGIOGENESIS AND PREGNANCY-ASSOCIATED
DISORDERS
Villous vascularisation is an important process in organogen-
esis and is essential for the placenta to function efficiently
(Zygmunt et al., 2003). The spectrum of vascular defects asso-
ciated with clinically significant pregnancy disorders attests to the
close relationship between the placental vasculature and embry-
onic development. Compared with villi obtained from elective
terminations, villi from placentae where intrauterine embry-
onic death and blighted ova was the outcome exhibit aberrant
vascular characteristics manifest in significantly lower vascu-
lar density, fibrosis, and hydropic degeneration (Meegdes et al.,
1988). Placentae from women with diabetes mellitus and gesta-
tional diabetes also show villous vascular maldevelopment and
studies using light microscopy, electron microscopy and histo-
chemical techniques have shown the length, diameter and surface
area of fetoplacental capillaries to be increased (Jacomo et al.,
1976; Jones and Fox, 1976; Mayhew et al., 1994). As well, some
of the capillaries appear unduly immature (Kami and Mitsui,
1984).

Perhaps the most dramatic, best-characterized changes in the
villous vasculature are seen in fetal growth restriction (FGR),

which is a common and clinically significant disorder of preg-
nancy. FGR is defined as failure of the fetus to achieve genet-
ically determined potential size to an extent where its health
is adversely affected (Lin and Santolaya-Forgas, 1998). FGR
affects 4–7% of live births in developed countries and con-
tributes significantly to prematurity, perinatal morbidity, and
mortality (Wang et al., 2007). Investigations using random block
sampling and stereological studies reported reductions in the
number, surface area, and volume of terminal villi in FGR-affected
placentae, compared with placentae from uncomplicated preg-
nancies (Biagiotti et al., 1999; Egbor et al., 2006; Biswas et al.,
2008; Vedmedovska et al., 2011; Almasry et al., 2012; Almasry
and Elfayomy, 2012). Additionally, villous vessels exhibited
fewer branches, and a majority of the vessels were slender and
uncoiled (Teasdale, 1984; Teasdale and Jean-Jacques, 1988; Jack-
son et al., 1995; Chen et al., 2002; Mayhew, 2003; Tomas et al.,
2010). A failure, or reduced capability, of branching angiogen-
esis in FGR is strongly associated (Kingdom et al., 2000) with a
reduced supply of oxygen and nutrients to the fetus, and sub-
sequent growth delay (Sanchez-Vera et al., 2005; Salafia et al.,
2006).

Despite extensive research, it is unknown whether vascular
changes cause FGR or whether these changes are a consequence
of aberrant biological mechanisms in the FGR-affected placenta
(Maulik, 2006; Maulik et al., 2006). Clearly, further research into
the molecular regulation of angiogenesis in the placenta is vital.

MOLECULAR REGULATION OF ANGIOGENESIS
Angiogenesis involves distinct changes in the phenotype of
endothelial cells, the central cellular organizational units of vas-
cular structures. Figure 2 shows the two distinct processes of
vasculogenesis and angiogenesis involved in fetoplacental vascular
development in human pregnancy.

In a multi-step event, quiescent endothelial cells are first
activated to re-enter the cell cycle (Myers et al., 2002). As a con-
sequence of increased cellular proliferation, proteolytic enzyme
production is up-regulated in order to degrade the basement mem-
brane. The endothelial cells then migrate into the surrounding
stroma and gradually assemble into a tube-like capillary struc-
ture with a patent lumen. After a new basement membrane is
synthesized, pericytes are recruited to the outside of the new
capillary to complete the formation of a stable, quiescent vessel
(Sato, 2000).

