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Our memories are essential in our daily lives. The frontal and cingulate cortices,
hippocampal system and medial temporal lobes are key brain regions. In addition, severe
amnesia also occurs after damage or dysfunction to the anterior thalamic nuclei; this
subcortical thalamic hub is interconnected to these key cortical memory structures.
Behavioral, anatomical, and physiological evidence across mammalian species has
shown that interactions between the anterior thalamic nuclei, cortex and hippocampal
formation are vital for spatial memory processing. Furthermore, the adjacent laterodorsal
thalamic nucleus (LD), interconnected to the retrosplenial cortex (RSC) and visual system,
also contributes to spatial memory in mammals. However, how these thalamic nuclei
contribute to memory still remains largely unknown. Fortunately, our understanding of
the importance of the thalamus in cognitive processes is being redefined, as widespread
evidence challenges the established view of the thalamus as a passive relay of sensory
and subcortical information to the cortex. In this review article, we examine whether the
anterior thalamic nuclei and the adjacent LD are suitable candidates for “higher-order”
thalamic nuclei, as defined by the Sherman and Guillery model. Rather than simply
relaying information to cortex, “higher-order” thalamic nuclei have a prominent role in
cognition, as they can regulate how areas of the cortex interact with one another. These
considerations along with a review of the latest research will be used to suggest future
studies that will clarify the contributions that the anterior and LD have in supporting
cortical functions during cognitive processes.

Keywords: anterior thalamus, entorhinal cortex, grid cells, head direction cells, hippocampus, laterodorsal
thalamus, prefrontal cortex, retrosplenial cortex

BACKGROUND

In mammals, interconnected brain regions, including the medial temporal lobes, frontal and
cingulate cortices and diencephalon, support the formation of new memories (Aggleton, 2014).
An important feature of these extended neural networks is anatomical convergence of cortical and
medial temporal lobe connections within the anterior nuclei (ATN) and the laterodorsal nuclei
(LD) of the thalamus. Behavioral and physiological evidence also indicate these thalamic structures
are important hubs within the memory circuitry. However, how the ATN and LD are influencing
this circuitry is not yet well understood.

In humans, damage to the ATN from stroke, alcohol abuse, or neurodegenerative
disorders is associated with an impaired ability to form new memories (Harding et al., 2000;
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Van derWerf et al., 2000, 2003; Carlesimo et al., 2011; Kopelman,
2015; Aggleton et al., 2016; Perry et al., 2018). Animal models
with damage to the ATN are also impaired in forming new
memories. For example, localized ATN lesions in non-human
primates impaired new learning in an episodic-like memory task
(Parker and Gaffan, 1997). Similarly, excitotoxic lesions to the
ATN in rodents consistently result in severe spatial memory
deficits in tasks involving allocentric navigation (Aggleton and
Brown, 1999; Mitchell and Dalrymple-Alford, 2005; Aggleton
and Nelson, 2015; Dalrymple-Alford et al., 2015; Perry et al.,
2018; Wolff and Vann, 2019). Deficits after ATN lesions are
not restricted to spatial navigation though. For example, rodents
are also impaired at making biconditional discriminations,
contextual memory processing, forming fixed paired associations
between an object and location, and reproducing accurate
temporal order memory for a list of previously presented
odors (Sziklas and Petrides, 1999; Gibb et al., 2006; Wolff
et al., 2006; Law and Smith, 2012; Dumont et al., 2014). The
contribution of the LD to spatial memory has thus far only
been explicitly examined in two studies. In one study, LD
inactivation resulted in increased reference memory errors in
the radial arm maze, and in the other study, excitotoxic LD
lesions impaired watermaze acquisition and retention of a fixed
platform location (Mizumori et al., 1994; van Groen et al.,
2002). Additional causal evidence from rat studies that either
combined or extended lesions in the LD with those in the ATN
support its role in spatial memory (Warburton et al., 1997;
Wilton et al., 2001).

