
ORIGINAL RESEARCH
published: 25 November 2015

doi: 10.3389/fnbot.2015.00013

Frontiers in Neurorobotics | www.frontiersin.org 1 November 2015 | Volume 9 | Article 13

Edited by:

Jorg Conradt,

Technische Universität München,

Germany

Reviewed by:

Terrence C. Stewart,

Carleton University, Canada

Jesus Garrido,

University of Granada, Spain

*Correspondence:

Salvador Dura-Bernal

salvadordura@gmail.com

Received: 28 May 2015

Accepted: 09 November 2015

Published: 25 November 2015

Citation:

Dura-Bernal S, Zhou X, Neymotin SA,

Przekwas A, Francis JT and

Lytton WW (2015) Cortical Spiking

Network Interfaced with Virtual

Musculoskeletal Arm and Robotic

Arm. Front. Neurorobot. 9:13.

doi: 10.3389/fnbot.2015.00013

Cortical Spiking Network Interfaced
with Virtual Musculoskeletal Arm and
Robotic Arm
Salvador Dura-Bernal 1*, Xianlian Zhou 2, Samuel A. Neymotin 1, Andrzej Przekwas 2,

Joseph T. Francis 1, 3, 4 and William W. Lytton 1, 3, 4, 5, 6

1Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA,
2CFD Research Corporation, Huntsville, AL, USA, 3 The Robert Furchgott Center for Neural and Behavioral Science, State

University of New York Downstate Medical Center, Brooklyn, NY, USA, 4 Joint Graduate Program in Biomedical Engineering,

State University of New York Downstate and Polytechnic Institute of New York University, Brooklyn, NY, USA, 5Department of

Neurology, State University of New York Downstate Medical Center, Brooklyn, NY, USA, 6Department of Neurology, Kings

County Hospital Center, Brooklyn, NY, USA

Embedding computational models in the physical world is a critical step towards

constraining their behavior and building practical applications. Here we aim to drive

a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and

make a robot arm reproduce the same trajectories in real time. Our cortical model

consisted of a 3-layered cortex, composed of several hundred spiking model-neurons,

which display physiologically realistic dynamics. We interconnected the cortical model

to a two-joint musculoskeletal model of a human arm, with realistic anatomical and

biomechanical properties. The virtual arm received muscle excitations from the neuronal

model, and fed back proprioceptive information, forming a closed-loop system. The

cortical model was trained using spike timing-dependent reinforcement learning to

drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously

control a robot arm using an improved network interface. Virtual arm muscle activations

responded to motoneuron firing rates, with virtual arm muscles lengths encoded

via population coding in the proprioceptive population. After training, the virtual arm

performed reaching movements which were smoother and more realistic than those

obtained using a simplistic arm model. This system provided access to both spiking

network properties and to arm biophysical properties, including muscle forces. The use

of a musculoskeletal virtual arm and the improved control system allowed the robot arm

to perform movements which were smoother than those reported in our previous paper

using a simplistic arm. This work provides a novel approach consisting of bidirectionally

connecting a cortical model to a realistic virtual arm, and using the system output to

drive a robotic arm in real time. Our techniques are applicable to the future development

of brain neuroprosthetic control systems, and may enable enhanced brain-machine

interfaces with the possibility for finer control of limb prosthetics.

Keywords: spiking network, biomimetic, musculoskeletal arm, virtual arm, robot arm, reaching, sensorimotor,

neuroprosthetics

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://www.frontiersin.org/Neurorobotics/editorialboard
http://dx.doi.org/10.3389/fnbot.2015.00013
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2015.00013&domain=pdf&date_stamp=2015-11-25
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive
https://creativecommons.org/licenses/by/4.0/
mailto:salvadordura@gmail.com
http://dx.doi.org/10.3389/fnbot.2015.00013
http://journal.frontiersin.org/article/10.3389/fnbot.2015.00013/abstract
http://loop.frontiersin.org/people/72122/overview
http://loop.frontiersin.org/people/258790/overview
http://loop.frontiersin.org/people/22133/overview
http://loop.frontiersin.org/people/21654/overview
http://loop.frontiersin.org/people/279443/overview
http://loop.frontiersin.org/people/2277/overview

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

1. INTRODUCTION

Embodiment of the nervous system in the physical world
confers both constraints and advantages on learning and
behavior (Almássy et al., 1998). For example, exposure to the
environment allows selection of particular neuronal and physical
dynamics that are best suited to produce desired behaviors
through the agency of a limb or other effector (Edelman, 1987).
Cortical computational models can similarly benefit from such
embodiment and allow us to study the interactions between
neural activity and behavior.

In previous work we developed biomimetic cortical models
that replicate basic brain processes of spiking dynamics and
sensorimotor learning (Neymotin et al., 2011). We demonstrated
the use of a spike-timing-dependent reinforcement learning
training method in allowing a sensorimotor cortical model to
learn to control a one- (Chadderdon et al., 2012) and two-
(Neymotin et al., 2013) degree-of-freedom (DOF) simple arm
to reach a target. Recently, we used the output of the two-DOF
model to drive a robotic arm in real-time via a network interface
(Dura-Bernal et al., 2014a). Development of this interface
demonstrated the difficulty of matching the alien dynamics of
a mechanical arm directly to a biomimetic system, as well as
the limitations of the highly-simplified kinematic arm that was
employed.

A number of questions emerged from these previous studies
which motivated the work presented in this paper. How would
the system behave with a more realistic arm model? Would it
improve the reaching trajectories and the corresponding robot
arm movements? How would the spiking network interact with,
and learn to control, the more complex arm model? To address
these questions we replaced the previous simple kinematic arm
with a detailed model of a musculoskeletal arm, and adapted the
interface and learning mechanisms to the new arm.

