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ABSTRACT
Cancers are an extraordinarily heterogeneous collection of diseases with distinct 

genetic profiles and biological features that directly influence response patterns to 
various treatment strategies as well as clinical outcomes. Nevertheless, our growing 
understanding of cancer cell biology and tumor progression is gradually leading 
towards rational, tailored medical treatments designed to destroy cancer cells by 
exploiting the unique cellular pathways that distinguish them from normal healthy 
counterparts. Recently, inhibition of the activity of phosphodiesterase type 5 (PDE5) 
is emerging as a promising approach to restore normal intracellular cyclic guanosine 
monophosphate (cGMP) signalling, and thereby resulting into the activation of 
various downstream molecules to inhibit proliferation, motility and invasion of certain 
cancer cells. In this review, we present an overview of the experimental and clinical 
evidences highlighting the role of PDE5 in the pathogenesis and prevention of various 
malignancies. Current data are still not sufficient to draw conclusive statements for 
cancer patient management, but could provide further rational for testing PDE5-
targeting drugs as anticancer agents in clinical settings.

INTRODUCTION

The current global demographic, epidemiologic and 
nutritional transitions signal an enormous cancer burden 
on society in countries of all income levels. The incidence 
of cancer cases is on continuing growth also because of 
an increasing prevalence of established risk factors, such 
as tobacco use, excess body weight, physical inactivity, 
infection and changes in the reproductive patterns 
connected with urbanization and economic development. 
Based on data from GLOBOCAN 2012, an estimated 
14.1 million new cancer cases and 8.2 million deaths were 
recorded in 2012 globally [1]. Breast and lung cancers 
represent the most frequently diagnosed cancers and 
the leading causes of cancer death in women and men, 
respectively, in the world and in less developed countries. 
Other frequently diagnosed cancers worldwide include 
those of the prostate, liver, stomach, and colorectum 
among males and those of the stomach, cervix uteri, and 
colorectum among females. A substantial proportion of 
cases can be prevented by broadly adoption of effective 

measures, such as smoking control, vaccination (for liver 
and cervical cancers), early detection, and promotion of 
healthy behaviors. Moreover, the burden of suffering 
and premature deaths can be decreased through the use 
of an appropriate therapy and palliative care [2]. Surgery, 
chemotherapy and radiotherapy are currently the three 
major treatments to prolong the survival of the majority 
of cancer patients, but clinical improvements are often 
associated to undesirable side effects on normal cells 
or tissues. Thus, as the biology of cancer has become 
progressively understood on a molecular level, therapeutic 
research has mainly shifted its focus from cytotoxic 
oncology drugs to newer target-based agents able to inhibit 
specifically tumor outgrowth and progression mechanisms 
or enhance host immune responses against cancer cells. 
On the other hand, clinical trials and meta-analyses have 
demonstrated that simultaneous or sequential multi-
modal therapies may improve patient outcome, may have 
acceptable tolerability profiles and may be active against a 
variety of tumor types as compared with a single-modality 
therapy [3–6]. In the search of molecularly targeted 
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cancer therapy, tremendous interest has been given to the 
expression and regulation of the phosphodiesterase type 5 
(PDE5) as an important signaling modulator involved in 
diverse aspects of tumor cell function. In the last decade, 
a significant number of studies have reported an increased 
expression of PDE5 in several human cancers compared 
to normal or surrounding non-neoplastic tissues [7–10]. 
Concomitantly, PDE5 inhibitors have been examined 
in multiple malignancies and cancer cell lines for their 
direct anticancer activities, for their efficacy as chemo-
sensitizers and for cancer chemoprevention (reviewed in 
[11, 12]). In this review, we will highlight the emerging 
knowledge and our recent findings showing the role of 
PDE5 as a tumor biomarker as well as a potential target for 
therapeutic strategies aimed at controlling and eventually 
curing malignant diseases. First, we will briefly discuss 
the structure and the biological function of PDE5. Next, 
we will summarize the significance of PDE5 expression 
on different cancer types in clinical settings as well as 
in experimental cellular and animal models. The benefit 
of targeting PDE5 in cancer prevention or treatment will 
be also discussed because of the numerous advantages of 
PDE5 inhibitors. 

The superfamily of PDEs

Mammalian cyclic nucleotide phosphodiesterases 
(PDEs) constitute a large and complex family of 
ubiquitously distributed hydrolases that have the unique 
function of catalysing the hydrolytic breakdown of cyclic 
adenosine monophosphate (cAMP) and cyclic guanosine 
monophosphate (cGMP) into the biologically inactive 
derivates 5′-AMP and 5′-GMP, respectively. The PDE 
superfamily contains 11 distinct gene families (PDEs 
1 to 11), that encode at least 100 distinct PDE isoforms 
through alternative mRNA splicing, multiple promoters 
and transcription start sites in human, rat, and mouse [13]. 
The 11 PDEs can be grouped into three broad categories 
based on their sequence homology as well as substrate 
specificity and selectivity. PDE4, PDE7 and PDE8 are 
specific for cAMP hydrolysis; PDE5, PDE6 and PDE9 
are specific for cGMP hydrolysis; PDE1, PDE2, PDE3, 
PDE10 and PDE11 exhibit dual specificity, acting on 
cAMP and cGMP with different affinities depending on 
the isoform (Figure 1 and Table 1) [13–72]. The different 
PDEs are modular proteins sharing the following common 
structural organization from N-terminus to C-terminus 
(Figure 1): 1) a highly divergent regulatory domain in 
the N-terminal portion; 2) a conserved catalytic core of 
approximately 270 amino acids (~ 35–50% sequence 
homology); 3) a region of undetermined function that 
can be prenylated (PDE6) or phosphorylated (PDE4) 
in the carboxyl terminus [19]. The N-terminal portions 
of PDE molecules contain structural determinants and 
specific amino acid sequences that are responsible for 
localization of individual PDE isoforms to specific 

intracellular sites, organelles and membranes as well as 
for their incorporation into particular multimolecular 
regulatory complexes or signalosomes. The regulatory 
regions contain domains that can be subjected to diverse 
types of modification (e.g., phosphorylation by various 
protein kinases), or sites that may interact with allosteric 
ligands (e.g., cGMP binding sites), selective effectors 
(e.g., Ca2+/calmodulin), protein partners (e.g., RAF1), 
or molecular scaffolds (e.g., caveolin). In addition, 
N-terminal regulatory regions include dimerization 
domains and autoinhibitory modules as several PDEs exist 
as asymmetric homo- or heterodimers (e.g., in PDEs 1, 4, 
and 5). Informations from the crystal structures of isolated 
catalytic cores of PDEs have revealed that these domains 
exhibit the same topography, composed of aminoacids 
folded into 16 helices [73]. The active site forms a deep 
hydrophobic pocket that includes a histidine-rich PDE 
signature sequence motif and consensus metal binding 
domains, represented by two Zn2+ binding motifs (motifs A 
and B – HX3HXnE/D) and an additional binding site whose 
metals could be Mg2+, Mn2+ or Co2+ [73, 74]. In addition to 
the conserved portions important for cyclic nucleotide and 
inhibitor bindings, the catalytic domain also encompasses 
variable determinants that are responsible of PDE family-
related substrate affinities and selectiveness [75]. 

