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ABSTRACT

Motivation: The ultimate goal of abbreviation management is to
disambiguate every occurrence of an abbreviation into its expanded
form (concept or sense). To collect expanded forms for abbreviations,
previous studies have recognized abbreviations and their expanded
forms in parenthetical expressions of bio-medical texts. However,
expanded forms extracted by abbreviation recognition are mixtures
of concepts/senses and their term variations. Consequently, a list
of expanded forms should be structured into a sense inventory,
which provides possible concepts or senses for abbreviation
disambiguation.
Results: A sense inventory is a key to robust management of
abbreviations. Therefore, we present a supervised approach for
clustering expanded forms. The experimental result reports 0.915
F1 score in clustering expanded forms. We then investigate the
possibility of conflicts of protein and gene names with abbreviations.
Finally, an experiment of abbreviation disambiguation on the sense
inventory yielded 0.984 accuracy and 0.986 F1 score using the
dataset obtained from MEDLINE abstracts.
Availability: The sense inventory and disambiguator of abbreviations
are accessible at http://www.nactem.ac.uk/software/acromine/ and
http://www.nactem.ac.uk/software/acromine_disambiguation/
Contact: okazaki@chokkan.org
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1 INTRODUCTION
Abbreviations substitute for fully expanded terms (e.g. computed
tomography) through the use of shortened term-forms (e.g. CT).
In the bio-medical literature, abbreviations are used for various
important terms including: genes, proteins, diseases and chemical
names (Federiuk, 1999). Results of our experiment (Section 3.2)
show that 32.0% of UniProt entries include abbreviations in
description and gene name fields. Wren et al. (2005) reported that
abbreviations are used more frequently than expanded forms.

Abbreviations present two major challenges to bio-medical text
mining: term variation and ambiguity. We consider an information
retrieval system that collects documents referring to polymerase
chain reaction. Because polymerase chain reaction might be
abbreviated as PCR, the system is expected to retrieve documents in
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Fig. 1. Term variation and ambiguity of the abbreviation PCR.

which PCR appears. At the same time, abbreviations are ambiguous:
the same abbreviation might refer to different concepts (Ananiadou
et al., 2006; Erhardt et al., 2006). Because PCR means other than
polymerase chain reaction, the system should be able to perform
abbreviation disambiguation—to judge whether an occurrence of
PCR actually means polymerase chain reaction or not (McCray and
Tse, 2003; Sehgal and Srinivasan, 2006). In general, abbreviations
are much more ambiguous than ordinary terms. Liu et al. (2002b)
report that 81.2% of abbreviations in Unified Medical Language
System (UMLS) were ambiguous, with an average of 16.6 senses.

Figure 1 presents problems of term variation and ambiguity of
abbreviations. In all, 129 distinct expanded forms were extracted
for the abbreviation PCR from all MEDLINE abstracts, including
polymerase chain reaction, polymerization chain reaction and
amplification reactions polymerized. Abbreviation recognition is a
task of collecting expanded forms for abbreviations. It has been
explored extensively using various approaches: through the use
of heuristics and/or scoring rules (Adar, 2004; Park and Byrd,
2001; Pustejovsky et al., 2001; Schwartz and Hearst, 2003),
machine learning (Chang and Schütze, 2006; Nadeau and Turney,
2005; Okazaki et al., 2008) and co-occurrence statistics (Liu and
Friedman, 2003; Okazaki and Ananiadou, 2006; Zhou et al., 2006).
The 129 expanded forms in Figure 1 were obtained using the
abbreviation recognition method (Okazaki and Ananiadou, 2006),
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which is based on co-occurrence statistics. As depicted in Figure 1,
expanded forms extracted by abbreviation recognition are mixtures
of concepts/senses and their term variations. The abbreviation PCR
has 129 expanded forms that can be consolidated to 30 senses
(e.g. polymerase chain reaction, pathologic complete response
and phosphocreatine). In general, a single sense has more than
one surface form (i.e. variant). The sense of pathologic complete
response, for example, was actually described in MEDLINE
abstracts by one of the 14 variation forms (e.g. pathologic complete
response and pathologically complete responses). Clustering of
expanded forms into a set of distinct senses, thereby creating a
sense inventory for a given abbreviation, is a crucial step towards
abbreviation disambiguation. Abbreviation disambiguation has been
studied less intensively than abbreviation recognition, partly because
clustering for creating sense inventories for numerous pairs of
abbreviations and their surface expanded forms.