The ATN and LD sit at a convergence point within a
complex array of cortical and subcortical connections (Figure 1;
Aggleton et al., 2010; Jankowski et al., 2013; Dalrymple-Alford
et al., 2015). These include widespread, often reciprocal, links
to frontal cortex, cingulate cortex, especially retrosplenial cortex
(RSC), and hippocampal formation (Shibata, 1998, 2000; van
Groen et al., 2002; Shibata and Naito, 2005). One of the
main points of difference between the ATN and LD are the
primary subcortical afferents they receive. The ATN receive their
primary ascending afferents from the mammillary bodies (MB),
which are also strongly implicated in mnemonic processing
(Vann, 2010). The inputs to the MB originate in the vestibular
system and run via the midbrain tegmental nuclei of Gudden
(Guillery, 1955, 1956; Taube, 2007). The LD receives its
primary ascending afferents from visual structures, including
the pretectum, superior colliculus and ventral lateral geniculate
nucleus (Thompson and Robertson, 1987).

The ATN can be divided into three subnuclei: anterodorsal
(AD), anteroventral (AV), and anteromedial nuclei (AM:
Figure 1). Differences in their connectivity have been tied
to specific functional distinctions between them (Aggleton
et al., 2010). For an excellent description of the anatomical
connectivity of the ATN across species, see Bubb et al. (2017).
In contrast, anatomical and functional distinctions of the LD
are not as well defined, but there is some evidence for a
dorsolateral—ventromedial divide (Thompson and Robertson,
1987). The known neuroanatomical connectivity indicates that
the LD provides key visual inputs to the extended hippocampal
system and entorhinal cortex.

The dorsal aspect of the LD, and the AD are proposed
to form part of a lateral head direction circuit along with
the postsubiculum, lateral MB, and RSC (Taube, 2007). This
circuit is characterized by cells that preferentially fire when
the animals’ head is oriented in a specific direction, acting
somewhat like a compass. Recent evidence indicates that head
direction cells in both the LD and AD coded separately the
rat’s heading and movement directions (Enkhjargal et al., 2014).
Head direction cells in the LD have been reported to differ
from those in the AD, in that they are highly dependent on
visual cues, whereas head direction cells in the AD can form
highly directional firing after initial exposure to an environment,
and can be maintained in the absence of visual cues (Mizumori
and Williams, 1993; Goodridge et al., 1998). These differences
are likely generated from differences in their respective inputs
(Figure 1). The functional implication of these differences is not
yet clear, although both types of information are clearly necessary
for effective navigation.

In contrast to the LD andAD, the AV andAM are proposed to
form part of a theta circuit with the medial MB, prefrontal cortex
(PFC), RSC, and hippocampal formation (Vann and Aggleton,
2004; Jankowski et al., 2013). Theta rhythms (3–8 Hz in humans
but 4–12 Hz in rodents) within this circuitry are thought to
synchronize distally located populations of neurons and provide
a framework for the inter-structural communication necessary
for complex cognitive functions, such as memory processing
(Buzsáki, 2002, 2005; Kirk and Mackay, 2003; Rutishauser
et al., 2010; Colgin, 2011). The AV and AM also contain
some head direction cells, and the AM some grid-like cells,
suggesting they may be important convergence points between
multiple streams of information that are filtered and passed
on to cortex (Aggleton et al., 2010; Tsanov et al., 2011a,b,c;
Jankowski et al., 2015).