As expected from their complex genomic 
organization, multiple PDE isoforms are expressed in 
almost all cells (Table 1) [75, 76]. However, some cells are 
relatively enriched in specific PDEs (e.g., photoreceptor 
PDE6 exclusively expressed in retina rods and cones and 
in the pineal gland) as well as some PDE alterations are 
tightly connected to different pathological conditions (e.g., 
PDE4B abnormalities have been linked to schizophrenia 
[77]) [75, 76, 78]. Recently, genetic alterations or 
overexpression in PDE genes were described to be 
associated with tumor development. Polymorphisms in the 
genes encoding PDE8A and PDE11A have been associated 
with a predisposition to developing certain adrenocortical 
[79], testicular [69], and prostatic [70] cancers. More 
importantly, PDE5 overexpression has been reported in 
several types of cancers [7–10].

PDE5 structure, regulation, distribution, 
signalling and function

The human PDE5A gene is located on chromosome 
4q264,5 and contains about 23 exons spanning 
approximately 100 kilobases, with the first three exons 
being alternative exons encoding the isoform-specific 
5’-ends of the PDE5 sequences [80, 81]. Cloning and 
sequencing of the PDE5A gene showed that these 
alternative exons are arranged in the order of A1-A3-A2 
and are separated by an intron of 434 bp between A1 
and A3 and by another intron of 361 bp between A3 
and A2 [82, 83]. The human PDE5A gene promoter, 
located upstream of the three isoform-specific first exons, 
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consists of a 139 bp core with full basal activity, a 308 
bp upstream regulatory region, and a 156 bp downstream 
regulatory region. Each of these two regulatory regions 
could independently convey the responsiveness of 
cAMP and cGMP to the core promoter and contained 
multiple consensus sites for several transcription factors, 
including Sp1 [83, 84]. The weaker PDE5A2 promoter is 
182 bp in length and contains one AP2- and three Sp1-
binding sequences [84]. The upstream PDE5A promoter 
is expected to direct the expression of all three PDE5 
isoforms, while the intronic PDE5A2 promoter can only 
control the expression of the A2 isoform [85]. 

Human PDE5A1 and A2 transcripts are found to 
be expressed in almost all tissues, with PDE5A2 being 
more common, and identifiable in almost all cells cultured 
from aortic smooth muscle, bladder smooth muscle, 
urethra smooth muscle, penile smooth muscle, penile 
endothelium, aortic endothelium, etc. On the contrary, the 
distribution of human PDE5A3 appears to be restricted 
to tissues with smooth and/or cardiac muscle component 
[81]. The three PDE5A isoforms share similar cGMP-
catalytic activities and differ only in the N-terminal 
domain, in which no biochemical or physiological 
function has been identified. The N-terminal part of 
PDE5 contains two regulatory GAF domains named as 

GAF A and B (domains originally found to be present in 
cGMP-regulated cyclic nucleotide PDEs, certain adenylyl 
cyclases and the bacterial transcription factor FhlA [86]). 
The identified functions of these regions are cGMP-
mediated allosteric regulation and dimerization of GAF-
containing PDEs. Allosteric binding of cGMP facilitates 
phosphorylation of human PDE5 by protein kinase G 
(PKG) on serine 102 and this phosphorylation seems to 
play a role in stabilizing the enzyme in its cGMP-bound 
active state [87], increasing both its catalytic activity and 
cGMP-binding affinity [87–90]. In addition of functioning 
as negative feedback for cGMP signalling by activating 
the cGMP-specific PDE5, cGMP levels may influence also 
the activity of non-selective PDE isoenzymes (e.g., PDE2 
or PDE3) and thereby modulate the crosstalk between 
cyclic nucleotide pathways [91]. Modulation of cGMP 
concentrations is accomplished by cAMP- and cGMP-
dependent activation of PDE2 and cGMP-dependent 
activation of PDE5 [92–94]. cAMP may also increase 
cGMP levels by inhibiting cGMP-degrading activities of 
PDE1 and PDE3 [92]. Recently, Zhao et al. demonstrated 
that amongst all PDEs, PDE2 and PDE5 compensate 
most strongly for the reduced activity of each other, an 
event that was indicated as strong coupling [95]. Indeed, 
NO/cGMP/PKG activity potentiated by PDE5 inhibition 

Figure 1: Common structure of the different PDE enzymes. The PDE superfamily contains 11 structurally-related gene families. 
Some PDEs are specific for cAMP or cGMP, and some exhibit dual substrate specificity. The N-terminal portion of the PDEs contains 
sequences important for cellular localization. The regulatory domain contains PDE-family specific sequences responsible of modulation of 
PDE enzymatic activities. The catalytic domain is present in the carboxy-terminal part of PDEs and is highly conserved. A and B indicate 
the two Zn2 + -binding motifs (HX3HXnE/D) that include invariant histidines and are critical to catalysis. HD, Hydrophobic domains.
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is partially compensated by PDE2 and reciprocally, 
compensatory increase in PDE5 cGMP rates is also the 
greatest upon PDE2 inhibition. PDE5 inhibition indirectly 
also leads to a decrease in PDE3 cAMP hydrolysis rates 
[95]. It was also reported that cGMP is able to directly 
activate PDE5 without phosphorylation in response to 
sustained nitric oxide (NO) in the platelet [96]. Moreover, 
small molecular mass proteins immunologically related to 
the gamma subunit of PDE6 may prevent PKA-mediated 
activation of PDE5 in airway smooth muscle [97]. More 
recently, an elegant study revealed, for the first time in 
mouse, the existence of three different PDE5A isoforms 
with similar biochemical features and different distribution 
patter and highlighted their potential role in the induction 

of hypertrophy [98]. The authors demonstrated that 
exogenous overexpression of each variant induced a 
sustained cell cycle progression in cardiomyocytes and 
fibroblasts transfected cells, with PDE5A3 isoform being 
more efficient in the modulation of hypertrophic markers 
respect to the other mPDE5A isoforms. 

In catalysing the hydrolysis of cGMP, PDE5 plays 
critical roles in controlling its intracellular levels, the 
compartmentalization of its signalling pathways and its 
downstream biological responses. cGMP signalling is 
schematically shown in Figure 2. Briefly, cGMP activates 
different pathways, resulting into the activation of cGMP-
dependent protein kinase G (PKG), cyclic nucleotide-
gated (CNG) ion channels, or certain cGMP-binding 

Table 1: PDE families and inhibitors
Isozime 
Family

Gene 
Members

Substrate 
Specificity

   Regulation Major Tissue and 
Cellular Expression

Subcellular 
Localization

Functions Inhibitors References

PDE1 A, B, C cAMP/
cGMP

Ca2+/
calmodulin

Lung, heart, brain, 
smooth muscle, testis, 
sperm, macrophages, 
lymphocytes

Cytosolic/
perinuclear

Vascular smooth muscle contraction, 
sperm function (PDE1A); 
Dopaminergic signaling, immune cell 
activation, and survival (PDE1B)
Vascular smooth muscle cell 
proliferation, sperm function, 
neuronal signaling (PDE1C)

Vinpocetine, IC224, 
IC86.340, SCH51866, 
8-MeoM-IBMX, ITI-214

[14–24] 

PDE2 A cAMP/
cGMP

cGMP-stimulated Adrenal cortex, lung, 
liver, platelets, heart, 
brain, macrophages, 
endothelium 