The new virtual arm includes rigid bodies (bones), joints,
muscles and tendons. Its kinematics are governed by a set of
ordinary differential equations (ODEs) that compute muscle
activation, length, and force, as well as arm motions and forces,
at millisecond resolution. The cortical model was interfaced with
the virtual arm by exciting the arm muscles using the spiking
output from the motor neuron population. Proprioceptive
information from muscle lengths then provided activation for a
proprioceptive neural population. Arm joint angles were also fed
back to the biomimetic model and used to calculate the error
signal during the reinforcement learning-based training phase.
Results showed that, after training, the reaching trajectories of
the virtual musculoskeletal arm were smoother than those of the
previous simple arm. Additionally, we developed an improved
real-time control interface to drive the robotic arm using the
output position information of the musculoskeletal arm. This
improved control interface, together with the new virtual arm,
lead to smoother and more realistic robot arm movements as
compared to our previous implementation.

The main contribution of this work is to extend a system
where a biomimetic spiking network learns to control a virtual
arm and a robotic arm, by replacing the existing simple virtual
arm with a more realistic musculoskeletal model. The relevance

of the study is two-fold. First, we demonstrate that increasing
the realism of the arm model reduces the arm trajectory jerk
and results in velocity profiles closer to biology. These effects
are also reflected in the smoother robot movements. This is
an important step towards building brain-machine interfaces
that can employ biomimetic network models to interact with
real brain signals and provide real-time prosthetic arm control
(Sanchez et al., 2012). Second, the new virtual arm imposes more
accurate physical constraints on the cortical model, allowing
us to explore the system under more realistic conditions. The
interactions we model here take place across several spatial and
temporal scales that involve both the brain and the arm: cell
(e.g., spike generation and synaptic adaptation), network (e.g.,
excitatory-inhibitory balance, oscillations), and behavior (e.g.,
muscle excitation, torques, elasticity). The ability to directly
access and manipulate all the elements of the system provides a
useful tool for neuroscience and neural engineering.

2. MATERIALS AND METHODS

Our overall system is closed loop with an open loop mirroring
from the virtual arm to the physical robotic arm (Figure 1).
We first describe here the closed loop components: the spiking
neuronal model and the virtual musculoskeletal arm. We then
go on to detail the interface between this closed-loop learning
system and the robotic arm.

2.1. Virtual Musculoskeletal Arm
The starting point for our virtual arm was the biomechanical
model of the upper extremity musculoskeletal system developed
by Holzbaur et al. (2005), downloadable from the SimTK
website (http://simtk.org/home/up-ext-model), but adapted for
our purposes by CFD Research Corporation (http://www.cfdrc.
com). The kinematics of each joint and the force-generating
parameters for each muscle in this system have been derived
from anatomical and physiological studies, and represent those
of a human adult male of average size. The moment arms
generated by the model captured the primary features of the
upper extremity geometry and mechanics, including complex
joint coupling effects, where the mechanics of a given joint
depends on the posture of adjacent joints.

This model was modified to include only two degrees of
freedom (DOFs): shoulder and elbow joint rotation in the
horizontal plane. The resulting model includes the following
skeletal rigid bodies, where muscles are anchored: ground,
thorax, clavicle, scapula, humerus, ulna, radius, and hand.
Major active muscles responsible for shoulder and elbow
motion were retained, including shoulder extensor muscles
(posterior deltoid, infraspinatus, lattisimus dorsi, and teres
minor); shoulder flexor muscles (anterior deltoid, pectoralis
major, and corachobrachialis); elbow extensor muscles (triceps);
elbow flexor muscles (biceps and brachialis). Several additional
muscles (lateral deltoid, anconeous, brachioradialis, extensor
carpi radialis longus, and pronator teres) were set passively for
joint stability. Muscles with multiple heads (deltoid, pectoralis,
lattisimus dorsi, triceps, biceps) had the muscle branches
appropriately connected to the different insertion and origin

Frontiers in Neurorobotics | www.frontiersin.org 2 November 2015 | Volume 9 | Article 13

http://simtk.org/home/up-ext-model
http://www.cfdrc.com
http://www.cfdrc.com
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

FIGURE 1 | Overview of the multiscale biomimetic system interfacing the spiking neuronal model with the virtual musculoskeletal arm and the Whole

Arm Manipulator (WAM) robot. The virtual arm receives neural excitation from the biomimetic model and feeds back the joint angles, used in the reinforcement

learning algorithm, and the muscle lengths, used as part of the sensorimotor mapping. The joint angles are also used to drive the WAM robotic arm in real time. For

the neuronal model, all incoming (green) and outgoing (red) connections of a single ES neuron are shown, and the different cell types are shown in the legend. For the

virtual arm, muscles are labeled in the corresponding color.

points of the skeleton, but were grouped and controlled by the
same input signal for simplicity. The final revised 2-DOF arm
model is stored in a standard XML-based file included with the
full model on modelDB: http://modeldb.yale.edu/183014.

Virtual arm dynamics were implemented using an extension
of the Hill-type muscle model (Zajac, 1989; Schutte et al., 1993;
Thelen et al., 2003), which required four muscle parameters
derived from anatomical studies (Holzbaur et al., 2005): optimal
fiber length, peak force, tendon slack length, and pennation angle
(angling of individual fibers at the tendon insertion).

Each Hill-type muscle model can be can be described by
a lumped-parameter model that accounts for the force-length-
velocity properties of muscle (fiber) and the elastic properties
of tendon (serially linked with the muscle). Overall muscle-
tendon force depended on current muscle length (lm), overall
muscle-tendon length (lmt), muscle fiber activation (a), and
contraction velocity (v), as well as the balance between muscle
and tendon. At every time step (typically set to 1ms), given the
input neural excitation (µ) to each muscle (a value between 0:
minimum and 1: maximum), the model calculated the current
muscle activation, according to an ODE governed by the muscle
excitation-activation mechanism

ȧ =

{

(µτ1 + τ2)/τ · (µ − a) µ ≥ a

τ2/τ · (µ − a) µ < a

where τ1 and τ2 are time constants of ramping up and down
activation, respectively, τ is a scale factor for normalizing time
with a default value of 100ms. Once the activation is determined,
the muscle (fiber) contraction velocity (l̇m), i.e., the rate of
change of muscle length, can be determined from the force
balance between muscle and tendon, which dictates the muscle
force produced from the muscle force-velocity relation (fv) and

consequently results in l̇m = f−1
v (lm, lmt, a). During time-

advancing integration, both activation and contraction velocity
are integrated numerically and then used to computer the overall
muscle-tendon force acting on bones.