As described in this article, we first formalize the task of
creating sense inventories as an independent task of clustering in
which similar expanded forms for an abbreviation are gathered
into a cluster (sense). Because the quality of sense inventories
has a significant effect on the performance of abbreviation
disambiguation, we developed a new supervised method for
clustering expanded forms. We constructed a dataset for the
method and measured its performance. The effect of clustering on
abbreviation disambiguation was also evaluated quantitatively. The
main contributions of this article are 3-fold.

(i) A sense inventory is key to robust management of
abbreviations because it provides target senses for dis-
ambiguation that correspond to biomedical entities and
concepts. Therefore, we present a supervised approach for
clustering expanded forms, and evaluate the quality of the
sense inventory. The experimental result reports a 0.915 F1
score in clustering expanded forms.

(ii) We investigate the possibility of conflict of protein and
gene names with abbreviations to estimate the importance
of abbreviation disambiguation. Results showed that 32.0%
of UniProt records include abbreviation terms and that
16.7% of records have ambiguous abbreviations with multiple
definitions.

(iii) We conduct an experiment of abbreviation disambiguation
on the sense inventory whose quality was demonstrated by
the Contribution (i). The proposed system achieves 0.984
accuracy on a dataset obtained from all of MEDLINE.

2 METHODS
In terms of abbreviation disambiguation, it is important to draw a clear
distinction between local and global abbreviations (Gaudan et al., 2005). By
convention, a local abbreviation accompanies its expanded form at its first
appearance in the document. Because abbreviation definitions are mostly
consistent within a document, i.e. one-sense-per-discourse assumption
(Yarowsky, 1995), we can identify the definitions of local abbreviation
by reusing methods for abbreviation recognition (Yu et al., 2006). In
contrast, global abbreviations appear in documents without the expanded
form explicitly stated. It is necessary to estimate the definitions of undefined
global abbreviations based on their contexts in documents. This task is similar
to word sense disambiguation (WSD) in natural language processing, where
a sense of an ambiguous term is chosen from several predefined senses. The
remainder of this article will specifically describe disambiguation of global
abbreviations in the MEDLINE database.

MEDLINE
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Acromine
abbreviation
recognition

Abbreviation
disambiguation

Clustering of
expanded forms

Raw text

Training

MEDLINE
abstracts

with abbreviations
disambiguated

Sense
inventory
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Fig. 2. Work flow of the proposed system.

Figure 2 shows the work flow of abbreviation management. The system
first extracts abbreviation definitions from MEDLINE abstracts. Because
expanded forms include variations (e.g. polymerase chain reaction and
polymerization chain reaction for PCR), we apply a clustering method
to compile a sense inventory. Using a collection of sentences including
abbreviation definitions, we train a classifier for each abbreviation that
predicts the sense for an occurrence of the abbreviation. Finally, the system
predicts senses of global abbreviations in MEDLINE abstracts.

2.1 Collecting abbreviation definitions from MEDLINE
The first step for abbreviation disambiguation is to collect possible expanded
forms for abbreviations. We used a state-of-the-art method for recognizing
abbreviation definitions in MEDLINE abstracts (Okazaki and Ananiadou,
2006). The algorithm assumes parenthetical expressions to introduce
abbreviation definitions in the following format:

expanded form ‘(‘ abbreviation ’)’ (1)

For each inner expression of a parenthetical expression, the algorithm
enumerates candidates of expanded forms that begin with any non-function
word (e.g., a, and, of ) and end with any word immediately before the
parenthetical expression.

To choose correct expanded forms for each abbreviation a, the algorithm
computes a score LHa(c) for a candidate of expanded form c,

LHa(c)= freq(a,c)−
∑
t∈Tc

(
freq(a,t)× freq(a,t)∑

w∈Tc
freq(a,w)

)
. (2)

In Equation (2), the following variables are used: a is an abbreviation; c is
a candidate of expanded form for the abbreviation a; freq(a,c) denotes the
co-occurrence frequency of the candidate c with the abbreviation a; and Tc

is a set of nested candidates, each of which consists of a preceding word
followed by the candidate c. We compile a list of candidates of expanded
forms sorted in the descending order of their scores for each abbreviation. The
algorithm extracts candidates out of the sorted list one by one. An expanded
form is considered valid if all of the following are true: it has a score >2.0;
the words in the expanded form can be rearranged so that all alphanumeric
letters in the abbreviation appear in the same order; and it is not nested or
an expansion of the previously chosen expanded forms.