Membrane-
bound or 
cytosolic, 
mitochondria 

Regulates aldosterone secretion, 
phosphorylation of calcium channel in 
heart, cGMP in neurons; endothelial 
cell function under inflammatory 
conditions

EHNA, BAY60–7550, 
IC933, PDP, OXIDOLE

[16, 21, 25–29] 

PDE3 A, B cAMP/
cGMP

Phosphorylation/
cGMP-inhibited

Lung, heart, adipose 
tissue, adipocytes, 
liver, smooth muscle, 
kidney, hepatocytes, 
pancreatic beta 
cells, immune cells, 
platelets

Membrane-
bound or 
cytosolic

Cardiac contractility, platelet 
aggregation, vascular smooth muscle 
contraction, oocyte maturation, renin 
release (PDE3A)
Insulin signaling, cell cycle, 
proliferation (PDE3B)

Milrinone, Tolafentrine, 
Enoximone, K-134, 
Cilostazol, Cilostamide, 
Trequinsin, OPC-33540

[21, 22, 29, 30–35]

PDE4 A, B, C, D cAMP Phosphorylation/
cAMP-specfic
cGMP-insensitive

Broad, cardiovascular, 
neural, immune and 
inflammatory systems

Membrane-
bound or 
cytosolic

Brain function, monocyte and 
macrophage activation, neutrophil 
infiltration, vascular smooth muscle 
proliferation, fertility, vasodilatation, 
cardiac contractility

Cilomilast, Rolipram, 
Ro20–1724, Roflumilast, 
AWD12281, V11294A, 
SCH35159, GSK256066, 
Denbufylline, Arofylline, 
Apremilast

[21, 22, 29, 32, 36–46] 

PDE5 A cGMP Phosphorylation/
cGMP-specific
cGMP-activated

Broad, lung, 
cerebellum, heart, 
, brain, platelets, 
vascular myocytes, 
cardiac myocytes, 
gastrointestinal tissues 
and penis

Cytosolic Vascular smooth muscle contraction, 
platelet aggregation, cGMP signaling 
in brain

Sildenafil, Taldanafil, 
DA8159, Exisulind, 
E402, Vardenafil, 
Zaprinast, DMPPO, 
Dipyridamole, 
Mirodenafil

[16, 21, 29, 47–57]

PDE6 A, B, C, 
D, G

cGMP Phosphorylation/
cGMP-specific

Retina and pineal 
gland

Cytosolic Phototransduction Avanafil, Udenafil, 
Zaprinast

[29, 58–61]

PDE7 A, B cAMP Transduction 
activated/ cAMP-
specific

Heart, liver, kidney, 
brain, pancreas, 
testis, spleen, skeletal 
muscle, immune cells

Cytosolic Immune cell activation (PDE7A)
Memory function and excreted T 
(PDE7B)

ASB16165, BRL50481, 
IC242, Dipyridamole, 
BMS-586353, 
Thiadiazoles

[21, 22, 29]

PDE8 A, B cAMP cAMP-specfic
Rolipram/IBMX 
insensitive

Broad, testis, liver, 
heart, kidney, brain, 
skeletal muscle, 
thyroid, spleen, colon, 
ovary, immune cells

Membrane-
bound or 
cytosolic,  
mitochondria

T-cell activation, sperm or Leydig 
cell function, T4 and T3 production 
(PDE8A)

Dipyridamole, PF-
04957325

[29, 40, 62–64] 

PDE9 A cGMP cGMP-specific
IBMX/insensitive

Broad, kidney, liver, 
lung, brain, spleen, 
prostate,  heart

Cytosolic or 
nuclear

NO-cGMP signaling in brain BAY 73–6691, SCH-
51866, WYQ C28L, PF-
04447943

[21, 29, 65, 66]

PDE10 A cAMP/
cGMP

Unknown Brain, heart, thyroid, 
testis

Cytosolic or 
particulate

Learning and memory Papaverine, 
Dipyridamole, PQ-10, 
TP-10, MP-10

[16, 29, 67, 68]

PDE11 A cAMP/
cGMP

Unknown Liver, prostate, testis, 
salivary and pituitary 
gland

Cytosolic Sperm development and function None selective [62–72]
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PDEs, which lead to protein phosphorylation, ion fluxes, 
or cyclic nucleotide hydrolysis to affect gene expression or 
other aspects of cellular activity [99]. An essential player 
in cGMP signaling is considered the serine/threonine 
protein kinase PKG, whose downstream substrates are 
implicated in a variety of biological processes, including 
calcium homeostasis, platelet activation and adhesion, 
smooth muscle contraction, cardiac function, vasodilation, 
cell differentiation, proliferation, and apoptosis [100, 101]. 
The most recognized function of PDE5A is the modulation 
of vascular tone via regulation of intracellular cGMP and 
calcium levels, particularly in the lung and penis [75]. 
Moreover, cGMP-PKG signalling pathway activation 
increases cell proliferation and permeability in the vascular 

endothelium [102–104]; whereas it negatively impacts 
hypertrophy and contractility in cardiac myocardium 
[105, 106]. PDE5 has been also involved in the regulation 
of platelet aggregation [107], and in the improvement of 
learning and memory processes [108]. 

PDE5 inhibitors: selectivity and adverse effects

Since the discovery and characterization of PDE5, 
a collection of molecules able to inhibit its enzymatic 
activity have been conceived. The first drugs, such as 
IBMX (3-isobutyl-1-methylxanthine), dipyridamole and 
coffee, have been shown to be potent but non selective 
inhibitors. Later, zaprinast was described as a more 

