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Abstract

More than 0.5 million new cases of head and neck cancer are diagnosed worldwide each year, and 

approximately 75% of them are treated with radiation alone or in combination with other cancer 

treatments. A majority of patients treated with radiotherapy develop significant oral off-target 

effects because of the unavoidable irradiation of normal tissues. Salivary glands that lie within 

treatment fields are often irreparably damaged and a decline in function manifests as dry mouth or 

xerostomia. Limited ability of the salivary glands to regenerate lost acinar cells makes radiation-

induced loss of function a chronic problem that affects the quality of life of the patients well 

beyond the completion of radiotherapy. The restoration of saliva production after irradiation has 

been a daunting challenge, and this review provides an overview of promising gene therapeutics 

that either improve the gland’s ability to survive radiation insult, or alternately, restore fluid flow 

after radiation. The salient features and shortcomings of each approach are discussed.
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1. Introduction

Radiation is effective at tumor control, and therefore, radiotherapy remains the mainstay in 

the treatment of most cancers. However, the unfortunate side-effect of tumor irradiation is 

the collateral damage to healthy tissues either directly or through bystander effects. Free 

radicals generated during water radiolysis are the primary agents of damage in cells that lie 

within the portals of radiation, and biological modifiers released from irradiated cells trigger 

a response in non-irradiated neighboring and distant cells. A number of genes associated 

with immune and inflammatory responses in irradiated tissues revealed that NFκB family of 

transcription factors and their target genes were involved in both normal and tumor tissue 

responses [1]. More significantly, the induction of immune, inflammatory, and apoptosis 

genes in non-irradiated tissues residing outside the radiation field indicated that bystander 
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and systemic effects greatly increase the pool of compromised cells well beyond the 

irradiated region [2].

There are three major salivary glands in humans that are composed of fluid-producing serous 

or sero-mucinous acinar cells. Saliva secreted by acinar cells passes through the ducts and 

exits into the mouth where it functions to protect oral tissues as well as facilitate speech, 

mastication, and swallowing. The inadvertent damage to normal salivary glands during 

regional radiation invariably results in a reduction in salivary flow that begins within the first 

weeks of radiotherapy and continues well past the completion of treatment [3]. A study on 

dose-volume relationship in parotid glands of head and neck irradiated patients found that 

salivary function is gravely compromised at mean doses >25–30 Gy with no functional 

recovery within the first year [4,5]. The partial volume thresholds of the parotid gland were 

determined to be 15 Gy for 67% volume, 30 Gy for 45% volume and 45 Gy for 24% volume 

[5]. Since standard radiotherapy for head and neck cancer involves exposure to a total dose 

of 50–70 Gy, a decline in irradiated gland function becomes near certain.

A majority of acinar cells are post-mitotic, and though they are expected to be relatively 

radio-resilient, they are, in fact, acutely sensitivity to the genotoxin [6,7]. The exact 

mechanism of salivary hypofunction is not completely clear, but there is general agreement 

that the initial decline in function is due to the functional incapacitation of the acinar cells, 

whereas the progressive irreversible loss of fluid output is a result of cell death that is 

compounded by the inability of the tissue to regenerate [8]. Conventional therapy for 

salivary dysfunction is inadequate, and a search for gene therapeutics to ward off functional 

loss began nearly 2 decades ago. The advantages of gene transfer to the salivary glands 

compared to other organs are obvious. One, salivary glands are exocrine in nature, and they 

are easily amenable to non-invasive gene transfer via retroductal access [9,10]. Second, 

localized retroductal delivery directly to the gland minimizes vector dilution and third, it 

offers an opportunity to target virtually every epithelial cell that lines the ductal tree. Since 

the first successful demonstration of salivary gland gene transfer, a number of gene 

therapeutics has been investigated with the hope of offering a better, sustainable solution for 

treatment of radiation-induced hypofunction [11].