2.2 Merging term variations in abbreviation definitions
The list of abbreviation definitions elucidates the phenomena of term
variation and ambiguity. For instance, the abbreviation CT stands for various
concepts and entities such as computed tomography, calcitonin and cholera
toxin, but it also has various forms including: computed tomography,
computed tomographic, computerized tomography and computerised
tomography. To compile a sense inventory of abbreviations from a list of
expanded forms, we must merge term variations referring to the same concept
into a single representative form. We formalize this task as a clustering
problem in which similar expanded forms constitute a cluster.
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Table 1. Features for the string similarity measure

# Feature Type Description Example Weight (w)

1 Character n-gram similarity Real Cosine similarity of letter n-grams of terms s and t
(n=1,2,3).

(0.954, 0.953,
0.951)

(1.037, 3.838,
9.043)

2 Normalized Levenshtein distance Real The minimum number of insertions, deletions and
substitution operations necessary to transform one
term into the other (Levenshtein, 1966), divided
by the number of characters in the longer term.

0.061 2.742

3 Jaro–Winkler similarity (Winkler, 1999) Real This metric considers the number of shared letters
and transpositions between two terms; the metric
also incorporates a formula to favor two terms that
match from the beginning.

0.979 −0.536

4 Word n-gram similarity Real Cosine similarity of word n-grams of terms s and t
(n=1,2,3).

(0.750, 0.667,
0.500)

(0.457, −2.439,
0.523)

5 SoftTFIDF (Cohen et al., 2003) Real This metric aligns tokens between two strings using
the Jaro–Winkler similarity with threshold 0.9,
and computes the sum of the similarity scores of
aligned pairs; the similarity score is based on
TFIDF scores.

1.883 0.946

6 Bias Real This feature always yields 1. 1 −9.340

The key to success in clustering lies in the accuracy of the distance
(similarity) measure between expanded forms. Various similarity measures
including cosine similarity, Levenshtein distance (Levenshtein, 1966), Jaro–
Winkler similarity (Winkler, 1999) and SoftTFIDF (Cohen et al., 2003) have
been applied to the term clustering. Nevertheless, we are unsure of the best
choice, combination and threshold of these measures for use in recognizing
term variations. Therefore, we use a machine learning technique to acquire a
similarity metric by combining various features. More specifically, we build
a binary classifier that, when given two terms s and t, decides whether the
terms s and t present a term variation (r = +1) or not (r = −1).

Although the support vector machine (SVM) is a popular method for
binary classification, we model the conditional probability P(r|s,t) with the
logistic regression, hoping that the probability P(r|s,t) reflects the distance
between s and t. The probability distribution P(r|s,t) is given as

P(r|s,t)= 1

1+exp
(−rwT F(s,t)

) . (3)

In Equation (3), F={ f1,...,fK } denotes a vector of feature functions: K is
the number of feature functions; and w={w1, ...,wK } presents a weight
vector of the feature functions. We use the maximum a posteriori estimation
to fit the feature weights w to the training set consisting of N instances,
D=((s(1),t(1),r(1)), ..., (s(N),t(N),r(N))

)
. We minimize the objective function

with the L2 norm of the weight vector w,

E� =−
N∑

i=1

logP(r(i)|s(i),t(i))+ ||w||22
2σ2

. (4)

Here, the first term presents the negative of the log-likelihood of the model
for the training set, ||w||2 denotes the L2 norm of the weight vector w and
σ is a parameter to control the effect of L2 regularization. Equation (4) is
minimized using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
method (Nocedal, 1980).

Table 1 presents a summary of the list of feature functions designed for
the vector F(s,t) and the actual feature values computed for the string pair
X-ray photoelectron spectroscopic and X-ray photoelectron spectroscopy.
Feature functions #1–#5 compute nine kinds1 of orthographic similarities
of the two expanded forms x and y. Features #1–#3 measure the similarity

1Features #1 and #4 introduce a feature function for each n-gram, where n
is 1, 2 or 3. Consequently, the number of orthographic features is nine.

Table 2. Rules to generate features for classifiers

Feature type Unit Effective region (window)

Neighbor context uni Previous and next words to the
abbreviation x

Local context uni, bi Three words previous and next to the
abbreviation x

Sentence context uni, bi Words in the same sentence for x
Abstract context uni, bi Words in the same abstract for x

of constituent letters in s and t with n-gram cosine similarity, normalized
Levenshtein distance and Jaro–Winkler similarity. Features #4–#5 compute
the similarity of constituent words2 in s and t with n-gram cosine similarity
and SoftTFIDF. Feature #6 corresponds to the bias term, which adjusts the
decision boundary of classification. The column ‘Weight’ in Table 1 presents
the optimal feature weights tuned for the training data (Section 3.1).