Figure 2: Schematic representation of cyclic guanosine monophosphate (cGMP) signaling pathways. This graphic 
shows the basic synthetic, regulatory and downstream signalings that mediate the effects of endogenous cGMP in cells. Cyclic nucleotide 
phosphodiesterase type 5 (PDE5), which catalyzes the hydrolytic breakdown of cGMP into its biologically inactive derivative, regulates the 
amplitude and the duration of cGMP signalling. pGC, particulate Guanylyl Cyclase; sGC, soluble Guanylyl Cyclase; CNG-Ion channels, 
cyclic nucleotide-gated Ion channels; PKG, cGMP-dependent Protein Kinase or Protein Kinase G; MYTP, Myosin Phosphatase Targeting 
Subunit; MLCK, Myosin Light Chain Kinase; RGS2, Regulatory of G-coupled Signaling 2; ROCK, Rho-kinase. 
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specific molecule [109], but it did not find its application 
into clinical practice. However, its chemical structure 
was used to design compounds with higher potency and 
selectivity, leading to the identification in 1989 of sildenafil 
(1-[4-ethoxy-3-(6, 7-dihydro-1-methyl–7-oxo-3-propyl-
1H-pyrazolo [4, 3-d]pyrimidin-5-yl) phenylsulphonyl]-
4-methylpiperazine). Sildenafil, developed and marketed 
as Viagra by Pfizer, showed a higher selectivity (> 1000 
fold) for human PDE5 over PDE2, PDE3 and PDE4 and 
moderate selectivity (> 80 fold) over PDE1 [110]. On the 
contrary, this drug was shown to be only ~ 10 fold more 
effective for PDE5 than retinal PDE6, explaining some 
blue tinting of vision reported as adverse effects after its 
use [111]. As a consequence, many companies designed 
other selective PDE5 inhibitors with reduced inhibitory 
effects towards PDE6, including vardenafil (Levitra, 
Bayer-GSK), and tadalafil (Cialis, IC351, Lilly-ICOS), 
which is 1000 fold less potent towards PDE6 [112]. These 
compounds also interact with PDE11, with tadalafil being 
the most potent of them in respect to vardenafil (IC50 = 73 
nM and IC50 = 840 nM, respectively), but the functional 
consequences of these effects are still unknown [113]. 
Compared to sildenafil and vardenafil, tadalafil also 
provides a longer therapeutic effect due to its extended 
half-life [114]. A low incidence of some PDE-related 
adverse events was then obtained with avanafil (Stendra, 
Vivus inc.) [115]. Indeed, this molecule, which acts more 
rapidly than other PDE5 inhibitors, showed a higher 
selectivity against non-PDE5 isozymes as following: i) ~ 
6.5 fold greater than sildenafil and vardenafil for PDE6; 
ii) more than 27 fold compared to sildenafil for PDE1; iii) 
~ 760 fold higher than tadalafil for PDE11. Other PDE5 
inhibitors, including udenafil, mirodenafil and lodenafil 
carbonate are currently under clinical investigation 
[116–118]. It is important to underline that some PDE5 
inhibitors may also affect non-PDE proteins. Indeed, it 
has been shown that vardenafil was able to block calcium 
channels in rabbit pulmonary arteries and human platelets 
[119], and sildenafil interacted with multidrug resistance 
protein 1 (MDR1; also known as ABCB1) and antigen 
peptide transporter 1 (APT1; also known as ABCB2) to 
block drug extrusion from cells [120]. This latter off-
target effect could be significant in reducing ABCB1- and 
ABCB2-mediated drug resistance and thus improving the 
efficacy of some chemotherapeutic agents, most probably 
independently of PDE5 inhibition [120, 121].

Data from reports using selective PDE5 inhibitors 
have been essential for a robust understanding of 
the cellular functions that are regulated by PDE5 in 
physiological states as well as under pathological 
conditions. For instance, sildenafil, originally designed as 
an antihypertensive molecule or a coronary vasodilator, 
was shown to induce responses in off-target tissues, such 
as in penis, changing the focus of this agent to erectile 
dysfunction (ED) and proposing PDE5 as a target for 
the treatment of ED.  In addition, the improvement of 

pulmonary vascular physiology observed in in vitro and 
in vivo models of pulmonary hypertension following 
PDE5 inhibition has provided the rationale to recommend 
also PDE5 as a target for the treatment of pulmonary 
hypertension and respiratory distress [122, 123]. 

At the present time, the orally administrated PDE5 
inhibitors sildenafil and tadalafil have Food and Drug 
Administration approval for the treatment of ED as 
well as pulmonary arterial hypertension (PAH); whereas 
vardenafil and avanafil are approved only for ED. 
However, a great number of papers published over the 
last decade highlighted the potential clinical use of PDE5 
inhibitors in other applications, for which current therapies 
are limited and in which the mechanism of action does 
not necessarily rely on their known vasodilatatory effects 
[124]. Table 2 summarizes the medical conditions other 
than ED and PAH that have shown consistent benefits 
from treatment with these pharmacologic agents [124–
196]. Importantly, reported adverse effects are generally 
mild, i.e. flushing, headache, backache, dyspepsia, and 
nasal congestion. Some users of sildenafil and vardenafil, 
that, as mentioned earlier, slightly inhibit photoreceptor 
PDE6, may also experience temporary and reversible 
minimal visual disturbances. Therefore, as reported in 
various reviews of pharmacotherapy, they represent a 
class of relative benign molecules in terms of safety and 
tolerability [197–199]. 

Links between PDE5 and selected cancers

There has been a remarkable interest in identifying 
new clinical use of PDE5 inhibitors as potent anticancer 
drugs with a novel mechanism of action (Figure 3). 
Since 2000, more than 150 papers have been reported 
on the connection of PDE5 and different kind of tumors. 
Indeed, increased expression of PDE5 in various human 
malignancies and the lack of such expression in normal 
cells have been described. In addition, PDE5 inhibitors 
have been examined for their direct inhibitory effects on 
tumor cell lines, for their ability to act as a sensitizers of 
cancer cells to chemotherapeutic agents, and as cancer 
chemopreventive agents [12]. However, much of the 
research is preclinical, and only few clinical trials have 
been completed or are ongoing so far (http://www.
clinicaltrials.gov). The list of the studies focused on the 
effects of PDE5 inhibition in cancer patients is reported 
in Table 3. 

Lung cancer

Lung cancer has emerged as the most common 
cancer in the world, both in terms of new cases and deaths 
(1.82 million diagnoses and 1.6 million deaths recorded in 
2012) with the highest rates in Central/Eastern Europe and 
Eastern Asia [2]. Non-small cell lung cancers (NSCLCs) 
represent more than 80% of all lung cancers [200]. Despite 
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current advances in chemotherapy treatment regimens, 
response rates are still < 50%, and complete remissions 
remain rare, highlighting the need of agents with novel 
mechanisms of action to improve clinical outcomes.

Over the last years, the apoptotic and growth 
inhibition activities of PDE5 inhibitors have been 
demonstrated in numerous lung cancer cell lines. Most 
of the experiments were performed by using exisulind 
(sulindac sulfone), a sulfone metabolite of the nonsteroidal 
anti-inflammatory drug (NSAID) sulindac. Exisulind, 
which lacks the hallmark cyclooxygenase inhibitory 
activities of NSAIDs, acts as a cGMP PDE inhibitors, 
causing a persistent increase in cellular cGMP, and 
inducing PKG [201–203]. It was previously demonstrated 
that the combination of exisulind with cytotoxic drugs 
resulted in a synergistic inhibition of human lung cancer 
cell growth in culture [204]. In orthotopic lung cancer 
model systems, exisulind in association with docetaxel 
significantly induced apoptosis, reduced tumor growth 
and metastasis, and increased survival [10, 205, 206]. 
PDE5 inhibitors also improved the chemosensitivity of 
anti-cancer agents by increasing endocytosis-mediated 
cellular drug uptake in lung cancer cells; for instance, 
oral administration of the PDE5 inhibitor vardenafil 
significantly increases the accumulation and enhances 

the anti-tumor effect of trastuzumab in a xenograft mouse 
model of lung cancer [207]. Another study showed that 
sildenafil was able to enhance the anti-tumor effects of 
the standard of care drug pemetrexed in NSCLCs. In two 
models of human NSCLC cells growing in athymic mice, 
it was found that pemetrexed and sildenafil interacted in 
an additive fashion to suppress tumor growth and this 
effect was further enhanced in vivo by co-treatment with 
the mTOR inhibitor temsirolimus [208]. The complex 
molecular mechanisms by which these drug combinations 
induce lung cancer cell death were via increasing toxic 
autophagosome formation, and through the activation 
of extant death receptors. More recently, Booth et al. 
have evidenced how sildenafil enhanced the lethality of 
pemetrexed and sorafenib, a potent inhibitor of chaperone 
ATPase activities, in multiple genetically diverse lung 
cancer cell lines and in xenografts of lung cancer in 
athymic nude mice [208]. 