Important differences between the LD, AV, AD and AM
are also observed in the pattern of cortical connections they
receive (Figure 1). This is especially true for the AM, which is
linked to many areas of PFC, including medial PFC and anterior
cingulate cortex (ACg; Hoover and Vertes, 2007; Xiao et al., 2009;
Jankowski et al., 2013). Further differences are found in their
respective links with RSC. The AD and AV are predominantly
interconnected with granular RSC, which is principally involved
in navigational processing, while the AM is predominantly
connected with dysgranular RSC, which is principally involved
in visual processing (van Groen and Wyss, 1990, 1992, 1995,
2003; van Groen et al., 1999; Shibata, 1998). The LD has
reciprocal connections with both granular and dysgranular RSC
(Sripanidkulchai and Wyss, 1986; Shibata, 1998, 2000). Further,
RSC afferents to the AD, AV and AM originated in layer VI,
suggesting that RSC modulates how ATN communicate with
other structures, whereas LD receives both layer V (driver) and
VI (modulator) inputs. The LD also has reciprocal projections
with Brodmann area 18b of the visual cortex, whereas AM only
projects to visual cortex (Thompson and Robertson, 1987; van
Groen and Wyss, 1992; Shibata and Naito, 2005). Finally, only
LD and AV share reciprocal connections with secondary motor
cortex, but all four thalamic nuclei project to entorhinal cortex
(Shibata and Naito, 2005).
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FIGURE 1 | Schematic diagrams outlining the main connections of (A) the anteroventral (AV), (B) the anterodorsal (AD), (C) the anteromedial (AM) subnuclei of the
anterior thalamic nucleus, and (D) the laterodorsal (LD) thalamic nucleus from studies in rats, cats and monkeys. All four nuclei share dense reciprocal connections to
both the RSC and the hippocampal formation. Clear functionally relevant differences are apparent however, between the additional connections of each subnucleus.
For example, the AM is broadly connected to many cortical sites including prefrontal, temporal and sensory cortex, whereas the AD has few cortical connections,
and does not project to the anterior cingulate like the AM, AV and LD. Another critical point of difference is that all three subnuclei of the ATN receive one primary
input containing mnemonically relevant information from the mammillary bodies (MB), whereas the LD receives ascending afferents from regions associated with
visual processing, such as the pretectal complex. Arrowheads indicate the direction of information flow, with double headed arrows showing reciprocal connections
between structures. The colored boxes indicate the three major functional processes, theta rhythm (green), head direction (gold) or visual processing (blue),
associated with these four thalamocortical circuits. Structures associated with two or more of these processes are indicated by a combination of colors. The larger
gray boxes group each structure into the broader category of brain region it belongs to, e.g., cortex. Additional connections also exist between cortical structures,
the hippocampal formation, midbrain, and brainstem but these are not depicted here. We have also included the presubiculum and postsubiculum as separate
structures but we note that the dorsal part of the presubiculum is commonly known as the postsubiculum. Additional abbreviations: Dtg, dorsal tegmental nucleus of
Gudden; LD tegmental nucleus, laterodorsal tegmental nucleus; LMB, lateral mammillary bodies; MMB, medial mammillary bodies; RSC, retrosplenial cortex; TRN,
thalamic reticular nucleus; vLGN, ventral part of the lateral geniculate nucleus of the thalamus; Visual cortex 18b, Brodmann area 18b; VTg ventral tegmental nucleus
of Gudden.

SUMMARY OF THE ESTABLISHED
PRINCIPLES

The thalamus sits at an important interface between the cortex
and its numerous inputs. Every part of cortex receives a
thalamic input, and with few exceptions, i.e., the olfactory input,
the thalamus is the sole provider of sensory and subcortical
information to cortex (Sherman, 2017). Early studies of trans-
thalamic sensory relays suggested almost one to one replication
of the primary ascending afferent signal in the thalamus. These
findings led to the now entrenched view of the thalamus as
a passive relay of information to cortex (Sherman, 2017). In
this view, any cognitively relevant transformations of ascending
sensory or subcortical information would only occur once they
passed through thalamus and reached higher order processing
sites in the cortex (Halassa, 2018). In their seminal article,

Sherman and Guillery (1996) challenged this simplistic view
of thalamic function, suggesting instead that the thalamus
contains at least two types of nuclei; ‘‘first’’ order nuclei of
sensory or subcortical information as previously proposed, and
also ‘‘higher’’ order nuclei that influence cortical activity by
supporting the ‘‘transfer’’ of information from one area of cortex
to another. Citing a large body of anatomical and physiological
evidence on the visual pathway formed by the lateral geniculate
nucleus, Sherman and Guillery (1996) demonstrated that even
in first order nuclei, the role of the thalamus is highly
dynamic with the ability to modulate the information it passes
to cortex.