2. Approaches to Salivary Gland Gene Transfer

Since naked DNA is inefficient at crossing cell lipid membranes, carriers have been designed 

to transport genes into cells. Gene carriers can be broadly categorized into viral and non-

viral agents. Recombinant viruses are useful tools for gene delivery because of their inherent 

ability to introduce their DNA into host cells [12]. Genetically altering the viral genome to 

include the transgene allows its transfer to cells during virus transduction. Replication-

deficient recombinant viral vectors that have been used in preclinical salivary gland gene 

transfer include adenovirus serotype 5, adeno-associated virus (AAV) serotypes 2, 5, and 9, 

and retroviruses including lentiviruses. Of the 3 common types of viral vectors in salivary 

gland research (Table 1), adenoviruses are most efficient at transducing dividing and non-

dividing cells and establishing rapid and strong gene expression [9]. Immune response to 

viral proteins however, limits gene expression to a few days and precludes repeat virus 

administrations [13]. AAV vectors, on the other hand, are less immune reactive and 
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sustained gene expression is realized for a long period [14,15]. AAV is a single-stranded 

DNA virus, and gene expression is reliant on cellular replication for the generation of a 

functional double-stranded molecule. As a result, there is a long lag period before transgene 

expression and a preferential selectivity towards proliferating ductal cells of the salivary 

glands [15,16]. Wild-type AAV can integrate in the human chromosome 19q13.4, but 

modern gutless vectors, devoid of all viral genes, greatly lack the ability to combine with the 

host DNA. As a result, they carry a reduced risk of insertional mutagenesis [17]. 

Retroviruses are RNA viruses that reverse transcribe their genomes into DNA and then 

integrate into the host. Retrovirus transduction is, therefore, efficient in mitotically active 

cells, and stimulation of cell division of latent salivary gland progenitor and stem cells was 

found to be prerequisite for efficient transduction [18]. As members of the Retroviridae 

family, lentiviruses too transduce cells by integrating into the host DNA, but integration is 

favored at actively transcribed sites. This makes lentiviruses uniquely capable of transducing 

and establishing long-term expression in quiescent cells as well. Human immunodeficiency 

virus-1 (HIV-1) and feline immunodeficiency virus (FIV) are T-lymphotropic lentiviruses, 

but unlike the former, the latter displays broad tissue tropism. FIV vectors can transduce 

most cell types including murine salivary glands to set up lasting gene expression [19]. The 

lack of pathogenicity in humans and the absence of a cross-reactive immune response in 

HIV-infected hosts make FIV vectors better suited to clinical applications [20]. Nevertheless, 

the inherent risk of insertional mutagenesis associated with all retrovirus vectors has, by and 

large, reserved them for research purposes. The development of non-integrating FIV vectors 

has increased vector safety, but gene expression from these vectors is transient in rapidly 

dividing cells [21]. Since most cells of salivary glands are slow dividing or mitotically 

inactive, it is reasonable to assume that stable salivary gland expression can be realized with 

non-integrating FIV vectors.

Plasmids are the simplest gene delivery vectors, and their direct transfer carries a low 

potential for immunogenicity. However, direct transfer of naked DNA to salivary glands has 

been highly inefficient. Strong salivary gland nucleases rapidly degrade DNA and limit 

transfection. The use of polyionic aurintricarboxylic acid (ATA), an inhibitor of DNA 

nucleases, with DNA charge-neutralizing zinc chloride was shown to significantly increase 

plasmid uptake in rat submandibular glands [23]. However, measurable inflammatory 

changes to ATA limit its use to basic research. A non-viral agent routinely used to facilitate 

DNA uptake in cells in vitro is cationic lipids. Similar to most cell types grown in culture, 

cationic lipid-DNA complexes are efficient at transfecting salivary gland cells in serum-free 

conditions in vitro, but are considerably inefficient at DNA transfer to glands in vivo [24]. A 

general reason for the inefficiency is the non-specific adsorption of polyanionic proteins, 

which restrict interaction of lipid-complexes with cell membranes [25].

Due to the lack of an effectual delivery agent, non-viral transfer of nucleic acids fell out of 

favor until the demonstration of siRNA and plasmid transfer with microbubble-ultrasound 

combination [26,27]. Ultrasound causes mechanical perturbation of cell lipid membranes, 

but when used alongside water-soluble, gas-filled microbubbles, the acoustic pressure waves 

causes bubble expansion and collapse that transiently disrupts cell membranes allowing the 

influx of biological molecules. Although microjetting and microstreaming were considered 

to be major contributors to sonoporation events, some have argued in favor of endosomal 
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entry based on biological uptake of genes in distinct clathrin-coated endocytic vesicles [28]. 