However, the clinical evidences do not support 
experimental findings. In 2006, a phase I/II study was 
designed to evaluate the safety and efficacy of exisulind 
in combination with gemcitabine as second-line therapy 
in NSCLC patients whose disease progressed more than 
3 months from completion of first-line chemotherapy 
[209]. Although the primary endpoint of improving time 

Table 2: Proposed novel applications of PDE5 inhibitors
Applications Conditions Agents References
Male genitourinary dysfunctions Benign prostatic hyperplasia and 

lower urinary tract symptoms
Peyronie’s disease
Priapism
Premature ejaculation, inability to 
ejaculate
Low sperm count or motility

Sildenafil, Tadalafil, Vardenafil, 
UK-369, 003
Sildenafil
Sildenafil
Tadalafil, Sildenafil, Vardenafil

Tadalafil, Sildenafil, Vardenafil

[125–130]

[131–134]
[135–137]
[138–140]

[141–145]
Neurologic dysfunctions Neurogenesis and recovery from 

stroke
Cognitive functions

Tadalafil, Sildenafil
Sildenafil

[146–149]
[150–153]

Tissue and organ protection Antineoplastic agent toxicity
Gastrointestinal damage

Sildenafil                                                                             
Sildenafil

[157–157]
[158–160]

Cutaneous Ulcerations Antiphospholipid syndrome
Scleroderma
Refractory Raynaud’s 
phenomenon
Systemic sclerosis 

Sildenafil
Sildenafil
Sildenafil 
Sildenafil 

[161]
[162, 163]
[163–165]
[166, 167]

Transplant and reconstructive 
surgery

Heart transplant
Liver transplant
Renal transplant
Lung transplant
Reconstructive surgery

Sildenafil 
Sildenafil
Sildenafil
Sildenafil 
Sildenafil 

[168–170]
[171–174]
[175]
[176]
[177–178]

Female genital dysfunctions Fertility
Pre-eclampsia

Sildenafil
Sildenafil 

[179–184]
[185–187]

Diabetes Neuropathy and vasculopathy
Endothelium damage  

Sildenafil 
Sildenafil, Tadalafil 

[188–191]
[192–196]
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to progression was met, the overall survival outcome 
of patients treated with the two drugs appears only 
slightly better than other phase II studies of single-agent 
gemcitabine. This may be likely due to suboptimal dosing 
of exisulind, or suboptimal scheduling or the lack of 
functional interaction between exisulind and cytotoxic 
drugs despite the preclinical observations. Other phase II 
studies using exisulind in combination with chemotherapy 
in advanced NSCLCs show no objective benefits regarding 
both overall survival and time to progression compared 
with historic controls treated with chemotherapy alone 
[210–212]. Disappointing results were also reported for 
the combination of carboplatin, etoposide, and exisulind as 
initial therapy for patients with newly diagnosed extensive 
stage small cell lung cancers [213].

Prostate cancer

Prostate cancer represents the second most 
frequently diagnosed solid malignancy among men 
worldwide, accounting for about 1.1 million cases in 2012 
[1]. Fortunately, due to early detection and the nerve-
sparing prostatectomy, relative death rates have been 

decreasing and men have been given hope for recovery 
of bladder and erectile function. Penile rehabilitation 
after prostatectomy often includes treatment with PDE5 
inhibitors and accordingly, association between the effects 
of these drugs and cancer recurrence have been examined 
in different experimental and clinical studies.  

In support of PDE5 inhibitors’ ability to affect 
prostate carcinogensis, it was reported that exisulind 
suppressed the growth of metastatic, human prostate 
cancer cells in a nude mouse xenograft model by 
increasing apoptosis [214]. In contrast, Qian et al. noted 
that incontinuous oral administration of sildenafil citrate 
was not able to influence primary tumor growth and 
metastasis in an orthotopic prostate cancer model, most 
probably because cGMP elevation were only transient 
[215]. It was shown that sildenafil enhanced apoptosis and 
antitumor efficacy of doxorubicin in mice bearing prostate 
tumor xenografts, while attenuating its cardiotoxic 
effects (i.e. left ventricular dysfunction) [216]. Next, 
the same research group investigated the mechanism 
by which sildenafil may sensitize prostate cancer cell 
to doxorubicin-mediated apoptosis, showing CD95 
(death receptor Fas)/FLIP (Fas-associated death domain 

Table 3: List of the studies on PDE5 inhibitors and cancer at www.clinicaltrials.gov*

Inhibitor Indication Status ClinicalTrials.gov#

Sildenafil Pancreatic Cancer, Cholangiocarcinoma
Advanced Solid Tumors
Bladder Cancer
Kidney Cancer
Breast, Gastrointestinal, Genitourinary, 
Gynecological Cancers
Non-small Cell Lung Cancer

High-grade Glioma
Waldenstrom’s Macroglobulinemia

Phase 1 (recruiting)

Phase 1 (recruiting)
Phase 2 (recruiting)
Phase 2 (completed)
Phase 1 (active, not recruiting)

Phase 2, Phase 3 (completed)
Phase 2 (recruiting)
Phase 2 (completed)

NCT02106871

NCT02466802
NCT02422277
NCT01950923
NCT01375699

NCT00752115

NCT01817751
NCT00165295

Tadalafil Head and Neck Squamous Cell Carcinoma
Head and Neck Cancer
Head and Neck Cancer
Head and Neck Squamous Cell Carcinoma
Multiple Myeloma
Multiple Myeloma
Prostate Cancer
Pancreatic Cancer

Pancreatic Cancer

Primary Abdominal Malignancy

Phase 1 (recruiting)

Phase 2 (recruiting)
Phase 3 (completed)
Phase 2 (completed)

Phase 2 (recruiting)
Phase 2 (terminated)
Phase 3 (completed)
Phase 1 (active, not recruiting)
Phase 1 (active, not recruiting)
Phase 1 (not yet recruiting)

NCT02544880

NCT02544880
NCT00843635
NCT00894413

NCT01858558
NCT01374217
NCT00931528
NCT01342224

NCT01903083

NCT02998736
Vardenafil Glioma, Brain Neoplasms, Brain Metastasis Early Phase 1 (recruiting) NCT02279992
Udenafil Sigmoid Colon and Rectal Cancers Phase 2 (completed) NCT00607282
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FADD) as key regulators of this event [217]. In 2016, by 
in vitro cell culture and in vivo xenograft approaches, it 
was clearly demonstrated that PDE5/cGMP/PKG signal 
targets to Hippo/TAZ pathway in maintaining stemness 
of prostate cancer stem cells, evidencing a novel role of 
PDE5 in governing stem cell features [218]. Moreover, 
PDE5 was found to be mainly located in the stromal 
compartment of the prostate, and accordingly tadalafil 
reduced proliferation of primary prostate stromal cells at a 
greater extent than of primary prostate basal epithelial cells 
[219]. Tadalafil also attenuated TGFβ1-induced fibroblast-
to-myofibroblast trans-differentiation, suggesting a 
potential value of PDE5 inhibitors in preventing stromal 
enlargement and treating benign prostatic hyperplasia 
([219] and reviewed in [220]). 