Finally, we apply a hierarchical clustering algorithm (Lance and Williams,
1967) to the similarity metric. We define the distance measure d(s,t)=
1−P(+1|s,t) even though the conditional probability P(+1|s,t) does not
hold the properties of distance measures. In Section 3.1, we compare
single-link, complete-link, centroid and group-average clustering algorithms.

2.3 Abbreviation disambiguation as a problem of WSD
We formalize abbreviation disambiguation as the following: given an
occurrence of an abbreviation x and a set of possible senses Yx =
{y1,y2,...,yn} corresponding to x, choose the most suitable sense y∗ ∈Yx

for the abbreviation occurrence. This is a classification problem which
assigns a label y∗ ∈Yx that is suitable for input x. Among various supervised
machine learning techniques such as naïve Bayes and SVM, this study
employs maximum entropy modeling (Berger et al., 1996) for its efficiency
in multi-class classification.

Table 2 presents a summary of the feature template (rules) to generate
features.Arule in the table generates Boolean features that associate the sense

2We tokenize expressions with non-alphanumeric letters.
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y with observation events (uni- or bi-gram) occurring in a region (window).
For example, given the sentence,

Periplakin, a member of the plakin family of proteins, has been recently
characterized by complementary deoxyribonucleic acid (cDNA) cloning,
and the corresponding gene, ...

and the training instance of the abbreviation x in the sentence,

(x,y)= (‘cDNA’,‘complementary deoxyribonucleic acid’)

then the region for local features is

{‘recently’, ‘characterized’, ‘by’, ‘cloning’, ‘and’, ‘the’}.
Six uni-gram and five bi-gram features are extracted from the region. Features
for local and sentence contexts estimate an expanded form based on word
occurrences around the target abbreviation, and on features for the abstract
context considering the global topics in the abstract3.

3 RESULTS AND DISCUSSION
We applied the proposed methods to MEDLINE abstracts (9 635 599
abstracts as of March 2009). Abbreviation recognition (Section 2.1)
recognized 467 402 distinct definitions for 68 007 abbreviations. We
applied single-link clustering to the 467 402 expanded forms with the
distance threshold 0.2, and obtained a sense inventory with 146 651
senses for 68 007 abbreviations4. In other words, the clustering
method identified 3.19 term variations per sense. An abbreviation
has 2.16 senses on average.

3.1 Clustering of expanded forms
To train the similarity measure described in Section 2.2, we grouped
4158 expanded forms for 400 abbreviations that were sampled
randomly from the abbreviation definitions. We asked a human
expert to merge expanded forms if they refer to an almost identical
concept. In this way, we obtained a dataset consisting of 2563
clusters (senses) of 4158 expanded forms for the 400 abbreviations.
Figure 3 portrays an excerpt of the clusters for the abbreviation TTX
and GRP: the abbreviation TTX has five expanded forms recognized;
the expanded forms are grouped into three clusters.

Assuming inner cluster pairs of expanded forms for each
abbreviation to be positive (r = +1) and assuming inter-cluster
pairs to be negative (r = −1), we obtained 3678 positive and 19 296
negative instances of the training data for the similarity measure5.
For example, two positive instances, 〈tetanus toxin,tetanus toxoid〉
and 〈tetradotoxin,tetrodotoxin〉, and eight negative instances (other
pairs of expanded forms) are generated for TTX in Figure 3.

Table 3 reports the accuracy (A), precision (P), recall (R), and F1
(F1) scores of the similarity metric measured using the 10-fold cross
validation on the training data. The row ‘Full’shows the performance
when all features described in Section 2.2 were used; the best
performance (0.892 F1 score) was obtained with all features. The
first half of feature sets use only the specific feature(s) for training
the similarity metric. Some examples are that ‘Sim (ch)’ shows the
performance when only the character n-gram similarity was used.
The last half of feature sets (with prefixes ‘-’) remove the specific

3In general, features for broader (e.g. abstract) contexts include words in
narrower (e.g. neighbor and local) contexts, but drop the information of
occurrence positions as ‘bag of words.’
4Refer to Section 3.1 for the clustering algorithm and threshold.
5An expanded form s is required to be less than t in dictionary order.