The stimuli for these complex, temporally coordinated changes
are communicated from the microenvironment surrounding the
endothelial cell surface to the nucleus through multiple signal-
ing pathways (Patel et al., 2005). At the molecular level, the growth
factors and receptors that activate these pathways have been exten-
sively studied in vitro and in vivo (Arderiu et al., 2007; Winnik
et al., 2009). Vascular endothelial growth factor (VEGF), placental
growth factor (PlGF), and the angiopoietins are considered the
most influential factors (Patel et al., 2005). The primary receptors
for VEGF are VEGF receptor-1 (VEGFR-1) and VEGF receptor-2
(VEGFR-2), while PlGF only binds to VEGFR-1 (Patel et al., 2005).
VEGF has been demonstrated to be a potent stimulator of endothe-
lial cell proliferation, migration, and production of plasminogen
activators required for basement membrane digestion (Regnault
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FIGURE 2 | A schematic diagram as illustrated describes the two distinct processes of vasculogenesis and angiogenesis involved in fetoplacental

vascular development in human pregnancy. Adapted and modified from Murthi et al. (2008).

et al., 2003; Escudero et al., 2014). Studies of chicken chorioallan-
toic membranes have shown that VEGF binding to both VEGFR-1
and VEGFR-2 results in branching angiogenesis, while PlGF
binding to VEGFR-1 alone mediates non-branching angiogene-
sis (Wilting et al., 1996). The angiopoietin family comprises two
main factors, angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-
2) and are both antagonistic ligands of a common receptor, the
tyrosine-kinase with immunoglobulin-like and epidermal growth
factor-like domains-2 (TIE-2). While Ang-1 binding to TIE-2 pro-
motes vascular stabilization, Ang-2 allows vessels to remain in a
more plastic state (Kurz et al., 1998).

In normal pregnancies, placental expression of important
growth factors correlates with their established roles. For exam-
ple, expression of VEGF and VEGFR-2 is highest during early
gestation, which coincides with vasculogenesis and branching
angiogenesis, but expression declines with advancing pregnancy
(Jackson et al., 1994). Conversely, PlGF and VEGFR-1 expression is
highest toward term, coinciding with non-branching angiogenesis
(Clark et al., 1996). A concurrent decrease in Ang-2 expres-
sion, and increase in Ang-1 expression at the end of the second
trimester, is believed to mediate the transition from branching to
non-branching angiogenesis (Geva et al., 2002).

Our knowledge of the molecular regulation of angiogenesis
in the placenta is incomplete. Nuclear transcription factors inte-
grate upstream signals generated by the binding of growth factors
to their receptors. Transcription factor binding to specific DNA
sequences within the promoter regions stimulates or represses
expression of batteries of downstream target genes (Hamik et al.,
2006). Transcription factors are considered to be the master reg-
ulators that determine gene expression profiles that culminate
in the activated, angiogenic phenotype. Loss of function stud-
ies clearly demonstrate that transcription factors including TBX4,
CDX2, CDX4, HAND1, FOXF1, CITED2 are required for placental
development (Mahlapuu et al., 2001; Cross et al., 2002; Naiche and
Papaioannou, 2003; Cross, 2006; Preis et al., 2006; van Nes et al.,

2006). However, the target genes regulated by these transcrip-
tion factors are largely undefined. Recent studies have provided
evidence for transcriptional control of VEGF signaling by Notch
ligand as well as hypoxia-inducible factor (HIF1a) in placental
angiogenesis (Fang et al., 2013). Morphological and phenotypic
analyses of the human placenta using whole mount immunoflu-
orescence technique were employed to demonstrate that early
human placental blood vessels express high levels of the pro-
angiogenic receptors VEGFR1, VEGFR3 and the activated signal
transduction and activator of transcription 3 (pSTAT3) suggest-
ing that these molecules play a role in regulation of placental
vascular development (Bushway et al., 2014). Thus, an under-
standing of transcriptional mechanisms would afford a valuable
insight into the downstream angiogenic signaling cascades in the
placenta, which as yet, remain largely unexplored in the human
placenta.