A retrospective analysis including a total of 4974 
men revealed that the use of PDE5 inhibitors over a 7-year 
period was associated to a decreased incidence rate of 
prostate cancer among men with ED compared to men with 
ED of the same age and with similar risk factors who were 
not treated with these agents [221]. It was hypothesized 
that a higher ejaculation frequency can protect against 
prostate cancer development or alternatively vasodilation 
induced by PDE5 inhibition may counteract hypoxia and 

thereby thwart the emergence of more aggressive cancer 
phenotypes [222–224]. Another group also evaluated the 
safety and efficacy of exisulind (twice daily for 12 months) 
in delaying disease progression in men with rising prostate 
specific antigen (PSA) levels after radical prostatectomy 
and found that exisulind inhibited the increase in PSA 
overall and prolonged PSA doubling time in high-risk 
patients compared with placebo [225]. Contrary to these 
findings, using a large clinical database of patients with 
prostate cancer (n = 4752) with a median follow-up of 60.3 
months, it was shown that the use of PDE5 inhibitors after 
radical prostatectomy may adversely impact biochemical 
recurrence (BCR), defined as a PSA of 0.2 ng/ml or greater 
and increasing after radical prostatectomy [226]. However, 
there are several limitations to this study, such as the lack 
of information on the type of the drug, the dose, the exact 
duration and frequency of use. Other authors retrospectively 
performed a similar analysis of BCR in 2579 patients 
treated with bilateral nervesparing radical prostatectomy 
and showed that there was no association between PDE5 
inhibitor use and an increased risk of BCR, regardless of the 
therapeutic regimen used [227].

On the basis of these findings, there is no strong 
evidence to modify current clinical practice, and therapy 

Figure 3: Proposed mechanisms underlying the anti-cancer activities of PDE5 inhibitors. PDE5 inhibitors may hamper 
tumor progression by activating downstream signaling pathways, mainly PKG-mediated ones, which induce apoptosis, autophagy, growth 
suppression, inhibition of angiogenesis and of stemness. PDE5 inhibitors may also enhance the therapeutic effectiveness of multiple anti-
neoplastic agents by increasing intracellular accumulation of drugs and cGMP levels through the block of the substrate efflux function 
of ABC multidrug-resistant transporters. ABC transporter Efflux Pumps, ATP-binding cassette transporter Efflux Pumps; ROS, Radical 
Oxygen Species; HSP, Heat Shock Protein; GRB78, Glucose-Regulated Protein; JNK, c-Jun N-terminal kinases; ERK, Extracellular Signal-
regulated Kinases; MST, Mammalian Ste20-like Protein Kinase; LAT, Large Tumor Suppressor Kinase; TAZ, Transcription Regulator 
Protein-1.
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with PDE5 inhibitors still remains the more recommended 
option for many postprostatectomy patients for penile 
rehabilitation programs [228].

Breast cancer

Breast carcinoma is the most common malignancy 
and the leading cause of cancer-related death in women 
worldwide. Breast cancer is a complex and highly 
heterogeneous disease classified on the basis of global 
gene expression analyses into at least five biologically 
different intrinsic subtypes (i.e. luminal A, luminal B, 
human epidermal growth factor receptor 2 (HER2)-
enriched, basal-like, and normal-like) with distinct 
morphologic features, variable clinical outcomes and 
disparate therapeutic responses [229]. 

Increased PDE5 expression has also been reported 
in various cell lines deriving from breast cancer (MCF-
7, HTB-26, MDA-MB-468) [54], giving the rational 
to assess the anticancer effects of PDE5 inhibition. 
Indeed, the PDE5 inhibitor exisulind selectively exerted, 
in various breast cancer cells, pro-apoptotic and anti-
proliferative effects concomitantly with elevation of 
cGMP and activation of PKG, without effects on human 
mammary normal epithelial cells [230]. Inhibition of 
PDE5 and activation of PKG by exisulind was associated 
with reduced oncogenic Wnt/β-catenin-mediated 
transcriptional activity and subsequent downregulation 
of target genes, including cyclin D1 and survivin [231]. 
Stable PDE5 silencing in the aggressive human breast 
cancer cell line MDA-MB-231T lead to a reduction of cell 
motility in vitro and of lung metastasis formations in an 
experimental metastasis assay in vivo [232]. This well fits 
with our recent data showing that stable overexpression of 
PDE5 in MCF-7 breast cancer cells significantly increased 
motility and invasion of all the stable PDE5- transfected 
clones tested compared to parental cells [7]. In addition 
to the direct anti-cancer activities, it was demonstrated 
that PDE5 inhibitors may act as potential cancer 
chemopreventive agents, due to their ability to suppress 
1-methyl-1-nitrosourea (MNU)-induced mammary 
carcinogenesis [233]. 

In breast cancer clinical samples, increased 
PDE5 expression was verified by both RT-PCR and 
immunohistochemistry analyses, and was correlated 
with tumor grade stage and lymph node involvement 
[9, 234]. More recently, we demonstrated that PDE5 
was differentially expressed among breast cancer 
molecular subtypes, with higher levels in HER2-
enriched and triple-negative subtypes compared to 
the more favourable estrogen receptor (ER)-positive 
Luminal B- and the Luminal A subtypes [7]. Importantly, 
high PDE5 expression predict a worse prognosis for a 
cohort of 1,988 patients at 8-year median follow-up [7]. 
Significant difference was also found between overall 
survival for ER-positive patients having high or low 

PDE5 levels, highlighting a role for PDE5 in predicting 
disease progression in ER-positive tumors that according 
to our immunohistochemistry analysis may have lower 
levels of the enzyme compared with ER-negative cases. 
In addition, since PDE5 retained its significance when 
performing a multivariate analysis including PDE5 
expression, ER, HER2, and lymph node status in the 
entire database, it is tempting to speculate that high PDE5 
levels may independently predict poor outcome among 
patients with breast cancer. However, up to now, only one 
study was conducted to clinically evaluate the safety and 
activity of PDE5 inhibitor in breast cancer. In particular, 
it was demonstrated that administration of exisulind in 
combination with capecitabine was well tolerated in a 
small number of patients with metastatic breast cancer 
(n = 35), but the synergism between these two drugs at the 
doses tested appears to be modest [9].

Colorectal cancer

Colorectal cancer is the third most commonly 
diagnosed cancer in men and the second in women 
worldwide, with an estimated 1.4 million cases and 
693,900 deaths occurring in 2012 [1]. In contrast to 
incidence trends, decreasing colorectal cancer mortality 
rates have been observed in a large number of countries 
and are most likely attributed to colorectal cancer 
screening, reduced prevalence of risk factors, and/
or improved therapies. However, when widespread 
malignancy is encountered, these cases are not responsive 
to curative treatments.

In several colon tumor cell lines (e.g. HT29, T84, 
and HCT116), exisulind and analogs/derivatives were 
able to inhibit the oncogenic activity of β-catenin through 
a direct suppression of its transcription or increased 
proteosomal degradation, thereby promoting cell death 
[202, 235–238]. It was also reported that sulindac 
metabolites inhibit the mitogen-activated protein/
extracellular signal-regulated kinase kinase (MEK/
ERK) signaling cascade in colorectal cancer cell lines 
at doses that induce apoptosis, as additional molecular 
mechanisms by which Sulindac inhibits tumor cell growth 
[239, 240]. In addition, treatment of human colorectal 
cancer cells with sildenafil resulted in cell proliferation 
inhibition, cell cycle arrest and apoptosis accompanied 
by increased intracellular reactive oxidative specie levels 
in vitro and caused the reduction of xenograft tumor 
growth in nude mice [241]. Recently, combined inhibition 
of PDE5 and PDE10 by treatment with PDE isozyme-
selective inhibitors, or by siRNA knockdown was shown 
to suppresses β-catenin, and the levels of its downstream 
targets, thereby suppressing proliferation and inducing 
apoptosis in colon tumor cells [242]. 