! TTX
tetrodotoxin; tetradotoxin
tetanus toxoid; tetanus toxin
thyrotoxicosis

! GRP
glycine-rich protein; glycine-rich cell wall protein
glucose-related protein; glucose-regulated protein
grapes
glial-restricted precursor
gastrin-releasing peptide; gastrin-releasing polypeptide;
gastrin-releasing peptide1-27; gastrin-related peptide
glutamine/glutamic acid-rich proteins
group

Fig. 3. Excerpt of the clusters of expanded forms.

Table 3. Feature contributions for the similarity metric

Features A P R F1 �F1

Sim (ch) 0.963 0.879 0.895 0.887
Sim (wd) 0.937 0.844 0.747 0.793
Sim (ch + wd) 0.962 0.877 0.890 0.884
Levenshtein 0.939 0.849 0.754 0.799
Jaro–Winkler 0.918 0.920 0.534 0.676
SoftTFIDF 0.921 0.817 0.656 0.728

Full 0.965 0.883 0.900 0.892

- Sim (ch) 0.947 0.855 0.808 0.831 −0.061
- Sim (wd) 0.965 0.885 0.898 0.891 −0.001
- Sim (ch+wd) 0.950 0.868 0.810 0.838 −0.054
- Levenshtein 0.965 0.882 0.898 0.890 −0.002
- Jaro–Winkler 0.965 0.882 0.899 0.891 −0.001
- SoftTFIDF 0.965 0.882 0.901 0.892 −0.000

�F1, the difference of F1 score from the Full feature set; Sim (ch), character n-gram
similarity; Sim (wd), word n-gram similarity

feature(s) from the full feature set, e.g. ‘- Sim (ch+wd)’ shows the
performance when features for character and word n-gram similarity
were removed. We can infer that the feature greatly contributes to
the similarity metric if the performance decreases in the absence of
a feature. Table 3 shows that character n-gram similarity was among
the most effective features for predicting term variations. In addition,
the performance reductions (�F1) in Table 3 suggest that other
features such as the Levenshtein distance, Jaro–Winkler distance
and SoftTFIDF did not contribute to the performance, subsumed by
n-gram similarity features.

We examined 818 false instances of the trained similarity metric.
The 442 false positives were mostly caused by accidental matches
of letter/word n-grams in the expanded forms, e.g. Statement of
Position and state of polarization for the abbreviation SOP. Some
false positives included subtle differences of letters, e.g. adenine
diphosphate and adenosine diphosphate for the abbreviation ADP. It
might be difficult for the current model to handle these false positives
because the model must make determinations based on similarity
values (features) of several kinds. We should add more features that
can explicitly capture semantic difference of words (e.g. adenine
and adenosine) and morphemes (e.g. di and tri).

Out of 376 false negatives, 167 instances involved nested
abbreviations. For example, EGF receptor and epithelial growth
factor receptor are expanded forms of the abbreviation EGF-R,
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Fig. 4. Performance of clustering with different algorithms.

but the former expanded form includes the abbreviation EGF,
which should be expanded to epithelial growth factor. We were
able to remedy these false instances by substituting abbreviations
recursively into expanded forms. Still, we found some tricky
instances, e.g. 1-deamino-8-D-AVP and 1-deamino-[D-Arg8]-
vasopressin as expanded forms of the abbreviation DDAVP; it is
not straightforward to expand the substring 8-D-AVP into [D-Arg8]-
vasopressin. The similarity metric could not recognize 29 instances
of synonymous expanded forms, e.g. baccalaureate nursing and
bachelor’s degree in nursing for the abbreviation BSN. It might also
be effective to incorporate a feature of a synonym dictionary.

Figure 4 presents a performance comparison of clustering
algorithms with different distance thresholds on the same dataset.
In this evaluation, we measured pairwise precision and recall. For
every pair of expanded forms, a true positive is defined as a pair of
expanded forms that are correctly located in the same clusters. False
positives, true negatives and false negatives are defined analogously.
We drew a precision–recall curve by plotting the performance of
each clustering algorithm when its distance threshold values range
from 0.1 (high precision and low recall; bottom right) to 0.9 (low
precision and high recall; top left).