HOMEOBOX GENES
A particular large family of transcription factors that provides a fer-
tile area for studying placental angiogenesis is the homeobox gene
family. Characterized by a common 60-amino-acid DNA-binding
motif known as the homeodomain, and homeobox genes were
first identified in Drosophila through investigations of mutations
that gave rise to homeotic transformations (McGinnis and Krum-
lauf, 1992). Subsequently, it was discovered that three-dimensional
patterning and body plan formation during embryogenesis are
largely attributable to action of homeobox genes, due to their
capacity to spatiotemporally regulate the basic processes of differ-
entiation, proliferation, and migration (Manley and Levine, 1985;
Han et al., 1989). Homeobox genes can regulate genes responsi-
ble for cell adhesion, migration, proliferation, growth arrest, and
the expression of cytokines needed for extracellular matrix interac-
tions (Graba et al., 1997; Svingen and Tonissen, 2006; Hueber et al.,
2007) all of which are functions characteristic of the angiogenic
phenotype.
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HOMEOBOX GENES IN ANGIOGENESIS
Evidence in the literature increasingly supports a substantial role
for homeobox genes in general vascular development, and par-
ticularly in endothelial cell function (Gorski and Walsh, 2000,
2003; Gorski and Leal, 2003; Douville and Wigle, 2007). A
well-known example is Gax, a homeobox gene originally iso-
lated from a rat aortic cDNA library, which is widely expressed
in embryonic muscle precursors (Gorski et al., 1993). Initial
investigations of the human homolog, Gax, were conducted
primarily on vascular smooth muscle cells, where Gax was
shown to induce G1 cell cycle arrest and reduce cell migration
(Witzenbichler et al., 1999). Gorski and Leal (2003) subsequently
confirmed GAX expression in endothelial cells using immuno-
histochemical methods on sections of highly capillarised human
kidney. Succeeding in vitro investigations revealed that GAX
prevented VEGF-induced endothelial cell migration and tube
formation through the repression of multiple genes involved
in the pro-angiogenic nuclear factor kappa-beta (NFκ-B) sig-
naling pathway (Patel et al., 2005). Hence, GAX emerged as
an important inhibitor of the angiogenic phenotype. Other
less well studied homeobox genes are implicated as positive
regulators of angiogenesis. For example, human HOXA9 pro-
motes endothelial cell migration, in part by activating the
expression of EphB4; a receptor tyrosine-kinase that shows
increased expression in tumor-induced vascularisation (Bruhl
et al., 2004).

HoxA9−/− mouse embryos display a poorer angiogenic
response to hypoxia and have decreased numbers of endothe-
lial cell precursors (Rossig et al., 2005). Complementary pro-
angiogenic functions have also been described for the paralogous
homeobox genes HoxD3 and HoxB3. HOXD3 not only pro-
motes endothelial cell invasion of the extracellular matrix early
in angiogenesis, but also regulates the subsequent capillary mor-
phogenesis of these new vascular sprouts (Douville and Wigle,
2007). Although these findings generally emphasize the multi-
faceted importance of homeobox genes in angiogenesis, the studies
were conducted within the context of embryonic development
and/or tumor-induced adult neovascularisation.

Studies by Shaut et al. (2008) have reported that HoxA13
is essential for placental vascular patterning and labyrinth
endothelial specification. In the absence of HoxA13 func-
tion, placental endothelial morphology is altered causing a
loss in vessel wall integrity, edema of the embryonic blood
vessels and mid-gestational lethality. The authors have also
reported on the novel transcriptional program by which HoxA13
directly regulates Tie2 and Foxf1 in the placental labyrinth
endothelia, providing a functional explanation for the mid-
gestational lethality exhibited by HoxA13 mutant embryos. How-
ever, homeobox gene contribution(s) to extraembryonic angio-
genesis, particularly in the human placenta, remains largely
unexplored.

HOMEOBOX GENES IN THE PLACENTA
Currently, information about the role of homeobox genes in
placental tissues is mainly derived from studying mouse gene
knockouts (Rossant and Cross, 2001). For example, targeted dele-
tion of Esx1 (Fohn and Behringer, 2001) and Dlx3 (Morasso et al.,

1999) resulted in disruption of the vascular network in the placen-
tal labyrinthine layer, which in mice is thought to be functional
equivalent of the human placental villi (Cross et al., 2003a,b). Not
only were embryos in both cases growth-restricted, but failure to
establish an adequate placental circulation in Dlx3−/− mutants
resulted in embryonic lethality (Morasso et al., 1999). Together,
these studies provide genetic proof that homeobox genes are not
only regulators of placental organogenesis but they are also spe-
cific regulators of placental vascular development. Furthermore,
homeobox genes can directly or indirectly influence fetal viability.
We carried out the first screening of a 32-week placental cDNA
library for homeobox genes, which led to the isolation of DLX4,
MSX2, GAX, and HLX (Quinn et al., 1997; Rajaraman et al., 2008).
Immunohistochemical analyses identified the localisation of these
homeobox genes in both trophoblasts and endothelial cells of the
human placenta (Murthi et al., 2006a; Rajaraman et al., 2008; Chui
et al., 2010).