A number of studies have demonstrated feasibility of microbubble-assisted ultrasound gene 

transfer in various tissues, and low toxicity and targeted delivery are strengths that make the 

approach potentially safe for clinical applications [29,30]. Moreover, the availability of 

equipment and clinical-grade reagents can ease its translation to patient care. Diluting out 

replication-defective plasmids in slow dividing cells of the salivary glands is less of a 

concern, and transgene expression after sonoporation has been realized for up to 2 and 4 

weeks in porcine and murine salivary glands, respectively [26,31]. Nevertheless, for long-

term gene expression, bio-effects of repeated sonoporation need to be assessed, and as of 

now, ultrasound gene transfer appears well-suited to preemptive salivary gland treatment.

Nanoparticle-based nucleic acid delivery is an attractive approach that has shown promise 

especially, for siRNA transfer. Nanoparticles are nano-scaled spherical structures made of 

lipid, polymer, inorganic material or a combination of these that self-assemble with nucleic 

acids through electrostatic attraction. They can be easily functionalized, but their application 

has faced challenges with cellular entry and endosomal escape [32]. Advances in 

nanotechnology, biomaterials, and nucleic acid chemistry have helped overcome the foresaid 

barriers, and successful siRNA transfer to a variety of cells and tissues including the salivary 

glands has been reported [33–35]. The use of pH-responsive diblock copolymer 

nanoparticles that readily bind nucleic acids and promote the destabilization of endosomal 

membranes increased salivary gland transduction [33]. However, local and systemic 

toxicities to nanoparticles were observed. Newer polymer-based systems have been shown to 

be effective carriers of small payloads such as siRNA, but biodegradation, clearance, and 

toxicity are challenges that need to be tackled before their successful transition to humans.

3. Gene Therapeutics for Radiation-Induced Salivary Dysfunction

Gene therapies that have shown promise in preclinical and clinical studies can broadly be 

grouped based on their mechanism of action in preventing or reversing salivary hypofunction 

of radiation (Figure 1).

Based on the mechanism of action, gene therapies are broadly grouped into 4 classes: 1) 

secretory gene therapy, 2) compensatory growth gene therapy, 3) reparative gene therapy, 

and 4) prosurvival/ anti-apoptosis gene therapy.

3.1. Secretory Gene Therapy

3.1.1. Aquaporin 1 (hAQP1) gene transfer—Aquaporins are a family of membrane-

bound proteins that function in the transport of water, solutes and some ions in and out of 

cells. These water channel proteins are widely distributed in a variety of fluid-transporting 

epithelial tissues, and they are localized at the luminal and basal membranes in polarized 

salivary epithelial cells [36]. Aquaporin 1 (AQP1) is predominantly located on endothelial 

cell membranes, whereas aquaporin 3 and 5 are distributed on the basolateral and apical 

membranes of human salivary acinar cells, respectively [36,37]. To ameliorate dry mouth, a 

reasoned approach was, therefore, to increase water permeability of surviving salivary gland 

cells through aquaporin gene transfer. It was assumed that the osmotic gradient generated by 

functioning K+/ H+38 exchangers in surviving salivary ductal cells would move water into 
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the ductal lumen via the aquaporins. Indeed, adenoviral delivery of human AQP1 (Ad-

AQP1) in previously irradiated rat submandibular glands was found to increase transcellular 

fluid flux and restore salivary output to near pre-irradiation levels []. The study was the first 

successful demonstration of gene therapy in the alleviation of salivary hypofunction. 

Although a following study on submandibular gland of non-human primates showed mixed 

results possibly due to the altered distribution of adenoviral receptors on primate salivary 

gland cells [39], subsequent studies in parotid glands of miniature pigs validated AQP1 

expression in improving gland function in a dose-dependent manner [40]. Salivary 

constituents, however, indicated that K+/H+ osmotic gradient were not the underlying basis 

for transcellular fluid movement. Nevertheless, validity of Ad-AQP1 efficacy and 

confirmation of dose tolerance in rat salivary glands [41] set the stage for its evaluation in 

patients. In a pioneering single-dose, dose-escalation clinical study (ClinicalTrials.gov 

Identifier: NCT 00372320) that followed, 6 of 11 patients with radiotherapy-compromised 

parotid function responded to treatment with measurable reduction in xerostomia [42]. 

Longer duration of symptom relief after single administration of Ad-AQP1 was unexpected, 

and a delay in methylation of Ad-AQP1 promoter seen in transduced human salivary gland 

cells in vitro [43] was proposed as the biological mechanism underlying the extended 

response. Similar to studies in animal [13,44], a localized immune response to the vector 

was recorded, but otherwise, all patients tolerated virus exposure without life-threatening 

adverse effects [42]. The results were undoubtedly encouraging, and they compelled the 

evaluation of AAV as a delivery vector. AAV vectors with a salient advantage of extended 

gene expression seem better-suited for lasting treatment of previously irradiated glands. 