First Order Nuclei
‘‘First’’ order thalamic nuclei are those that receive primary
ascending afferents or ‘‘driver’’ inputs from peripheral sensory,
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FIGURE 2 | Schematic representation (A) of the organization of a first order (left panel) and higher order (right panel) thalamic relay according to the Sherman and
Guillery (1996) model. Panel (B) depicts a hypothetical scenario based on the work of Xiao and Barbas (2002) and Xiao et al. (2009) of the anteromedial subnucleus
(AM, orange) of the anterior thalamic nuclei as a higher order thalamic relay to anterior cingulate cortex (ACg) in the macaque monkey. Panel (C) depicts a
hypothetical scenario based on the work of Shibata (2000) and Thompson and Robertson (1987) of the laterodorsal thalamic nucleus (LD, orange) as a higher order
relay to the dysgranular (29d) retrosplenial cortex in a rat (Shibata, 2000). In a higher order thalamic relay both a “driver” afferent from layer V of the cortex (dotted
lines) and a “modulator” afferent from layer VI of cortex (short dashed lines) and the (TRN, green) innervates the thalamic relay neuron. The thalamic relay neuron then
in turn projects this cortical information back to layers of cortex (large dashed lines). Projections from the brainstem reticular formation (BRF) and directly from the TRN
provide additional modulation to these thalamic relay neurons (Sherman, 2017). Coronal sections for the macaque monkey (B) adapted from http://braininfo.rprc.
washington.edu/PrimateBrainMaps/atlas/Mapcorindex.html. Images taken at −9 mm and −5 mm from the AC in the macaque brain. Coronal sections for the rat

(Continued)
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FIGURE 2 | Continued
(C) adapted from Paxinos and Watson (1998). Images taken −6.04 mm and
−2.56 mm from Bregma in the rat brain. Additional abbreviations: 29a-b,
Brodmann area 29a-b, granular retrosplenial cortex; 29d, Brodmann area
29d, dysgranular retrosplenial cortex; AC, anterior commissure; AD,
anterodorsal subnucleus of the anterior thalamic nuclei; AV, anteroventral
subnucleus of the anterior thalamic nuclei; Fx, fornix; Cd, caudate nucleus;
CM, centromedial nucleus of the thalamus; HF, hippocampal formation; MD,
mediodorsal thalamus; PC, paracentral nucleus; Po, posterior thalamic
group; PV, paraventricular nucleus; Re, nucleus reuniens of the thalamus; SM,
stria medullaris; ST, stria terminalis; tdt, telodiencephalic fissure; VApc,
ventroanterior nucleus (parvicellular); VAmc, ventroanterior nucleus
(magnocellular); VI, Layer six of cortex; V, Layer five of cortex; I–IV, Layers one
to four of cortex; VL, ventrolateral thalamus; VLO, oral part of the ventrolateral
nucleus; VPL, ventroposterolateral thalamus; VPM, ventroposteromedial
thalamus, WM, white matter.

or subcortical regions (Sherman and Guillery, 1996). One
example is the retinal input into the lateral geniculate nucleus
of the thalamus, which is ‘‘relayed’’ to visual cortex. First
order nuclei also receive distinct fine ‘‘modulator’’ afferents
from layer VI of the cortex (Sherman and Guillery, 1996;
Sherman, 2016). This modulation is generally linked to the
inhibitory GABA pathway passing through the thalamic reticular
nucleus (TRN). Modulator inputs form part of a reciprocal
circuit, meaning that the layer VI cortical afferents project
to the same thalamic region that innervates the layer VI
cortical neurons (Sherman, 2016). The ‘‘driver’’ inputs provide
the major functional input to the thalamic relay cells and
the ‘‘modulator’’ cortico-reticular-thalamic inputs provide a
means to ‘‘gate’’ or control the flow of information to cortex
(Sherman, 2016).