HOMEOBOX GENE EXPRESSION IS ALTERED IN HUMAN
FETAL GROWTH RESTRICTION CHARACTERIZED BY
IMPAIRED PLACENTAL ANGIOGENESIS
Using a clinically well-defined cohort of idiopathic FGR (n = 25)
and gestation-matched control (n = 25) pregnancies, we reported
an overall decrease in homeobox gene HLX and ESX1L expres-
sion in all cell types, including endothelial cells, in FGR-affected
placentae compared with GMC (Murthi et al., 2006a,b). Sub-
sequently, we also reported that homeobox genes DLX4 and
DLX3 showed increased expression in FGR-affected placentae
(Murthi et al., 2006c; Chui et al., 2012), whereas GAX and MSX2
showed no significant difference. Our studies represented the most
comprehensive and extensive analyses of homeobox genes in pla-
cental pathologies undertaken. In situ mRNA hybridisation and
immunohistochemical studies on placental sections localized the
expression of these genes not only to placental trophoblasts but
also to endothelial cells that comprise the fetal capillaries (Quinn
et al., 1998a,b, 2000).

HOMEOBOX GENE EXPRESSION IN PLACENTAL
ENDOTHELIAL CELLS
At least two functionally distinct endothelial cell types, macrovas-
cular and microvascular exist within the human placenta (Lang
et al., 1993; Ugele and Lange, 2001). Macrovascular endothelial
cells [human umbilical vein endothelial cell (HUVEC)] line the
large conduit vessels of the umbilical cord and isolated cells from
the vein have been used extensively to model vasculogenic and
angiogenic processes occurring in tissues such as the placenta
(Demir et al., 1989; Wang et al., 2004). Microvascular endothe-
lial cells vascularise the cotyledons of the placenta. It is important
to study the microvascular environment of the placenta because
in placental disorders such as FGR and PE, structural and vascular
changes occur within the microvasculature of the terminal villi that
impact on maternal-fetal gas and nutrient exchange (Demir et al.,
1989; Kingdom et al., 2000; Dye et al., 2004; Wang et al., 2004).
Lang et al. (2003) have reported that distinct morphogenetic, anti-
genic, and functional characteristics exist between microvascular
and macrovascular endothelial cells of the human placenta and
demonstrated differences in the secretion of vasoactive substances
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and the proliferative response to cytokines between microvascular
and macrovascular endothelial cells of the human placenta. The
different reactions of microvascular and macrovascular endothe-
lial cells to various stimuli (Lang et al., 2003) are likely to reflect
differences in the activation of transcription factors that mediate
signal transduction mechanisms in the two cell types.

In addition, several studies have found various morpholog-
ical, antigenic, growth, and functional differences between the
two endothelial cell types in association with pathological con-
ditions (Thorin and Shreeve, 1998; Charnock-Jones et al., 2004;
Pollheimer and Knofler, 2005). Therefore, it was concluded
that isolated microvascular endothelial cells from the chorionic
villi have advantages as a model to study placental vascular
development over macrovascular HUVEC.

To isolate and enrich placental microvascular endothelial cells
(PLEC), we used a modified methodology based on the perfusion-
based technique described by Lang et al. (2003). After cannulation
of the chorionic vessels and removal of fetal blood, Lang et al.
(2003) introduced proteolytic enzymes into the perfused cotyle-
don in a specific volume of buffer that was perfused into the
placenta at a variable flow rate by employing a gravity feed sys-
tem. In contrast, our modified methodology involved pumping
the enzymes into the vasculature at a constant flow rate for a
variable length of time and until no further venous outflow was
obtained. This modified technique achieved a controlled delivery
of the enzymes and an enriched population of PLEC (Murthi et al.,
2007).