The acceleration, position, and velocity of each of the joints are
then computed with a recursive Newton-Euler algorithm of robot
dynamics (Featherstone and Orin, 2000), taking into account of
all driving forces from muscles. The model was implemented in
C++, and the open source OpenSceneGraph rendering engine
(http://www.openscenegraph.org/) was used for 3D visualization.

For comparison purposes we also evaluated the system using
our previous much simpler kinematic model (Neymotin et al.,
2013), which was characterized using two line segments (upper
arm and forearm), joint angles for shoulder and elbow, and
extensor and flexor excitation values for each joint. Joint angle
change was calculated as the difference between extensor and
flexor excitations (normalized spike counts), and muscle lengths
were calculated as a simple linear transformation of the joint
angles. No realistic anatomical, biomechanical or kinetic arm
features were involved.

2.2. Biomimetic Spiking Neuronal Model
Individual neurons were modeled as event-driven, rule-based
units for speed of simulation. Given finite computing resources,
a tradeoff must be made between the complexity of neurons
vs. the complexity of the network. The neuron model used was
complex enough to replicate key features found in real neurons,
including adaptation, bursting, depolarization blockade, and
voltage-sensitive NMDA conductance (Lytton and Stewart, 2005,
2006; Lytton andOmurtag, 2007; Lytton et al., 2008a,b; Neymotin
et al., 2011), yet was simple enough to connect into large
networks, allowing the model to capture multiscale dynamics.
Each cell had a membrane voltage state variable (Vm), with
a baseline value determined by a resting membrane potential

Frontiers in Neurorobotics | www.frontiersin.org 3 November 2015 | Volume 9 | Article 13

http://modeldb.yale.edu/183014
http://www.openscenegraph.org/
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

parameter (VRMP, set at either −63 or −65 mV depending
on cell type). This membrane voltage is updated based on
one of three events: synaptic input, threshold spike generation,
and refractory period. Synaptic inputs are modeled using
reversal potentials, time constants and delays specific to each
synapse type: AMPA, NMDA, and GABAA. In addition to
spikes generated by cells in the model, subthreshold Poisson-
distributed spike inputs to synapses were used to provide
ongoing activity, representing inputs from other neurons not
explicitly simulated. Further details, including mathematical
equations and parameter values, can be found in previously
published papers (Neymotin et al., 2011, 2013; Chadderdon
et al., 2012) or in the Supplementary Material section. The full
model is publicly available via ModelDB (http://modeldb.yale.
edu/183014), including the compiled virtual arm module.

The present neuronal network is used to describe the
dynamics of major elements in the sensorimotor learning loop
(Wolpert et al., 2011): sensory input, internal processing and
motor output. We therefore instantiate three different neural
populations labeled proprioceptive (P), somatosensory (S), and
motor (M).

The P population consisted of 192 units implemented as spike
generators (NetStims in NEURON), which receive input from
the virtual musculoskeletal arm, and project to the S population.
Units were divided into four subpopulations, each encoding the
average muscle length of a specific group of muscle: shoulder
extensors (Pse), shoulder flexors (Psf), elbow extensors (Pee),
and elbow flexors (Pef). Within each P subpopulation, each
individual cell was tuned to fire strongly (100Hz) to a specific
range of muscle lengths. This range was calculated by dividing
the total range of possible lengths (23 cm –3 cm = 20 cm) by the
number of units in each P subpopulation (48), and allowing for
a 50% overlap in adjacent units. Thus, this represented a type of
population coding where the width of the tuning curve (square
wave) of each unit was 8.33mm, and the distance between each
curve was 4.17mm.

The exact encoding of proprioceptive information in the
sensoriomotor system is not yet known. However, it has
been established that muscle spindles convey muscle length
information (Francis, 2009), and evidence suggests that this
information is combined via population coding to form a
representation of limb kinematics (Bergenheim et al., 2000; Roll
et al., 2004). Our model provides a simplified implementation of
these features.

S and M populations were each comprised of 192 excitatory
cells (ES and EM), 44 fast-spiking inhibitory cells (IS and
IM), and 20 low-threshold inhibitory cells (ILS and ILM),
with recurrent connectivity between the E and I cells of each
population (Figure 2). Detailed connectivity parameters can
be found in the Supplementary Material section. The number
of excitatory to inhibitory cells within an area was selected to
keep a 4:1 ratio, to approximate the ratios in neocortex. ES cells
received fixed weight afferent connections from units in all P
subpopulations, such that they were capable of representing the
conjunction of multiple muscle lengths, and therefore of the full
arm posture. The ES cells then sent plastic weight connections
to the EM cells, which were divided into four subpopulations,

FIGURE 2 | Diagram showing the different neural populations with

arrows indicating connections (plastic connections are shown as

thicker arrows).

one for each muscle group, analogously to the P population:
EMse, EMsf, EMee, EMef. The muscle excitation to each muscle
group was calculated by adding the number of spikes of the
corresponding subpopulation over a short time sliding window,
and dividing by a normalizing constant. The network effectively
performed a mapping between limb state, as measured by muscle
length, and the muscle excitation required for driving each
muscle.

The spiking network simulations were run in NEURON 7.3
(Hines and Carnevale, 2001; Carnevale and Hines, 2006) on a
Linux workstation with 24 Intel Xeon 2.7GHz cores and on a
High-Performance Computing system with 512 AMD Opteron
2.6Ghz cores.