In Figure 4, the single-link algorithm obtained the peak F1
score (0.915) with distance threshold 0.2 (the second point from
the right on the red locus). This parameter is equivalent of
merging two expanded forms s and t only if the probability of
term variation P(+1|s,t) is >0.8. We can interpret that the best
parameter tightens the decision boundary from the neutral threshold
of 0.5–0.2 for alleviating the chaining effect of the algorithm6.
It is particularly interesting that other clustering algorithms were
unable to outperform the single-link algorithm; in particular, these
algorithms suffer from low recall. In these algorithms, two similar
expanded forms cannot be merged solely according to their distance.
For example, the complete-link algorithm refuses an expanded form
that is similar to most of the expanded forms in a cluster but
dissimilar to an expanded form in the cluster. Other clustering
algorithms might be reluctant to form a cluster, but the single-link

6In the single-link algorithm, two distant expanded forms are merged only if
another expanded form exists, which is closer to both expanded forms than
it is to the threshold. This behavior is called a chaining effect and is regarded
as a disadvantage of the single-link algorithm.

Table 4. Number of database records including names conflicting with
abbreviations with at least k senses.

k UniProt, n (%) UMLS genes, n (%) UMLS acids, n (%)

≥0 466 739 ( 100) 29 194 ( 100) 116 011 ( 100)
≥1 149 537 (32.0) 7525 (25.8) 17 854 (15.4)
≥2 77 833 (16.7) 3852 (13.2) 7424 ( 6.4)
≥3 56 430 (12.1) 2982 (10.2) 5277 ( 4.5)
... ... ...
≥30 4841 ( 1.0) 426 ( 1.5) 507 ( 0.4)

algorithm trusts the trained similarity measure and performs the best
in this task.

3.2 Entity names conflicting with abbreviations
Some researchers have argued that gene symbols are often identical
to ambiguous abbreviations (Gaudan et al., 2005; Yu et al., 2006).
For example, SCT represents the official gene symbol for the human
gene secretin, but it also stands for stem cell transplantation, salmon
calcitonin, sacrococcygeal teratoma, etc. (Erhardt et al., 2006). How
many protein and gene names actually conflict with abbreviations?
To examine the importance of abbreviation disambiguation, we
extracted entity names from databases and compared them with the
sense inventory. We used entity names in the following resources:
description (DE) and gene name (GE) fields in UniProtKB/Swiss-
Prot database (as of July 7, 2009); concept names with ‘Gene or
Genome’ type in UMLS (2009AA release as of April 20, 2009);
and concept names with ‘Amino Acid, Peptide, or Protein’ type in
UMLS. We assume a database record to have a possible conflict
with an abbreviation if the record includes a name that also appears
in the abbreviation list. A conflicting name is ambiguous when the
sense inventory includes the name as an abbreviation with multiple
senses.

Table 4 presents the number of database records including
abbreviations with at least k senses in the sense inventory. The
first row (k ≥0) represents the total number of records in each
database. Results showed that 149 537 (32.0%) out of 466 739
UniProt records include names that also appear in the abbreviation
list (k ≥1). Of UniProt records 77 833 (16.7%) have ambiguous
abbreviations with multiple senses (k ≥2); similarly, 13.2% gene
names and 6.4% acid/peptide/protein names in UMLS have possible
conflicts with ambiguous abbreviations (k ≥2). Moreover, 4 841
(1.0%) of UniProt records are highly ambiguous with at least 30
senses in the abbreviation dictionary. These facts suggest that it is
insufficient to identify gene or protein names simply by matching
textual expressions with database records.

3.3 Abbreviation disambiguation
We implemented a system that resolves the definitions of
abbreviations using the sense inventory. To process all MEDLINE
abstracts efficiently, the WSD training and classification algorithms
were implemented in C++. Furthermore, we used a grid computing
environment, dividing the whole MEDLINE into sets of abstracts.
A set of jobs was scattered on 21 cluster nodes, each of which runs
on four Intel Xeon 5140 (2.33 GHz) processors with 8 GB main
memory. It took about 6–16 h to finish 10-fold cross validation jobs
on the cluster environment.
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Table 5. Performance of abbreviation disambiguation

Features A P R F1

Majority 0.789 0.621 0.663 0.636
Majority (w/o clustering) 0.760 0.571 0.619 0.588
Proposed 0.984 0.992 0.984 0.986
Proposed (w/o clustering) 0.801 0.854 0.831 0.830

+ Neighbor 0.925 0.961 0.929 0.934
+ Local 0.952 0.980 0.955 0.961
+ Sentence 0.967 0.987 0.967 0.973
+ Abstract 0.982 0.992 0.983 0.986

- Abstract 0.968 0.988 0.968 0.974
- Abstract - Neighbor 0.968 0.988 0.968 0.974
- Abstract - Local 0.968 0.987 0.968 0.973
- Abstract - Sentence 0.953 0.980 0.956 0.962

The sentences with abbreviation definitions were used as training
data for abbreviation disambiguation. For each definition of an
abbreviation in a sentence, we assumed the expanded form to be
the correct sense for the abbreviation, and removed the expanded
form from the sentence: WSD classifiers were trained to predict the
‘masked’ expanded forms of the abbreviations. We applied 10-fold
cross validation to assess the system performance. The system
performance is measured by accuracy, macro-averaged precision,
recall and F1 measures. We compute the accuracy, precision, recall
and F1 scores for each abbreviation and sense, and take averages of
these scores over every abbreviation and its sense.