Freshly isolated PLEC were used to identify the homeobox
genes expressed in the placental microvasculature, and expression
of homeobox genes was compared with that of macrovascular
HUVEC. Conventional reverse transcriptase polymerase chain
reaction (PCR) was used to detect mRNA levels of homeobox
genes DLX3, DLX4, MSX2, GAX, and HLX (formerly known as
HLX1 or HB24) in both PLEC and HUVEC. Our study was the first
to show DLX3, DLX4, and MSX2 are expressed in macrovascular
HUVEC. We also reported that the mRNA levels of HLX mRNA
in HUVEC were significantly lower compared with PLEC (Murthi
et al., 2007). These data provided further evidence of heterogene-
ity in homeobox gene expression between microvascular PLEC
and macrovascular HUVEC, which most likely reflects significant
differences in endothelial cell function in the two different cellular
environments.

HLX is important in the proliferation and lineage commitment
of haematopoietic cells (Deguchi et al., 1992). In the human pla-
centa, HLX mRNA expression is restricted to proliferating cell
types such as villous cytotrophoblast and extravillous cytotro-
phoblast cells in the proximal regions of the invading cell columns
(Rajaraman et al., 2008). In our study, we showed HLX mRNA
expression in placental endothelial cells (Murthi et al., 2007),
which are also proliferative cell types. Microvascular endothe-
lial cells of the placenta, particularly within the terminal and
intermediate villi of term placentae, have a higher level of prolifer-
ative activity in comparison with their macrovascular counterparts
(Murthi et al., 2007). Moreover, in response to PlGF, PLEC have a
significantly greater proliferative activity compared with HUVEC
(Lang et al., 2003). HLX levels in PLEC are relatively higher
than in HUVEC, and PLEC have greater proliferative potential.

Taken together, these data suggests a possible role for HLX in the
proliferative capacity of microvascular endothelial cells. The tran-
scriptional regulation of proliferation, migration, and invasion of
PLEC by homeobox genes DLX3, DLX4, MSX2, GAX, and HLX is
yet to be explored.

The reported the co-expression of HLX, MSX2, GAX, and
DLX4 in PLEC (Murthi et al., 2007) and this specific combination
of homeobox genes may be important in mammals. For exam-
ple, Hlx is co-expressed with members of the Msx, Gax (also
known as Mox) and Dlx families in the mouse embryo. HLX is
expressed with MSX2, GAX (also called MOX2) and DLX4 in
the trophoblast cell layers of the human placenta (Quinn et al.,
1998b). Quinn et al. (2000) predicted that the combination of
homeobox genes could play a significant role in the regulation
of epithelial–mesenchymal cell interactions in the extraembry-
onic tissues. Therefore, co-expression of the homeobox genes in
both trophoblast and endothelium may be important in the coor-
dination of villous outgrowth and angiogenesis that is seen in
the terminal villi and is essential for the efficient functioning of
the placenta as it grows. Thus, our study on the homeobox gene
expression profiling in placental endothelial cells (Murthi et al.,
2007) further emphasized the importance of studying microvas-
cular endothelial cells (i.e., PLEC) as a model for the placental
microvascular bed, or other microcirculation systems.

IDENTIFICATION OF NOVEL HOMEOBOX GENES IN
PLACENTAL ENDOTHELIAL CELLS
To further expand our knowledge of the repertoire of homeobox
genes expressed in placental endothelial cells, in a subsequent
study by Murthi et al. (2008) we carried out microarray expres-
sion profiling on endothelial cells and analyzed public microarray
expression profile databases. We have employed PCR and real-time
PCR methods to corroborate the microarray data and to com-
pare relative expression levels of homeobox genes in PLECs and
HUVEC.

Microarray expression data as reported in Murthi et al. (2008)
suggested that novel homeobox genes are expressed in microvas-
cular placental endothelial cells. These homeobox genes, HEX,
PHOX1, LIM6, HOXB7 and TGIF, have not been previously
detected in the placenta and were selected because they exhibited
the greatest relative expression in the microarray data (Murthi
et al., 2008). Novel homeobox genes TLX1 and TLX2 homeobox
gene expression data was obtained from the GNF Microar-
ray Analysis Data for the Human U95A microarray, Version 2
dataset (http://expression.gnf.org; Su et al., 2002). Homeobox
genes LIM6, HOXB7, TGIF, PHOX1, and HEX were expressed
in the endothelial cells of the placenta.