After the successful demonstration of AAV transduction of murine and miniature pig 

salivary glands [14,16] AAV2-AQP1 study in radiation-damaged parotid glands of miniature 

pig determined that a single virus application effectively reverses hyposecretion up to 8 

weeks [45]. An examination of vector toxicity and biospread after virus administration in 

mouse parotid glands showed that a single virus application was accompanied by minimal 

gland inflammation, marginal vector spread to neighboring lymph nodes, and development 

of neutralizing antibodies in blood [46]. Humoral response to the virus raised questions 

about efficacy of subsequent vector administrations, but stable transgene expression >6 

months seen in transduced glands of non-human primates [47] hinted at the possibility of 

long duration of gene expression in humans. Recruitment for AAV2-AQP1 clinical trial is 

now underway (ClinicalTrials.gov Identifier: NCT02446249), and we await results of its 

safety and efficacy in humans.

A recent effort to compare efficacies of Ad-AQP1 and ultrasound-assisted AQP1 gene 

transfer in pre-irradiated parotid glands of miniature pigs found that restoration of fluid 

secretion by non-viral transduction was near-similar to adenoviral gene transfer [31]. 

Salivary output after ultrasound transduction improved up to 2 weeks before declining to 

levels similar to irradiated controls. Since ultrasound gene transfer is known to evoke a 

minimalist immune response, the lack of sustained functionality can be a result of non-

replicating plasmid dilution in proliferating cells of the ducts and, or, genetic or epigenetic 

modifications that suppress gene expression in vivo. A non-viral approach that elicits a 

modest inflammatory reaction can potentially permit multiple gene transfers, but safety, 

feasibility, and cost-effectiveness of life-long treatment necessitates due consideration.
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3.2. Compensatory Growth Gene Therapy

3.2.1. Basic FGF and VEGF gene transfer—Local blood flow to the salivary glands 

decreases soon after radiation [48], and the early drop in salivary function that is 

unaccompanied by epithelial cell loss prompted an inquiry into vasculature damage as the 

underlying reason for salivary dysfunction. Apart from radiation damage to the fluid 

producing acinar cells, damage to endothelial cells has been shown to negatively influence 

salivary function [49]. Basic fibroblast growth factor (FGF) and vascular endothelial growth 

factor (VEGF) are known mitogens that promote angiogenesis and influence cell growth 

either directly or indirectly [50,51]. The suitability of FGF or VEGF gene transfer in 

suppressing radiation-induced functional deterioration of the murine submandibular glands 

was reported by Cotrim et al. [49]. A significant reduction in microvessel density and 

salivary output caused by radiation was averted by prophylactic adenoviral FGF or VEGF 

gene transfer. Importantly, extended FGF2 expression from a modified hybrid retro-

adenoviral vector was found to better preserve vasculature and offset the effects of radiation 

on salivary flow in miniature pigs exposed to a fractionated scheme [52]. Growth factors 

released from transduced salivary epithelial cells can act in a paracrine manner on stromal 

and endothelial cells, but they can also have an autocrine impact on salivary epithelial cells. 

Although VEGF is regarded as an endothelial-selective mitogen, evidence of VEGF 

receptors on salivary ductal cells [53] suggests an additive role of epithelial proliferation in 

the restoration of salivary function. The potential contribution of growth factor-stimulated 

epithelial proliferation in allaying hyposalivation should be kept in mind when assessing 

gland recovery. More importantly, neovascularization is critical to the growth of solid tumors 

including head and neck carcinomas, and the negative impact of salivary secreted 

angiogenesis factors on tumor growth and treatment need to be evaluated.

3.2.2. KGF gene therapy—Keratinocyte growth factor (KGF) is an epithelial cell specific 

growth and differentiation factor that acts through a subset of FGF receptors [54]. Several 

studies have shown the usefulness of recombinant human KGF in regeneration of damaged 

salivary gland epithelial cells and its effectiveness in reducing cancer therapy-related 

mucositis [55,56]. By ingeniously expressing KGF in murine submandibular glands, Zheng 

and colleagues demonstrated the usefulness of salivary gland-secreted KGF in accelerating 

repair of radiation-damaged oral mucosa [57]. Moreover, adopting a hybrid adeno-retroviral 

vector, the group determined that continued KGF expression in salivary glands also protects 

against fractionated radiation-induced salivary dysfunction [58]. KGF released from 

transduced cells binds to FGF receptor 2 (FGFR2) on parenchymal, endothelial, and stem/ 

progenitor cells and stimulates proliferation in an auto-paracrine manner. A major concern 

with secreted KGF, therefore, is its potential to affect tumor growth. Since no effects on 

growth or response to radiation of FGFR2-expressing head and neck tumor xenografts were 

evident, KGF salivary gland gene transfer was suggested to be relatively safe [58]. 