Table 5 shows the system performance. In this evaluation, we did
not include expanded forms that are defined <40 times throughout all
of MEDLINE for hastening the cross validation7; the total number
of instances, abbreviations and senses in the dataset were reduced to,
respectively, 5 521 074, 11 262 and 17 613 by this cut-off operation.
These instances amount to 84.3% of the total (6 547 124) training
instances. The proposed method using all the features in Table 2
achieved 0.984 accuracy and a 0.986 F1 score. These scores were
much better than those (0.789 accuracy and 0.636 F1 score) of
the baseline system (‘Majority’), which chooses the expanded form
defined most frequently with the abbreviation. We also measured the
performance when omitting the step for merging similar expanded
forms (‘w/o clustering’). Disambiguation without clustering is much
worse (0.830 F1 score). In any case, senses without clustering are
of little use.

The rows starting with ‘+’present the performances only when the
corresponding feature(s) are employed in the classifier. Classifiers
using the neighbor contexts (‘+ Neighbor’) yielded 0.929 accuracy
and 0.934 F1 score. The most effective features were obtained
from abstract-level contexts, achieving 0.982 accuracy and 0.986
F1 score; this closely approximates the performance using all the
features. The rows starting with ‘-’ report the performances when the
corresponding feature(s) are removed from the full feature set. For
example, classifiers trained without using the abstract and sentence
contexts (‘- Abstract - Sentence’) achieved 0.953 accuracy and 0.962
F1 score. These results were interesting in that broader contexts (e.g.
abstracts and sentences) are much more useful than local contexts
(e.g. neighbor words) for disambiguating abbreviations. This is

7This experimental setting is similar to that of Gaudan et al. (2005).

Table 6. Performance of disambiguating the 400 abbreviations

Clustering Evaluation A P R F1

Gold-standard Gold-standard 0.992 0.989 0.979 0.982
Automatic Automatic 0.993 0.991 0.980 0.983
Automatic Gold-standard 0.993 0.991 0.978 0.982
No Gold-standard 0.984 0.980 0.963 0.968

consistent with the one-sense-per-discourse assumption (Yarowsky,
1995) that is common for WSD.

In Table 5, we used the clustering method (Section 3.1) to
obtain the sense inventory for abbreviation disambiguation. This
experimental setting has been used by the previous work (Gaudan
et al., 2005), but this evaluation might be lenient in that we did not
consider the influence of errors in the sense inventory. That is, if a
clustering method builds a sense inventory with a smaller number
of senses, the disambiguation task may become less complicated.
This might lead to the situation where a disambiguator seemingly
yields a good performance value only because the sense inventory
is coarse, i.e. expanded forms having distinct meanings are merged.
Although we have demonstrated the quality of the sense inventory
in Section 3.1, we analyze the influence of errors in the sense
inventory.

Table 6 reports the performance of disambiguating the 400
abbreviations for which the sense inventory was built manually in
Section 3.1. The first and second rows show the disambiguation
performance when we trained and evaluated disambiguation systems
with the sense inventory built manually (gold-standard) and by
the clustering method (automatic). The third row presents the
performance when we trained a disambiguation system with the
sense inventory built by the clustering method (automatic) and
measured the correctness of disambiguation results on the sense
clusters built manually (gold-standard). We can infer that the
evaluation result of Table 5 is reasonable because the sense
inventories using manual and automatic clustering show comparable
performance values in Table 6. The fourth row of Table 6 shows
the performance when we trained a disambiguation system without
a sense inventory, i.e. to predict the original expanded forms. We
employ a lenient evaluation criterion: if the disambiguation system
predicts an expanded form that is different from the original but in
the same cluster of the manually built sense inventory, we regard
this as a correct prediction. Although this experimental setting
is unrealistic, the comparison between the fourth and other rows
confirms that the sense inventory has a positive effect to refine
training data of abbreviation disambiguation.