Expression of these homeobox genes in the placenta or in
placental endothelial cells has not been previously reported.
HEX (Nakagawa et al., 2003), PHOX1/Prx1 (Ihida-Stansbury
et al., 2004), and HOXB7 (Care et al., 2001) homeobox genes
have been previously described in endothelial cells from var-
ious sources but have not been described in any endothelial
cell type and may represent novel endothelial regulatory genes.
Validation of high-throughput gene microarray screening data
of potentially novel homeobox gene expression in endothe-
lial cells is essential. In our study (Murthi et al., 2008), the
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FIGURE 3 | A schematic representation of the distinct endothelial cell types in the human placenta. Differential expression of novel homeobox genes
TGIF and MEIS2 in macrovascular HUVEC and HLX, DLX 3, DLX4, TLX1, TLX2, and PHOX1 in freshly isolated placental endothelial cells (PLECs) are
summarized. Figure adapted from Sato (2000), Kingdom et al. (2000).

microarray data were further corroborated by independent meth-
ods such as RT-PCR and real-time PCR. Thus, our study
was the first to demonstrate that the novel homeobox genes
TLX1, TLX2, PHOX1, MEIS2, and TGIF are expressed in
PLEC. In addition, in the same study, we have also reported a
differential expression of TLX1, TLX2, PHOX1, MEIS2, and TGIF

mRNA levels in macrovascular and microvascular endothelial
cells.

Thus, we have identified novel homeobox genes in microvas-
cular endothelial cells, and consistent with our previous studies
reported in Murthi et al. (2007), we have shown that home-
obox genes are differentially expressed between micro- and

Table 1 | Examples of target genes downstream of homeobox genes required for the regulation of endothelial functions.

Homeobox genes Target genes Regulation EC function Reference

Pro-ang0iogenic

HOXA3 uPAR + Migration Mace et al. (2005)

HOXA9 MMP-14

EphB4

eNOS

VEGFR2

+
+
+
+

MigrationProliferationActivation Bruhl et al. (2004)

Rossig et al. (2005)

HOXB5 VEGFR2 + Activation Wu et al. (2003)

HOXB3 Ephrin A1 + Vessel formation Myers et al. (2000)

HOXD3 Collagen A1 + Adhesion and migration Boudreau and Varner (2004)

MEOX2 MLLT7 − Apoptosis Wu et al. (2005)

PROX1 Cyclin E1 + Proliferation Petrova et al. (2002)

Anti-angiogenic

HHEX VEGFR2 − Activation Nakagawa et al. (2003)

HOXD10 FGF2 + Recruitment Chen et al. (2009)

HOXA5 VEGFR2

Ephrin A1

HIF1a

+ Adhesion Arderiu et al. (2007)

MEOX2 P21 + Cell cycle arrest Gorski and Leal (2003)
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macrovascular endothelial cells. Our studies also provided fur-
ther evidence of heterogeneity in homeobox gene expression
between PLEC and HUVEC, which reflects the significant dif-
ferences in endothelial cell function in the two different cellular
environments.

In summary, our studies have reported homeobox genes that
are novel not only in placental microvascular endothelial cells but
also in the macrovascular endothelial cells of the placenta (Murthi
et al., 2008). Figure 3 summarizes the association between the
detection of homeobox gene expression and the regions of angio-
genic potential in the human placenta. In the microvasculature,
where angiogenesis is predominant, we have identified increased
expression of homeobox genes TLX1, TLX2, and PHOX1. In
the macrovasculature, where there is limited angiogenesis, the
level of TGIF and MEIS2 are significantly increased suggesting
that the heterogeneity in homeobox gene expression between
PLEC and HUVEC that could reflect differences in the angio-
genic potential in the two different endothelial environments.
Functional studies in cultured endothelial cells are underway
in our laboratory to determine the role of novel homeobox
genes.

DOWNSTREAM TARGETS OF HOMEOBOX GENES
Homeobox genes control transcription by binding to regulatory
elements in the promoter regions of target genes. Miano et al.
(1996) first reported the expression of several homeobox genes in
the cardiovascular and lymphatic vasculature. More recently, sev-
eral homeobox genes were shown to affect processes in embryonic
and adult tissues, including angiogenesis and wound healing

(Kachgal et al., 2012). Homeobox genes activate either growth or
migration of vascular cells to promote angiogenesis or wound
healing or restore and maintain quiescent differentiated tissue
function by modulating the expression of pro-angiogenic or anti-
angiogenic factors. Table 1 provides examples of downstream
target genes of homeobox genes that are required for the regulation
of endothelial function in general.