2.3. Learning Rule
In order to implement a biologically-plausible reinforcement
learning rule, the system was formulated in terms of an Actor-
Critic framework, where the Actor generates actions that affect
the environment based on current perception (control policy),
and the Critic provides a reward or punisher signal to the Actor
(value function). In our system, the spiking neuronal network
provided an Actor which mapped muscle lengths (perception)
to muscle excitations (action). The environment consisted of the
virtual musculoskeletal arm and a fixed target. The Critic was
provided as a global reward/punisher signal which modulated
plasticity changes. To determine the Critic’s signal, the difference
between the hand’s location and the target was calculated for the
last two time steps (10ms interval), such that if the hand was
getting closer from the target, a reward signal would be sent to
the Actor; and if the hand was getting farther, a punisher signal
would be sent instead.

Connections between cells of different populations were
established probabilistically based on connection densities and
initial synaptic weight parameters set for each pair of pre- and
postsynaptic cell types. Plasticity was present within the S and M

Frontiers in Neurorobotics | www.frontiersin.org 4 November 2015 | Volume 9 | Article 13

http://modeldb.yale.edu/183014
http://modeldb.yale.edu/183014
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

unit populations and between them in both directions, and was
implemented using a reward-modulated spike-timing dependent
plasticity (STDP) rule. The credit-assignment problem was
handled using a synapse-specific memory, called an eligibility
trace (Izhikevich, 2007). The trace was only imprinted on the
eligibility-tagged synapses when a global modulatory signal was
received from the Critic. Synaptic weights were increased, long-
term potentiation (LTP), or decreased, long-term depression
(LTD), depending on whether the Critic’s modulatory signal
was positive (reward) or negative (punishment). See the
Supplementary Material section for further details on the
learning rule, including equations and parameter values.

One important component of reinforcement learning was
exploratory behaviors, which can be implemented using “motor
babbling” (DeWolf and Eliasmith, 2011). Motor commands are
randomly selected, and their outcomes and associated rewards
are used for learning. We implemented motor babbling by
increasing the background noise of subpopulations controlling
the different muscle groups for short periods of time (max 1.5 s).
By increasing the excitation of a single muscle group at a time, we
ensured that the virtual arm performed substantial movements.
Both the muscle group being stimulated and the duration of
stimulation were selected randomly. These movements, coupled
with reward-modulated synaptic plasticity, enabled the system
to learn the appropriate mapping between muscle lengths and
muscle excitations required to reach the target.

We initially checked that the system could be trained to reach
a target using the proprioceptive information from the virtual
arm. We chose two different targets (left and bottom), located
at 15 cm from the starting position. Reaching was considered
successful if the hand was able to reach the target area, defined
as a 4 cm radius circumference around the target center. This
task is comparable to the classical center-out reaching task
employed experimentally in humans (Demandt et al., 2012; Flint
et al., 2012) and monkeys (Hatsopoulos et al., 2004; Sanchez
et al., 2011). The network was trained to reach one target at a
time, by enforcing random exploratory movements of the arm
and modifying the network synaptic weights via reinforcement
learning. The starting position of the arm in both phases
corresponds to a shoulder angle of 35◦ (0.62 rad) and an elbow
angle of 88◦(1.53 rad), consistent with the arm’s natural resting
position. The minimum and maximum angles were −10◦ and
110◦ for the shoulder joint, and 0◦ and 140◦ for the elbow joint.
Robot arm testing was performed with a maximum elbow flexion
angle of 135◦; and this was later set to 140◦ to increase the range
of movement when reaching to the bottom target.

The model does not include any explicit mechanisms to
stop the arm, so the duration of the testing trials was limited
to one second. Holding the position after reaching could be
implemented by using an external control signal that accounted
for the contribution of non-modeled regions, such as premotor
cortex, thalamus or basal ganglia, to the initiation and stopping
of movement, similar to that employed in other models (DeWolf
and Eliasmith, 2011; Sussillo et al., 2015).

Network and training metaparameters, such as the learning
rate or the motor command normalizing constant, were
optimized using evolutionary algorithms to minimize the overall

trajectory distance to target. See Supplementary Material section
for more details on the optimization method and a complete list
of parameters optimized.

2.4. Interface between Neuronal Model and
Virtual Arm
The virtual musculoskeletal arm runs as a standalone C++

executable. This had to be integrated with the interpreted
NEURON model in a closed loop. Because the musculoskeletal
arm code could not be embedded in the simulator, we employed
inter-process communication methods. This had the additional
advantage of producing a flexible system where the neuronal
network and virtual arm simulations could either be executed on
the same machine or on separate machines for greater speed.

In our previous work, we had implemented external interfaces
for NEURON using UDP network communication (Dura-Bernal
et al., 2014a), which however proved limiting in terms of
communication robustness. We were able to improve upon this
in the current design by using pipes.

Several steps were involved in the pipes interfacing process
(Figure 3). During NEURON initialization, the Python
subprocess function ran the virtual arm executable and enabled
the input and output pipes. Subsequently, the neuronal
model sent a message to the virtual arm at an update interval
corresponding to 10ms of simulated time, this being 10 iterations
of the arm simulation (timestep 1ms). This message contained
the excitation values for each muscle group, calculated from
the corresponding EM subpopulation firing rate. At the same
time, the spiking model received from the virtual arm a message
containing the joint angles (used to calculate the error during
reinforcement learning), and a separate message with muscle
lengths (used to update the proprioceptive population).

On the virtual arm side, three custom-developed event
handlers were executed at every update interval, implementing
the following functions: set the muscle excitations, output the
muscle lengths, output the arm joint angles. Since the virtual
arm code was executed as a subprocess, communication with the
NEURON model was direct; the event handlers simply had to
read the muscle excitations from the stdin stream, and write the
joint angles and muscle lengths to the stdout stream.

2.5. Interface between Neuronal Model and
Robotic Arm
Our previous interface between neuronal model and robot arm
utilized a simple 2 degree-of-freedom virtual arm (Dura-Bernal
et al., 2014a).We now advanced this model by utilizing the virtual
musculoskeletal arm as the intermediary in order to give the
robot arm some of the additional effector constraints that the
musculoskeletal platform provides, as well as the potential for
improved feedback.