Palifermin, a truncated human KGF, is the only US Food and Drug Administration (FDA) 

approved drug for oral mucositis in patients undergoing conditioning therapy before 

hematopoietic stem cell transplantation. It is anticipated that after conclusive proof of safety 

of KGF gene transfer to salivary glands, an approval for use in head and neck radiotherapy 

patients would have dual impact on salivary dysfunction and oral mucositis.
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3.3. Reparative Gene Therapy

3.3.1. Human TLK1B Gene therapy—Tousled-like kinase 1B (TLK1B) is a normal 

cellular variant of the full-length TLK1 protein [59]. Translation initiates at a downstream 

start codon, and as a result, the shorter variant is N-terminal truncated, but otherwise, 

identical to TLK1. Since protein sequences within the C-terminal kinase domain are 

identical, the variant, not surprisingly, has been found to target the same substrates namely, 

anti-silencing factor 1 (ASF1), histone H3, Rad9, and myelin basic protein, and play 

important roles in DNA replication, chromatin assembly, and DNA damage response and 

repair [59–66]. The role of TLK1B in radio-protection was first uncovered in mouse breast 

epithelial cells [59], and kinase activity was found to be essential for the radio-resistant 

phenotype [65]. The findings of improved radio-resistance in rat salivary gland acinar and 

ductal cells [67,68] suggested that the role of TLK1B in the process extended to other cell 

types. Preemptive in vivo delivery of adenovirus TLK1B to rat submandibular glands was 

effective at thwarting functional decline after single-dose irradiation [67], and more 

significantly, longer duration of TLK1B expression from adeno-associated viral vector 

serotype 9 (AAV9-TLK1B) guarded against fractionated radiation-induced salivary 

hypofunction [15]. Unlike adenoviruses that robustly transduce both salivary gland ductal 

and acinar cells, AAV9, similar to AAV2 and AAV5, was selective at transducing cells of the 

convoluted granular tubules and the secretory and intercalated ducts [15,16]. The salvation 

of salivary flow despite the lack of acinar cell transduction suggested that the protection of 

stem/progenitor cells within ducts is vital to cell replenishment and preservation of function. 

However, analogous to the risk associated with all radioprotectors, vector spread to cancer 

cells could undermine their eradication. Measures that provide discriminatory gene 

expression in normal and cancer cells need to be developed to overcome the shortfall.

3.4. Prosurvival/Anti-apoptosis Gene Therapy

3.4.1. PKC delta gene therapy—Most of the gene therapy studies have been focused on 

exogenous expression of therapeutic proteins in salivary glands that promote cell growth or 

repair to assuage the effects of radiation. In contrast, suppression of apoptosis through 

siRNA transfer was recently shown as an alternate strategy in preserving salivary gland 

function. Protein Kinase C delta (PKCδ) is a ubiquitously expressed cellular variant that 

when activated controls cell growth, differentiation, and apoptosis [69,70]. The regulation of 

radiation-induced PKCδ activation through inhibitory phosphorylation was shown to protect 

salivary glands against radiation [71]. Silencing the pro-apoptotic gene in murine salivary 

glands through preemptive retroductal administration of PKCδ siRNA-nanoparticle 

complexes, Arany et al. demonstrated significant salvation of salivary gland tissue and 

function against radiation [33]. Although an immune response to nanoparticles was 

observed, the use of improved biocompatible and biodegradable nanocarriers can reduce the 

concern. However, the possibility of inducing genomic instability by by-passing apoptosis in 

cells with persistent DNA damage needs careful deliberation.