Studies using umbilical or uterine artery Doppler for iden-
tifying FGR, in the absence of maternal hypertensive disease,
show that maternal serum sFLT-1 is increased in these preg-
nancies compared with pregnancies of normotensive women
delivering average for gestational age infants (Crispi et al., 2006;
Stepan et al., 2007; Wallner et al., 2007; Chaiworapongsa et al.,
2008, 2013). More recent studies by Borras et al. (2014) have
reported that maternal plasma free VEGF (f-VEGF) and s-
Flt-1 were significantly higher in FGR compared with con-
trols and the f-VEGF/sFlt-1 quotient was significantly lower in
the FGR group compared with controls. Although the VEGF
family has important roles in normal and complicated preg-
nancies, the current predictive value of the VEGF family as
biomarkers appears to be limited to early onset preeclampsia
(Andraweera et al., 2012).

Studies from our laboratory, using a real-time PCR-based
gene profiling, recently identified candidate target genes of
homeobox gene DLX3 as regulators of trophoblast differentia-
tion; GATA2 and PPARγ (Chui et al., 2013). The expression of
GATA2 and PPARγ were further assessed in placental tissues and
showed increased expression in FGR-affected tissues compared
with gestation-matched controls. Our studies showed that DLX3

FIGURE 4 | As depicted, in response to angiogenic stimuli, altered

expression of homeobox genes in the placental microvascular

endothelial may directly or indirectly alter the expression of

angiogenic molecules. Further analyses of downstream targets may
reveal novel angiogenic markers. These angiogenic molecules in turn

may regulate genes responsible for cell adhesion, migration,
proliferation, growth arrest, and the expression of cytokines needed
for extracellular matrix interactions all of which are functions
characteristic of the angiogenic phenotype. Figure adapted and
modified from Sato (2000).
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orchestrates the expression of multiple regulators of trophoblast
differentiation and that expression of these regulatory genes is
abnormal in FGR.

Xin et al. (1999) have shown that PPARγ ligands suppress
VEGFR1 and VEGFR2 expression in HUVECs. Anti-angiogenic
actions of 15-lipoxygenase on angiogenesis is regulated by PPARγ

and VEGF by inhibiting the expression of VEGFR2 in endothelial
cells (Mochizuki and Kwon, 2008; Viita et al., 2008). Because the
chemical PPARγ ligands thiazolidinediones have been used widely
for the treatment of type 2 diabetic patients, many of whom expe-
rience vascular diseases, clarifying the precise role of PPARγ in
defective placental angiogenesis may be of clinical significance.

Current studies in our laboratory are also focused on identi-
fying target genes of homeobox genes TGIF, MEIS, HOXB7, and
HHEX in human placental endothelial cells, which may reveal
molecular pathways responsible for fundamental cellular func-
tions such as endothelial cell migration, invasion, proliferation,
and tube formation that are important for placental angiogene-
sis. As depicted in Figure 4, in response to angiogenic stimuli or
insult, as in the case of FGR or PE, altered expression of home-
obox genes in the placental microvascular endothelial may directly
or indirectly alter the expression of angiogenic molecules. These
angiogenic molecules in turn may regulate genes responsible for
cell adhesion, migration, proliferation, growth arrest, and the
expression of cytokines needed for extracellular matrix interac-
tions all of which are functions characteristic of the angiogenic
phenotype.

CONCLUSION
Clearly, identifying target genes regulated by homeobox genes
in placental microvascular endothelial cells will reveal the bio-
logical pathways regulated by homeobox genes. These pathways
will provide important information on the function of home-
obox genes in placental angiogenesis. Although homeobox gene
nuclear transcription factors are unlikely to be ideal disease
biomarkers or therapeutic targets, their target genes, if secreted,
may provide viable biomarkers or diagnostic markers. A better
understanding of cellular and molecular mechanisms that regu-
late homeobox genes in placental endothelial cells may lead to
new approaches for correcting aberrant angiogenesis observed in
pregnancy pathologies, including FGR and preeclampsia.
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