4 RELATED WORK
Liu et al. (2001, 2002a) used UMLS Metathesaurus as a sense
inventory for abbreviation disambiguation. Pakhomov et al. (2005)
prepared a sense inventory for abbreviation disambiguation by
annotating senses of abbreviations of eight kinds in clinical notes
at the Mayo Clinic. Involving human efforts to prepare a sense
inventory and training data for disambiguation, the methods in
these studies cannot keep pace with the increasing number of
abbreviations and publications. Yu et al. (2006) applied their AbbRE
algorithm (Yu et al., 2002) to obtain an abbreviation dictionary.
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Their performance was 95% precision and 82% coverage for
disambiguating 60 kinds of abbreviations in MEDLINE. Stevenson
et al. (2009) extracted training data from MEDLINE abstracts using
a method for abbreviation recognition (Schwartz and Hearst, 2003).
They reported 99.0% accuracy for abbreviation disambiguation, but
the experiment was limited to 21 kinds of abbreviations.

The most similar work is Gaudan et al. (2005). Instead of
implementing their own abbreviation recognition, they used the
Simple and Robust Abbreviation Dictionary (Adar, 2004), which
was built automatically from MEDLINE abstracts. They performed
clustering of expanded forms using similarities of two different
kinds. One is cosine similarity of letter tri-grams. The other is the
Dice similarity of context words (surrounding words) of expanded
forms. Although it is much simpler, the former was intended to
capture the similarities of expanded forms in the same manner as our
clustering method does. The latter is designed to capture similarities
of context in which expanded forms appear. As we discuss later,
this would engender a problem in performance evaluation of
abbreviation disambiguation. The WSD classifiers for abbreviation
disambiguation were modeled using SVMs with linear kernels.
Features for the classifiers consist of multi-word expressions. They
excluded abbreviation definitions occurring <40 times from their
evaluation set. They reported 0.985 accuracy, 0.989 precision, 0.982
recall and 0.985 F1 score on 7806 polysemic abbreviations with an
average of 1.57 senses. This performance is comparable to that of
this study (Table 5).

Two issues are raised in their work, which should be examined
carefully. One is that their work lacks independent evaluation of
clustering. They might assume that the performance of clustering
can be measured indirectly by the performance of abbreviation
disambiguation. The problem of this indirect evaluation is closely
linked with the other issue in their work. That is, their clustering of
expanded forms uses the similarity of context in which expanded
forms appear. They claimed the context similarity can detect
synonym-like word substitution. However, because the context
similarity is also used for abbreviation disambiguation, this might
hide errors in clustering. In other words, their experimental setting
might conceal difficult instances of abbreviation disambiguation
because the clustering method might merge different senses of
an abbreviation that share the similar context. In contrast, the
clustering of expanded forms described in this article is based
solely on the similarity among expanded forms with more refined
similarity measure than letter tri-grams. This study evaluates the
performance of the clustering method independently of abbreviation
disambiguation.

For reference, we implemented their clustering method. Their
similarity measure (with the threshold parameters described in their
article) performed worse on the evaluation corpus in Section 3.1
(0.890 accuracy, 0.977 precision, 0.311 recall and 0.471 F1 score);
the performance of the clustering method was 0.971 precision, 0.562
recall and 0.712 F1 score. After we tuned the threshold of the letter
tri-gram similarity from 0.8 (the original parameter) to 0.45, their
clustering method reached the peak performance of 0.881 F1 score,
which is still lower than that of our clustering method (0.915 F1
score). Therefore, we argue that, although the performances of the
two systems on abbreviation disambiguation are similar, their sense
inventories include more errors than ours. We also argue that the
errors of the sense inventory were hidden in their evaluation of
abbreviation disambiguation.

5 CONCLUSION
In this article, we described an approach for building a sense
inventory of abbreviations. Results showed that single-link
clustering with the ML-based similarity measure contributed to
abbreviation disambiguation. The proposed method obtained 0.984
accuracy and 0.986 F1 score on the training and test sets obtained
from MEDLINE. Although the performance figure of abbreviation
disambiguation is roughly comparable to the previous work, we
specially demonstrated the quality of the sense inventory on which
abbreviations are disambiguated into concepts or senses. Results
also show that broader contexts (e.g. abstracts and sentences)
were more useful than local contexts (e.g. neighbor words) for
abbreviation disambiguation. A future direction of this study is to
apply the methodology of abbreviation management for MEDLINE
abstracts to full-paper articles. Because the proposed method can
handle variation and ambiguity problems of abbreviations, we plan
to explore the impact of abbreviation disambiguation to other text-
mining tasks such as information retrieval, named entity recognition
and co-reference resolution.
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