We again employed the Whole Arm Manipulator (WAM)
robot developed by Barrett Technology (Barrett, 2012; Dura-
Bernal et al., 2014a). The WAM internal computer, embedded
in the base of the WAM arm, controlled the robot movements
at a rate of 500Hz, by sending motor torques to the WAM
arm motors and receiving as feedback the motor positions.

Frontiers in Neurorobotics | www.frontiersin.org 5 November 2015 | Volume 9 | Article 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

FIGURE 3 | Block diagram of the information flow in the system. Blocks represent the four main software components of the system: NEURON biomimetic

model, C++ virtual arm, C++ robot arm code, and the Python interface, responsible for linking all the previous. Arrows represent the information flow between

software components, and numbers indicate the order in which these occur.

FIGURE 4 | Diagram of WAM robot arm control method. The external processor sends UDP packets with the target joint positions approximately every 15ms.

The Libbarrett code running synchronously at 500Hz in the internal WAM CPU, extracts the target joint angular position vectors (Network System); converts them into

joint angular velocities (PosToVel System); and generates the required joint torques for each motor using the TrackReferenceSignal function.

An open-source C++ library, Libbarrett1, provided high-level
functions to control the WAM arm from the internal computer.
The WAM included a small router that allowed an external
computer to connect to the internal WAM computer, to
both remotely run code in the internal computer to provide
two-way communication in real-time between internal and
external computers. Here, Barrett’s WAM robot arm was driven
in real time using the joint angles provided by the virtual
musculoskeletal arm, which was in turn driven by the spiking
neural network.

Our NEURON-based Python interface was used to initialize a
UDP socket and send UDP packets containing the joint angles

1Barrett Technology Inc. Libbarrett C++ library.

received from the virtual arm to the WAM robot’s internal
computer (Figure 3). The internal robot computer received UDP
packets with the desired joint angles and update the arm position
every update interval. We implemented two custom systems
as Libbarrett classes (Figure 4) that were executed in real time
(500Hz) by the WAM internal computer. The first one was
the Network System, responsible for initializing and reading
incoming packets from the UDP socket, and outputting a vector
of joint angular positions to the arm. The PosToVel System then
used the target and the current joint angular positions to calculate
the required joint angular velocities every 2ms. Overall, these two
systems provided the transform from asynchronous incoming
network packets with desired joint positions to the required
synchronous robot joint torques.

Frontiers in Neurorobotics | www.frontiersin.org 6 November 2015 | Volume 9 | Article 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

3. RESULTS

3.1. Encoding of Virtual Arm in the
Biomimetic Spiking Model
To demonstrate successful communication between the virtual
musculoskeletal arm and the cortical spiking model, we

compared the network’s firing activity (raster plot) with the
virtual arm muscle excitations and lengths (Figure 5), for a
15-s training period with random exploratory movements.
The excitatory motor (EM) population is divided into four
subpopulations, one for each muscle group. The normalized
average firing rate of each subpopulation, calculated over a sliding

FIGURE 5 | Encoding of virtual arm muscle excitations (top right) and lengths (bottom right) in the biomimetic spiking model firing patterns (raster plot

on the left). For comparison purposes, the same colors have been used to represent the spikes corresponding to the excitations (or lengths) of each muscle group.

Note that P cells are ordered by muscle length, such that cells belonging to each muscle group subpopulation are spaced (in steps of 4) across the full P population,

e.g., Psf = cells 0,4,8, · · · ,188.

FIGURE 6 | Representative example of cartesian trajectories and velocity profiles of virtual arm during a reaching task to two targets for realistic arm

and trained network (left), realistic arm and naive network (center), and simple arm and trained network (right). Trained networks employed STDP-based

reinforcement learning to adapt its synaptic weights to drive the virtual arm to each of these two targets. The naive network drives the arm using the initial random

weights and therefore produces random movements independent of the target location. The hand trajectories of the realistic musculoskeletal arm are smoother than

those of the simple arm, and show velocity profiles consistent with physiological movement. The initial reaching trajectory from starting point to target area is shown as

a solid line, whereas the final part of the trajectory within the target area is shown as a dotted line. The starting configuration of the simple and musculoskeletal arm is

shown in the background.

Frontiers in Neurorobotics | www.frontiersin.org 7 November 2015 | Volume 9 | Article 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

window of 80ms, corresponded closely to the input excitation of
each muscle group. In this example, the firing patterns of each
subpopulation were clearly segregated (no coactivation) because
they were driven by artificially external noise aimed at activating
one muscle group at a time, in order to enforce exploratory
movements during training.

Similarly, the proprioceptive (P) population encoded the
average muscle length of each muscle group in four different
subpopulations. In this case, we employed a type of population
coding, where each neuron was tuned to a small subset of muscle
lengths. The P firing patterns accurately represented the virtual
arm muscle lengths over time. For symmetry breaking and to
make the spiking patterns more realistic, a certain amount of
noise could be added to the proprioceptive neurons (omitted in
Figure 5, for clarity).

The new arm model showed improved biological
correspondence in terms of the realism of what was being
controlled and represented by the network. The effectors in the
new model provide muscle activation rather than a direct control
of joint angle. Afferents now measure muscle length, a signal that
comes from muscle spindle proprioceptors embedded in muscle,
rather than normalized joint angle. This allowed the new model
to capture the non-linear relations from joint angles to muscle
lengths and from spiking to muscle excitation to force to new
joint angles (previously, firing rate had a linear effect on joint
angle).