In clinical studies, exisulind prevented colorectal 
polyp formation in patients with familial adenomatous 
polyposis (FAP) over 24 months [243, 244]. Moreover, 
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it has been demonstrated that exisulind inhibited 
azoxymethane-induced colon carcinogenesis in rats 
[201] and sildenafil suppressed polyp formation and 
inflammation in mice treated with azoxymethane/dextrane 
sulfate sodium [245], highlighting the chemopreventive 
role of PDE5 inhibition [246]. 

Brain cancer

Cancers of the brain and central nervous system 
accounted for 256,000 new cases and 189,000 deaths in 
2012, with the highest incidence and mortality rates in 
more developed regions [2].

In both neuroblastoma N18TG2 and hybrid 
neuroblastoma-glioma NG108–15 cells, the presence and 
regulation of PDE5 mRNA during cell differentiation 
was previously demonstrated [247]. In medulloblastoma 
cells, PDE5 inhibitors interacted in a greater than 
additive fashion with vincristine/etoposide/cisplatin to 
cause cell death. PDE5 inhibitors promoted autophagy 
and enhanced chemotherapy-induced DNA damage 
in a nitric oxide synthase-dependent fashion [248]. 
Pharmacologic modulation of cGMP signaling is emerging 
as a novel approach for enhancing therapeutic agent 
permeability across the blood-brain tumor barrier, thereby 
increasing delivery to brain tumors and metastases. Oral 
administration of sildenafil and vardenafil selectively 
improved tumor capillary permeability in 9L gliosarcoma-
bearing rats, without changes in normal brain capillaries 
[249]. Importantly, tumor-bearing rats treated with 
the chemotherapy agent, adriamycin, in combination 
with vardenafil exhibited a survival significantly longer 
than rats treated with adriamycin alone [249]. The 
combination of OSU-03012/sildenafil synergized with low 
concentrations of sorafenib to kill glioblastoma cells in 
vitro and in vivo [250]. PDE5 inhibitors enhanced transport 
and therapeutic efficacy of trastuzumab in hard-to-treat 
brain metastases from different primary tumors [251]. 
Tadalafil can also enhance the treatment efficacy of the 
chimeric anti-CD20 monoclonal antibody Rituximab by 
improving the microvascular permeability in intracranial 
brain lymphoma mice model [252]. In contrast to these 
findings, it was shown that genetic and pharmacological 
inhibition of PDE5 activity strongly enhanced cell motility 
and invasiveness in human glioblastoma T98G cells, 
whereas PDE5 overexpression in PDE5-negative U87G 
cells significantly inhibited their invasive potential and 
interfered with DNA damage repair and cell survival 
following irradiation [253]. 

Analysis of a cohort of 69 patients affected 
by glioblastoma multiforme (GBM) who underwent 
chemotherapy and radiotherapy following surgical 
resection of the tumor revealed that PDE5 was strongly 
expressed in 50% of cancer cases [253]. Retrospective 
analysis indicated that high PDE5 expression significantly 
correlated with increased overall survival of patients, 

identifying this enzyme as a favourable prognostic marker 
for GBM, which negatively affects cell invasiveness and 
survival [253]. 

Thyroid cancer

Carcinoma of the thyroid is the most common 
malignancy of endocrine organs, representing 2.1% 
of the new cancer cases (about 230,000 among women 
and 70,000 among men in 2012) [254]. Over the last 
few decades, a steady increase of thyroid cancer has 
been appreciably observed in most areas of the world, 
and if current trends are maintained, thyroid cancer may 
become the fourth most common cancer by 2030. More 
than 95% are well-differentiated papillary or follicular 
tumors that derive from follicular epithelial cells and 
can be effectively managed by surgical resection with or 
without radioctive iodine ablation. A minority of thyroid 
cancers are medullary thyroid carcinomas that derive from 
the neuroendocrine C cells of the thyroid or anaplastic 
malignancies that are the rarest but the most lethal subtype 
[255]. Treatment for about two thirds of patients with 
progressive metastatic papillary and follicular thyroid 
cancers as well as for patients with less differentiated 
tumors is often of limited benefit, due to their inability to 
concentrate radioiodine or to the development of therapy 
resistance [256, 257]. Thus, there is a pressing need for 
innovative treatments in patients having high risk of 
disease-related death.

The role of cGMP levels and PDE5 in thyroid 
cancer are still not well defined. Analysis of the mRNA 
expression of members of the 11 known families of PDEs 
has revealed the expression of PDE4, PDE5, PDE7 and 
PDE8 subtypes in normal thyroid tissues [258]. Previous 
studies have also reported the presence of PDE4 in toxic 
adenomas characterized by mutations in the TSH receptor 
(TSH-R) gene [259]. In 2015, Sponziello et al. showed, for 
the first time, higher mRNA and protein expression levels 
of PDE5 in a series of human papillary thyroid carcinomas 
belonging to two independent cohorts compared to non-
tumor tissues [260]. Interestingly, tumors presenting 
BRAF V600E mutation, that is the most frequent genetic 
alteration and also a marker of aggressiveness [261], 
exhibited a marked upregulation of PDE5 respect to those 
without mutation. Increased PDE5 transcripts were also 
associated with a reduction of the expression of TSH-R, 
thyroglobulin (Tg), thyroid peroxidase (TPO), sodium/
iodide symporter (NIS), important differentiation markers 
implicated in intra-thyroidal iodine metabolism and 
thyroid hormone synthesis. More recently, a second study 
reported higher intracellular cGMP levels and cGMP-
PDE activity in thyroid malignant (papillar and follicular) 
carcinomas than in controls and benign pathologies 
(i.e. benign struma, adenomatous hyperplasia, chronic 
thyroiditis, benign adenoma) [262]. However, the cGMP-
PDE expression was elevated in papillary carcinomas 
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without lymph node involvement (N-) in respect to those 
with lymph node invasion (N±), while cGMP levels 
displayed an inverse trend. These events may represent 
an autophagic defence mechanism of the body against the 
cancer that is expanding and invading other tissues and 
organs. Although these findings are promising, further 
studies are needed to draw definitive conclusions.

In papillary and anaplastic thyroid cancer cells 
in vitro, sildenafil and tadalafil determined a reduction 
of proliferation and at lower doses, they were also able 
to reduce cellular migration [260]. The effects of PDE5 
inhibitors were stronger in the cancer cell lines carrying 
the BRAF mutation, suggesting that these tumors could 
be a preferential subtype for the action of PDE5-targeted 
drugs. A significant decrease of the drug dosages necessary 
to achieve an anticancer effect was obtained with the 
encapsulation of these compounds within nanoliposomes 
[263], that may represent, if confirmed in vivo, a valuable 
novel formulation for the treatment of thyroid carcinomas 
and other types of cancers.