Higher Order Nuclei
Unlike ‘‘first’’ order nuclei, ‘‘higher’’ order nuclei receive few or
no comparable ascending sensory or subcortical afferents but
instead receive two types of afferents from cortex (Sherman and
Guillery, 1996). One of these is just like the layer VI modulatory
cortico-reticular-thalamic input received by first order nuclei.
The other is comprised of coarse afferents from pyramidal
cells located in layer V (Sherman, 2016). Therefore, higher
order nuclei represent part of a feed-forward cortico-thalamo-
cortical pathway that ‘‘relays’’ information from one part of
the cortex to another. Interestingly, recent evidence has shown
that optogenetic activation of the mediodorsal thalamic nucleus
(MD), a higher order nucleus for PFC, does not appear to alter
the specificity of cortical representations, but rather enhances the
local effective connectivity within the PFC (Schmitt et al., 2017).

Given the prominence of the ATN and LD in memory
formation, it is worth considering how they might fit the
Sherman and Guillery (1996) model. Such a consideration
drives a number of testable hypotheses regarding the functional
contribution of ATN and LD to the wider extended hippocampal
memory circuit and perhaps could further our understanding
of why such profound memory deficits occur when they are
damaged. The next section examines the state of our current
knowledge with regards to the functional interactions between
ATN, LD and their interconnected cortical sites.

CURRENT STATE OF THE ART

The known neuroanatomical differences indicate that rather
than considering either the ATN or LD as a whole structure,
we should instead consider their subnuclei as separate entities.
Previous work has shown that the physiological attributes
of the driving inputs to the AD from the lateral MB, and
modulatory afferents from cortex implicate it as a first order
relay (Petrof and Sherman, 2009). Further, novel molecular
evidence has reinforced the functional heterogeneity of ATN
subnuclei. Phillips et al. (2018) developed a comprehensive
transcriptomic atlas of mouse thalamus. Themajority of thalamic
nuclei belong to one of three major clusters, which appear to
lie on a single continuum relating to the thalamic mediodorsal
axis, with any given cortical region getting input from each
of these clusters. Interestingly, ATN subnuclei did not cluster
together, rather AV along with LD fell into the ‘‘primary’’
cluster. Nuclei within this cluster were enriched in gene encoding
neurotransmitters, ion channels, and signaling molecules, all of
which contribute to faster channel kinetics and narrower action
potentials. By contrast, AM, along with regions like MD, fell
into the ‘‘secondary’’ cluster, which were strongly enriched in
neuromodulatory genes. There is strong evidence that at least
one subnucleus of MD, the parvocellular MD in non-human
primates, is a higher order relay for dorsolateral PFC, as it
receives inputs from both layer V and VI neurons and appears to
modulate intercortical connectivity (Schwartz et al., 1991; Rovó
et al., 2012; Mitchell, 2015; Collins et al., 2018). The AM also
appears to receive inputs from layer V and VI of the cortex,
at least in non-human primates, raising the possibility that it
may act as a higher order relay (Xiao et al., 2009), although in
rat, it has been categorized as a first order relay (Varela, 2014).
Interestingly, the mouse AD did not appear to conform to any of
the three clusters defined by Phillips et al. (2018).

Further to these molecular differences, there is growing
evidence that ATN is more than a passive relay of hypothalamic
and brainstem information to cortex. Recent work has shown
how selective manipulations in ATN have a profound impact
across many structures in the limbic cortex, likely contributing
to the cognitive deficits observed inmammals with ATN damage.
For example, temporary inactivation of rat ATN altered grid-like
firing patterns of medial entorhinal cortex (MEC) neurons,
while ATN lesions reduced the number of grid-cell neurons
in the MEC (Winter et al., 2015). This evidence supports
the hypothesis that head direction cell inputs from ATN are
involved in the formation of MEC grid cell patterns (Winter
et al., 2015). Further, viral tracers demonstrated the pathway
for head direction information transfer from the AD onto MEC
via the presubiculum (Huang et al., 2017), with the inhibitory
micro-circuity within presubiculum possibly maintaining the
head direction signal (Simonnet et al., 2017; Simonnet and
Fricker, 2018). In addition, ATN lesions in rats also result in
microstructural changes in the hippocampus and RSC (Harland
et al., 2014). Along with severe spatial memory impairments,
Harland et al. (2014) observed substantial reductions in dendritic
spine densities, which are associated with synaptic plasticity in
hippocampal CA1 and RSC granular b cortex. Finally, high-
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frequency stimulation (∼130 Hz) of rodent ATN increased
neurogenesis in the dentate gyrus and aided performance
on memory tasks (Toda et al., 2008; Encinas et al., 2011;
Hamani et al., 2011).