3.4.2. Heat shock protein (HSP) gene therapy—HSPs are evolutionarily conserved 

molecular chaperones that are named based on their molecular weights. They bind nascent 

polypeptides to guide protein folding towards stable conformations. They were first 

identified as being upregulated in response to heat shock, but have, thereafter, been found to 
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be increased also in response to other stresses including ionizing radiation [72,73]. Proteins 

that are altered or unfolded under stressful stimuli are directly acted upon by HSPs to 

reestablish proper conformations. Moreover, HSPs have been shown to suppress the 

activation of caspases and the release of pro-apoptotic factors from the mitochondria to allay 

the induction caspase-dependent and independent apoptosis. Exogenous expression of 

individual HSP27 or HSP70 was shown to subvert apoptosis in other systems [74–76], and 

an investigation in murine salivary glands demonstrated that HSP25, a murine homolog of 

HSP27, as well as stress-inducible HSP70 gene transfer effectively suppressed radiation-

induced cell loss and preserved gland function [77]. Various HSPs work in concert during 

folding of denatured or naive proteins, and a radioprotective effect of an individual HSP 

implicates its role in preventing protein aggregation and, or, disabling the induction of cell 

death pathways. Since apoptosis is a protective mechanism that promotes the clearance of 

irreparable cells, apoptosis failure can lead to cancer—a risk that needs to be assessed.

3.4.3. Sonic hedgehog (Shh) gene therapy—Shh is a secreted protein that diffuses to 

form a concentration gradient. It impacts left-right and dorso-ventral neural patterning as 

well as dorso-ventral axis during vertebrate embryogenesis [78]. Shh acts on cells by 

binding to and inactivating Patched-1 receptors, which then activates Shh signaling to the 

downstream Gli zinc-finger transcription factors. Depending on the concentration, time and 

biochemical nature of the morphogen, different sets of genes are regulated to achieve a 

myriad of cell types. Apart from the determination of cell fate, Shh also regulates cell 

growth and proliferation through transcriptional control of cell cycle regulators, and non-

canonical signaling through phosphoinositide 3-kinase (PI3K)-AKT prosurvival pathway 

[79]. In a recent study, adenovirus Shh gene transfer to murine salivary glands was shown to 

be effective in suppressing radiation-induced gland hypofunction [80]. Salivary tissue and 

function were preserved despite the transduction of a few cells, which suggest an auto- 

paracrine influence of secreted Shh and, or, Shh-stimulated growth factors. Uncontrolled 

activation of Shh signaling has been shown to circumvent establishment of S-phase 

checkpoint, and increase the risk of genomic aberrations and cancer in Patched-1 haploid 

insufficiency mice [81]. Although transient Shh expression in salivary glands was found to 

not induce tumor formation or affect the growth of pre-existing tumors [80], tightly 

regulable expression vectors would improve safety of Shh gene transfer.

4. Conclusion

Stimulating cell proliferation, overriding cell cycle checkpoints, or by-passing apoptosis can 

heighten the risk of tumorigenesis especially, in context of radiation-damaged stem/

progenitor cells of the salivary glands. Additionally, inadvertent transduction of cancer cells 

with genes that promote growth, suppress apoptosis, or increase repair can affect tumor 

eradication. Precautions that include gene switches for spatial and temporal regulation of 

gene expression or mosaic viruses that discriminate between healthy and tumor cells can 

enhance safety of the therapeutics. Currently, aquaporin gene transfer is the only gene 

therapeutic that has advanced to clinical trials for radiotherapy-damaged salivary glands. 

With the demonstration of long-term safety of other approaches, we expect that they too will 

proceed towards investigation in humans in the near future.
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AAV adeno-associated virus

FIV feline immunodeficiency virus

HIV human immunodeficiency virus

TLK1 Tousled like kinase 1

KGF keratinocyte growth factor

FGF fibroblast growth factor

FGFR2 fibroblast growth factor receptor 2

NFκB nuclear factor kappa B

VEGF vascular endothelial growth factor

PKCδ protein kinase C delta

HSP heat shock protein

Shh sonic hedgehog
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Figure 1. 
Current gene therapeutics to restore radiation compromised gland function.
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Table 1

General characteristics of commonly used recombinant viral vectors in salivary gland gene transfer.

Characteristic Adenovirus AAV Lentivirus

Genome size 36 kb 4.7 kb 9 kb

DNA ds DNA, linear ss DNA, linear ss RNA, linear

Tissue tropism Broad Selective Broad

Infectivity High Modest Modest

Transduction Dividing and non-dividing cells Dividing cells Dividing and non-dividing cells

Packaging capacity 7–8 kb 4.5 kb 8 kb

Transgene integration No No Yes

Transgene expression Short-lived Long-term Long-term

Immune response High Low Low

*
adapted in part from Baum et al. 2003 [22].
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