Melanoma

Cutaneous melanoma accounted for almost 5% 
of all new diagnosed cancer cases, with a reported 
mortality of approximately 2%, making it the deadliest 
form of skin cancer. Although early detection carries an 
excellent prognosis, with surgical excision often being 
curative, the long-term survival rate for patients with 
metastatic melanoma is only 5% [264]. The disease 
derived from genetically altered epidermal melanocytes 
that arises because of complex interactions between 
genetic alterations, such as RAS pathway mutations and 
environmental factors, especially exposure to UV radiation 
[265]. The role of PDE5 on pathogenesis or progression of 
melanoma remains still an area of debate. Murata et al. 
have shown PDE5 activity and expression in malignant 
melanoma cells, and reported an important function for 
this enzyme in regulating melanoma progression as two 
PDE5 inhibitors inhibited cell growth [266]. However, 
the first mechanistic insights on the link between PDE5 
and melanoma was suggested by Arozarena et al. in 2011 
[267]. Indeed, it was demonstrated that in melanoma 
cells oncogenic BRAF, through the transcription factor 
BRN2, was able to suppress PDE5A expression. PDE5 
down-regulation, in turn, leads to enhanced cGMP 
levels, which induce an increase in cytosolic Ca2+, a 
stimulation of actin-myosin contractility and a subsequent 
increase in cell invasion in vitro and in vivo [267]. 
Accordingly, immunohistochemistry analysis in a tissue 
microarray consisting of triplicate cores of 28 primary 
and 29 metastatic malignant melanoma cases revealed 
a statistically significant downregulation of PDE5A in 
metastatic tumors [267]. More recently, it was reported 
that the growth-promoting cGMP signaling could be 
potentiated pharmacologically by treatment with sildenafil 

in murine and human melanoma cells, suggesting that 
possible skin adverse effects of PDE5 inhibitors should be 
better considered [268]. 

Clinically, in a prospective cohort study, men 
who used sildenafil for ED had a statistically significant 
elevated risk of developing melanoma, without affecting 
the risk of squamous or basal cell carcinomas, and this 
correlation was maintained in the models controlling for 
the major host characteristics, such as age, body mass 
index, family history, sun exposure, and UV index in 
the state of residence [269]. A subsequent nationwide, 
population-based, nested case-control study in Sweden, 
including 4065 melanoma cases diagnosed from 2006 
through 2012, showed that the use of PDE5 inhibitors 
was associated with a modest but statistically significant 
increased risk of malignant melanoma, but the pattern 
of association (e.g. the lack of association with multiple 
filled prescriptions) raises questions about the causality of 
this relationship [270]. Later, a large UK-based primary 
care database, with 145,104 men who were prescribed 
a PDE5 inhibitor and 560,933 matched controls, was 
examined, but the findings showed no evidence of a 
positive association between PDE5 inhibitor exposure 
and melanoma risk after matching or adjusting for key 
potential confounders [271]. More recently, a meta-
analysis of 5-population-based observational studies 
revealed an increased risk of malignant melanoma in 
users of PDE5 inhibitors for ED [272]. Although a large 
number of patients and a long follow-up were included 
in this report, population selective bias, the lack of dose-
response analysis and in general the weakness inherent 
in observational studies should be acknowledged. Thus, 
collectively, the present findings are insufficient to alter 
current clinical recommendation. 

Other cancers

A possible role of PDE5 inhibition has been 
suggested also in the management of other cancers. 
Immunohistochemistry showed that PDE5 was 
overexpressed in human squamous and transitional 
cell carcinomas compared with normal urothelium and 
accordingly, exisulind exhibited antineoplastic activity 
in vivo in a model of rat urinary bladder tumorigenesis 
[8]. The addition of PDE5 inhibitors to multiple existing 
treatment regimens, including doxorubicin, mitomycin 
C, gemcitabine, cisplatin and paclitaxel, significantly 
enhanced chemotherapy lethality by stimulating the 
extrinsic apoptosis pathway via CD95 and by promoting 
autophagy through RIP-1 (receptor interacting protein 
1) in bladder and pancreatic cancer cell lines [156]. 
In human renal carcinoma cell lines, suppression of 
PDE5 gene expression by PDE5 siRNA reduced cell 
proliferation and induced apoptosis through cGMP-PKG 
activation [273]. Sildenafil in combination with C-type 
natriuretic peptide synergistically inhibited proliferation 
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of rhabdomyosarcoma cells and suppressed tumor growth 
in vivo [274]. Sildenafil and vardenafil were also able to 
induce apoptosis in peripheral blood mononuclear cells 
isolated from fourteen patients with chronic lymphocytic 
leukemia through a caspase 3-dependent pathway 
[275]. Recently, it was shown that vardenafil potentiates 
the killing effect of the green tea polyphenol (–) 
epigallocatechin-O-3-gallate on leukaemia and multiple 
myeloma cells, without affecting normal cells [276, 
277]. Interestingly, in a patient with end-stage relapsed/
refractory multiple myeloma, the addition of tadalafil 
reduced myeloid-derived suppressor cell function, that 
was associated to anti-myeloma immune responses and 
clinical benefit [278]. In 2015, a randomized, prospective, 
double blinded, placebo controlled, phase II clinical trial 
to determine the activity of PDE5 inhibitors on immune 
function in head and neck squamous cell carcinoma 
(HNSCC) patients was conducted [279]. Results 
showed that tadalafil can reverse tumor-specific immune 
suppression in these patients, with important therapeutic 
potential.

Concluding remarks 

Over the last decades, researchers have elucidated 
the roles that impairment of cGMP signaling pathway by 
PDE5 activity inhibition plays in the regulation of tumor 
development, and progression. As a consequence, our 
knowledge on the link between PDE5 inhibitors and cancer 
biology has expanded, holding great promise for future 
use of these agents in several cancers. Although evident 
clinical controversial data come from patients affected by 
melanoma and glioblastoma multiforme, studies discussed 
in this literature review show that PDE5 inhibition 
could be associated with a decreased risk of cancer 
development and suppression of tumor progression in 
several malignancies including those of the lung, prostate, 
breast and colorectum. PDE5 inhibitors may also provide 
an additional antitumor immune response in patients 
affected by myeloma and head and neck squamous cell 
carcinomas. In addition, a synergistic effect with current 
chemotherapeutic regimens and monoclonal antibodies 
has been reported. However, this research suffered from 
the weakness of the clinical studies conducted until now 
that make difficult to draw a general conclusion. First, it 
would be important to distinguish class effects of PDE5 
inhibitors versus effects unique to selective agents within 
the class, also in relation to non-specific inhibition of other 
PDEs as well as to potential off-target effects that can both 
positively and negatively influence the risk-benefit profile 
of PDE5 inhibitors. Secondly, we will need information 
concerning the optimal dosages of these molecules in the 
various applications, their monitoring, and the potential 
interactions with other agents regularly used in each 
patient population. Moreover, major clinical benefits will 
come from more definitive specifications of individual 

patient variables that may point toward the use of PDE5 
inhibitors in general and each specific drug of this class, 
providing antitumor therapy with reduced adverse effects. 
Certainly, the clarification of additional molecular 
processes of potential oncogenic function of PDE5 as 
well as further clinical trials including PDE5 inhibitors 
will help to facilitate better applications of PDE5 targeting 
drugs in the area of cancer treatment.
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