Similarly, stimulation of ATN in larger mammals modulated
hippocampal field potential in a frequency dependent manner
and increased the BOLD response in hippocampus and PFC
(Stypulkowski et al., 2014; Gibson et al., 2016); and finally in
humans, recordings from multiple depth electrodes in patients
with epilepsy showed high-frequency stimulation (∼130 Hz) of
ATN was capable of decoupling large scale neural networks that
included hippocampus, insular cortex, parahippocampal cortex
and dorsolateral PFC (Yu et al., 2018).

FUTURE DIRECTIONS

Our understanding of cortico-thalamo-cortical interactions and
their purpose are still limited, especially with respect to higher
order relays. However, based on current findings, there appears
to be some evidence that AM (Figure 2) might act as a higher
order relay to cortex in primates, while the AD is a first order
relay. However, howAV and subnuclei of the LD influence cortex
still remain to be fully explored. Influences from outside the
limbic circuitry also need to be investigated. For example, inputs
from dorsal striatum and medial precentral cortex are likely to
be modulating theta within ATN, LD, hippocampal formation
and MEC for grid cell formation (Mehlman et al., 2019a,b).
Also key to our understanding is whether the relationship of
any cortico-thalamo-cortical projections involving ATN and
LD are conserved across species. Thus, far cortico-thalamo-
cortical interactions have focused heavily on rodent models
(Sherman, 2016; Schmitt et al., 2017). Mice and rats provide
a great starting point for proof of principle, but they lack
the cortical and thalamic development present in higher order
species, such as non-human primates and humans (Halassa,
2018). Thus, it is likely that there are differences in fundamental
aspects of thalamocortical circuits across species still waiting
to be discovered.

What still remains to be understood in neuroscience, and
with specific relevance to this review article, is how ATN and
LD are managing the various streams of afferent information
they receive; clearly the layer VI projections from the RSC
are important (Mitchell et al., 2018). Furthermore, it is critical
that the nature of the efferent signals they pass on to
cortex is characterized. Animal and human experiments that
record neural activity from ATN and LD subnuclei and their
cortical targets during relevant behavioral tasks will be of great

interest. Altering thalamic, striatum, or cortical functioning,
using pharmacological agents or optogenetics, and targeting
specific cell layers or cell types using transgenic, or viral vector
approaches will also be essential to dissecting the specific
learning and memory, and navigational functions of these
thalamocortical circuits.

Finally, imaging techniques are still constrained by a lack
of resolution and continue to struggle to define individual
thalamic nuclei (Aggleton et al., 2016). However, using a 7T
magnetic imaging scanner and advanced image processing
techniques, some of the microstructural components of the
MD could be elucidated in humans (Pergola et al., 2018).
Consequently, similar strategies may be applied to cognitive
and behavioral neuroscience studies investigating ATN and
LD, with the caveat that for the ATN at least, it is a much
smaller thalamic structure. There has also been increasing
work examining ATN-cortical interactions during electrode
implant surgeries for refractory epilepsy in humans. We
hope that such opportunities will be utilized more in the
future, especially in conjunction with detailed cognitive and
behavioral tasks and advanced neuroimaging analyses of
these patients.

CONCLUDING REMARKS

Evidence from animals and humans support the importance of
cortical and subcortical interactions during cognitive processes,
including learning and memory, and navigation. Modern
neuroscience techniques must now be used to explore how and
why these interactions are so critical when we are learning new
information, or optimizing our behaviors. In order to advance
our knowledge, wemust characterize the underlyingmechanisms
that support these interactions between neural structures
important for forming new memories, both in the normal brain,
for which animal models remain essential, and in patients with
neurodegenerative diseases and neuropsychiatric disorders.
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