3.2. Virtual Arm Trajectories and Forces
The cortical spiking network was trained using reinforcement
learning based on the joint angles fed back from the virtual
arm, demonstrating this external input information can be
successfully used for training purposes. A representative example
of the cartesian trajectories and velocity profiles of the virtual
hand reaching to two targets (left and bottom) is shown in
Figure 6. Compared to the naive network, which performed
random movements independent of target location, the network
trained for 360 s of simulated-time was able to reach the target
area (4 cm radius) within 1 s. Compared to a trained network
but using the simple arm model, the realistic musculoskeletal
arm model showed smoother spatial and temporal profiles,
closer to those performed by primates during fast reaching
movements (Shadmehr and Mussa-Ivaldi, 1994; Berger and
d’Avella, 2014). The same neural encoding, training and
optimization methods were used for the simple arm model
and the realistic musculoskeletal arm model: 29/30 (left) and
26/30 (bottom) trained networks reached the target area using
the musculoskeletal arm; and 28/30 (left) and 27/30 (bottom)
trained networks successfully reached the target area using the
simple arm.

The average velocity of the musculoskeletal arm, across
successful trajectories, was higher between movement onset
and reaching the target area (left: mean = 0.327m/s, SD =

0.051m/s; bottom:mean= 0.208m/s, SD= 0.039m/s), than after
reaching the target area (left: mean= 0.167m/s, SD= 0.030m/s;
bottom: mean = 0.184m/s, SD = 0.049m/s). Even though the
model did not implement explicit stopping mechanisms, this
velocity decrease, coupled with changes in movement direction,

contributed to the arm remaining within or close to the target
area: the mean distance to target center, from the time the
arm first reached the target area until the end of the trial, was
3.87 cm (SD = 0.78 cm) and 3.20 cm (SD = 0.69 cm), for the
left and bottom targets respectively. The mean time that the arm
remained within the target area was 295ms (SD= 12ms) for the
left target, and 202ms (SD= 10ms) for the bottom target. These
results share similarities with experimental center-out reaching
tasks in primates, where the subject is required to stay within
the target area for a short period of time, known as hold time
(usually 200–500ms; Hatsopoulos et al., 2004; Flint et al., 2012),
after which the trial is considered finalized.

The smoothness of trajectories was quantified by calculating a
dimensionless measure of jerk (rate of change of acceleration).
The reason to a dimensionless measure is that smoothness is
an aspect of movement quality that should be independent of
speed and distance. The dimensionless jerk measure (Hogan

and Sternad, 2009) is calculated as
(∫ t2

t1

...
x (t)2dt

)

· D3/v2mean,

FIGURE 7 | Jerk-based comparison of smoothness for the three

conditions depicted in Figure 6: realistic arm and trained network (left),

realistic arm and naive network (center), and simple arm and trained

network (right). (A) Boxplot statistics of the jerk (rate of change of

acceleration). (B) Dimensionless jerk measure, which quantifies jerk but is

independent of trajectory amplitude and duration. The dimensionless jerk

measure was lower for the realistic musculoskeletal arm as compared to the

simple arm, both in the naive and trained networks. Jerk was calculated based

on reaching movements obtained from the best 30 metaparameter

configurations for each case. Number of points = 5700 for each condition;

number of outliers (red crosses) = 481 (Realistic-Trained), 581

(Realistic-Naive), and 297 (Simple-Trained; not shown for clarity).

Frontiers in Neurorobotics | www.frontiersin.org 8 November 2015 | Volume 9 | Article 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

where
...
x (t) is the jerk at time t, D = t2 − t1 is trajectory

duration, and vmean is the mean trajectory speed. It reflects
changes of movement shape considered common departures
from smoothness, including multiple speed peaks or periods
of arrest, but is independent of amplitude and duration. For
example, this measure has been previously used to compare the
movement smoothness of patients with Parkinson’s disease and
age-matched unimpaired subjects (Teulings et al., 1997).

To compare the smoothness of the three conditions depicted
in Figure 6, we calculated the jerk (Figure 7A) and the
dimensionless jerk measure (Figure 7B) for each trajectory. The
mean dimensionless jerk measure was significantly lower for the
realistic arm as compared to the simple arm (28.1), both in the
trained (0.76), and naive networks (1.72). The similar jerk values
of naive and trained networks suggests the musculoskeletal arm
generates smoother movements than the simple arm for any
biologically reasonable input. Naive network trajectories were
shorter (lower velocities) than trained network trajectories, due
to lower overall synaptic weights. This was reflected in the slightly
lower median jerk values (Figure 7A) of the naive network, but
not in the dimensionless jerk measure (Figure 7B), which is
independent of speed. Jerk was calculated using data from 30
different reaching movements for each case, generated by the top
metaparameter configurations.

The musculoskeletal arm model provides access to detailed
information, including muscle activation, length, active and
passive forces, fatigue, tendon length, tendon force, and
pennation angle. As an example, Figure 8 shows the active

muscle forces corresponding to the reaching trajectories shown
in Figure 6. Compared to the naive network, forces in the trained
network are higher and exhibit distinct activation patterns for
each target. The resulting arm trajectories are a consequence
of the complex balance of muscle forces, such that relative
amplitude differences between antagonistic muscle forces can
determine the final arm direction. Having access to the detailed
muscle information allows us to correlate it with the neural data
and extract conclusions to improve the system. For example,
compared to human experimental data (Berger and d’Avella,
2014), the model showed excessive coactivation of the muscles
and high correlation to the output motor population. This was
possibly due to lack of selectivity during learning, or lack of
inhibitory mechanisms, such as those present in the spinal cord
(Alstermark and Isa, 2012).

3.3. Robot Arm Trajectories
To demonstrate that our interface was able to make the WAM
robotic arm follow the virtual arm movements, we compared the
virtual and robot arm trajectories over time. We also compared
the trajectories in our previous (Dura-Bernal et al., 2014a) and
current papers (Figure 9). Our previous paper employed a simple
arm model updated every 100ms of simulated time (Figure 9A)
to drive the robot (Figure 9B). In this paper we make use of a
musculoskeletal arm model updated every 10ms of simulated
time (Figure 9C) and an improved interface to drive the robot
(Figure 9D). Direct comparison of the old and new robot systems
is not possible since the old system was trained to perform a

FIGURE 8 | Forces obtained from the spiking network driven virtual arm muscles during center-out reaching to left (blue) and bottom (red) targets for

the trained network, and for the naive network (green). Forces are shown for seven of the main muscles involved in reaching. The trained network muscle forces

are higher than those of the naive network, and show differentiated activation for each target.

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2015 | Volume 9 | Article 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

FIGURE 9 | Comparison of hand X and Y position of virtual and robot arm trajectories in our previous (Dura-Bernal et al., 2014a) and current papers.

Compared to our previous paper (A,B), here the robot arm was able to follow a more challenging trajectory in real time with a higher degree of accuracy (C,D). The

rate of update from the spiking model to the simple (A) and musculoskeletal (C) virtual arms, was 10 and 100Hz of simulated time, respectively. WAM robot arm

update rate (B,D) was 500Hz; blue line represents actual robot position, whereas red line shows virtual arm trajectory received at robot arm from spiking model via

network UDP.

Frontiers in Neurorobotics | www.frontiersin.org 10 November 2015 | Volume 9 | Article 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

different reaching task. However, to compare performance, we
calculated accuracy and smoothness measures, independent of
distance traveled, for old and new robot trajectories of the same
duration (50 s).

The results obtained for the new musculoskeletal-based
system (Figure 9D) show that, except for a small undershoot
during the highest velocity peaks, the robot accurately followed
the received trajectory. Both the trajectory sent by the biomimetic
model via network UDP (red line) and the trajectory followed
by the robot arm (blue line) were recorded at the WAM robot
internal PC at a fixed real-time rate of 500Hz, such that both
signals shared the same time source. The mean absolute angle
difference between the robot and virtual arm was 1.85◦ (SD =

2.19◦) for the shoulder joint, and 1.74◦ (SD = 2.11◦) for the
elbow joint. Notably, these errors were calculated for a 50-s
training trajectory, with enforced exploratory movements, where
joint angles varied over 100◦ at angular velocities above 60◦/s.
The angular error divided by total angular displacement was
0.00095 (shoulder) and 0.0012 (elbow), which are lower than
the values obtained in our previous study: 0.0071 (shoulder) and
0.0026 (elbow). Note that the two robot trajectories compared
had identical duration, but the new trajectory exhibited higher
velocities and total displacement.

To quantify the smoothness we calculated the jerk and
the jerk-based dimensionless measure (Figure 10) for each of
the trajectories in Figure 9. Based on the dimensionless jerk
measure, both the virtual and robot arm trajectories in this study
were smoother than in the previous one (Dura-Bernal et al.,
2014a). These results should be evaluated cautiously given the
different shapes of the trajectories compared. Nonetheless, they
provide an estimate of smoothness, independent of amplitude
and duration, which suggests the new musculoskeletal arm and
robot control system contribute to increased smoothness in the
robot trajectories.

The mean interval between incoming network packets to the
robot arm was 15.09ms (SD = 5.65ms). This means the full
system, including neural simulation, virtual armmodel and robot
arm, was updating at approximately 67Hz, very close to the
cortical spiking model theoretical output rate of 100Hz (packets
are sent every 10ms of simulated time). The maximum interval
was 46 ms, but 95% of the packets arrived within 6 and 26ms.
The interval variability resulted mainly from differences in the
computational requirements during the simulation, for example,
longer computation for time steps when synaptic weights were
being updated.

The mean delay between the virtual arm (red line) and
robot arm (blue line; Figure 9D) was 312ms (SD = 127.64ms),
obtained by calculating the shift that maximized the cross-
correlation between the trajectories. This delay results from the
robot arm internal control system, which converts the incoming
target joint angles to the required joint torques.

A video is included in the Supplementary Material section in
order to provide a real-life demonstration of the full working
system. A screenshot of the video (Figure 11) shows the almost
simultaneous movements of the virtual and robot arms (driven
by the spiking model), before, during and after training to reach
a target. The biomimetic spiking model is shown on the left-hand

FIGURE 10 | Jerk-based comparison of smoothness for the four

trajectories depicted in Figure 9: virtual and robot arm trajectories

from the previous (“old”) and current (“new”) papers. (A) Boxplot

statistics of the jerk (rate of change of acceleration). (B) Dimensionless jerk

measure, which quantifies jerk but is independent of trajectory amplitude and

duration. The dimensionless jerk measure of the new virtual and robot arm

trajectories was lower than those in our previous paper. Number of

points/outliers = 227/11 (old virtual), 24997/585 (old robot), 3297/350 (new

virtual), and 24997/610 (new robot).

side, together with the spiking activity corresponding to the
arm movements. The final grasping behavior was hard-coded
for illustrative purposes. This demonstrates the overall system
architecture, set up and dynamic interactions among the various
components.

4. DISCUSSION

We show here that a biomimetic neuronal network can control a
robotic arm more realistically through interposition of a realistic
arm simulation between the spiking movement generator and
the robot. This enabled us to overcome several shortcomings
seen in our prior studies (Dura-Bernal et al., 2014a). Our new
musculoskeletal armmodel included biophysical and mechanical
properties of muscles, tendons and bones, rendering a complex
non-linear dynamical system controlled via muscle excitations,
and feeding back muscle lengths. This complex arm model
provided biomimetic musculoskeletal dynamics that increased
the smoothness of reaching trajectories to target compared
to the prior highly-simplified intermediary arm model, where

Frontiers in Neurorobotics | www.frontiersin.org 11 November 2015 | Volume 9 | Article 13

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

FIGURE 11 | Screenshot of video illustrating system. The video simultaneously shows the biomimetic spiking model activity, virtual arm, and robotic arm, before,

during, and after training to reach a target. It illustrates the interactions between the spiking model and virtual arm, and how the robotic arm closely follows the virtual

arm trajectories. The video is included in the Supplementary Material and available for download from: http://www.neurosimlab.org/salvadord/biomimetic-vid.mp4.

the arm was simply characterized by two joint angles which
responded linearly to firing rate (Chadderdon et al., 2012;
Neymotin et al., 2013). Including the realistic virtual arm in
the sensorimotor loop linked the spatiotemporal scale of neural
dynamics with that of movement, providing detailed access to
all the elements in the system, ranging from individual spikes to
muscle lengths (Figures 5, 6, 8). The musculoskeletal arm acted
as a filter that smoothed the irregular spiking data by imposing
realistic kinematic and dynamic constraints, such as elasticity,
joint resistance and inertia, leading to smoother trajectories as
compared to the previous simple arm (Figure 7). Additionally,
the arm update rate was increased ∼10-fold, reducing the robot
incoming packet interval from 175 to 15ms. This allowed the
system to rely more on the virtual arm-generated trajectories
and less on robot arm internal interpolation. The new system
permitted smooth robot arm movement with low vibration even
for challenging arm trajectories at∼ 4× higher angular velocities
(Figures 9, 10) than previously employed.

In future work wewould like to continue adding realistic detail
to the virtual arm and to the virtual arm control. It would be
valuable to utilize individual muscles and even some individual
muscle heads individually rather than dividing the muscles
into four groups. This would also allow us to begin moving
from the current 2D restricted movement into a 3D domain.
We would also like to move forward by further evaluating
antagonistic muscle coactivation and determining to what extent
this can be learned and to what extent it should be provided
as an additional biological constraint imposed at the spinal
cord level. Finally, we are still calculating muscle excitation
using simple thresholded linear readout from the spike rate.
Employing a model with larger number of neurons or addition
of a spinal cord population would allow us to control a larger
number of muscle groups and encode more realistic transfer
functions.

Future practical applications of our system required control of
a real-world prosthetic arm, which presented different technical
challenges to those of driving a virtual arm, and thus motivated
the incorporation of a robotic arm interface. Although in this
work proprioceptive feedback originated from the virtual arm,
we previously showed that real-world position feedback from the
robot arm could be incorporated into the network (Dura-Bernal
et al., 2014a). This feature could be included in our current system
by updating the virtual arm position based on the robot arm
feedback. Another interesting extension would be to incorporate
object grasping using tactile information from the robot fingers
sensors. This would require reducing the current delay between
the virtual arm and the robot.

A similar study developed a spiking model of the cerebellum
and demonstrated real-time learning and control of a robot arm
(Carrillo et al., 2008; Luque et al., 2011). The authors introduced a
learning mechanism that produces a predictive corrective output
which deals with the problem of proprioceptive feedback delays,
and with the problem of antagonistic muscle coactivation. Future
versions of our system could benefit from such an approach, since
it currently experienced both of these issues.

Synthetic data generated by computational models has been
previously used to aid in the development of neuroengineering
applications such as brain-machine interfaces (BMI) and neural
control via stimulation. For example, synthetic data was used
to evaluate the performance of reinforcement learning-based
BMIs (Mahmoudi et al., 2013; Dura-Bernal et al., 2014b;
Prins et al., 2014; Marsh et al., 2015); and similar biomimetic
models have been used to reproduce and evaluate the effects
of microstimulation in primary somatosensory cortex (Song
et al., 2013), propose a simple neuroprosthetic solution to restore
information flow in cortex (Kerr et al., 2012), or test the ability of
an adaptive inverse neurocontroller to repair a simulated motor
lesion (Li et al., 2015; Dura-Bernal et al., under revision).

Frontiers in Neurorobotics | www.frontiersin.org 12 November 2015 | Volume 9 | Article 13

http://www.neurosimlab.org/salvadord/biomimetic-vid.mp4
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

Combining brain and limb biomimetic models for the

control of movement has potential for use in prostheses for

neurorehabilitation (Fagg et al., 2007; Sartori et al., 2013),

providing the ability to replace or repair lesioned brain regions

(Sanchez et al., 2012; Carmena, 2013). In the future, extended

versions of the in silico brain models presented here could act

as a substitute motor cortex module and interact with real

brain regions in patients with brain damage. We have previously
demonstrated that spiking data recorded from macaque dorsal
premotor cortex (PMd) can be fed in real-time to our biomimetic
spiking model and modulate its output to potentially select
a target to reach (Lee et al., 2014). The use of biomimetic
systems, both on the neuronal and limb side, represents a
novel approach that aims to utilize biological constraints to
obtain more readily assimilated prosthetic system components,

as compared to those provided by standard motor systems
engineering.

ACKNOWLEDGMENTS

Research funded by DARPA grant N66001-10-C-2008 and NIH
grant U01EB017695. The authors would like to thank Michael
Hines and Ted Carnevale (Yale) for NEURON simulator support,
and Cliff C. Kerr and Aditya Tarigoppula for comments and
discussion.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnbot.
2015.00013

REFERENCES

Almássy, N., Edelman, G. M., and Sporns, O. (1998). Behavioral constraints in the

development of neuronal properties: a cortical model embedded in a real-world

device. Cereb. Cortex 8, 346–361. doi: 10.1093/cercor/8.4.346

Alstermark, B., and Isa, T. (2012). Circuits for skilled reaching and grasping.

Annu. Rev. Neurosci. 35, 559–578. doi: 10.1146/annurev-neuro-062111-

150527

Barrett (2012). WAM Training Documentation. Newton, MA: Barrett Technology

Inc.

Bergenheim, M., Ribot-Ciscar, E., and Roll, J.-P. (2000). Proprioceptive population

coding of two-dimensional limb movements in humans: I. muscle spindle

feedback during spatially oriented movements. Exp. Brain Res. 134, 301–310.

doi: 10.1007/s002210000471

Berger, D. J., and d’Avella, A. (2014). Effective force control by muscle synergies.

Front. Comput. Neurosci. 8:46. doi: 10.3389/fncom.2014.00046

Carmena, J. M. (2013). Advances in neuroprosthetic learning and control. PLoS

Biol. 11:e1001561. doi: 10.1371/journal.pbio.1001561

Carnevale, N., and Hines, M. (2006). The NEURON Book. New York, NY:

Cambridge University Press.

Carrillo, R. R., Ros, E., Boucheny, C., and Coenen, O. J.-M. D. (2008). A real-time

spiking cerebellummodel for learning robot control. Biosystems 94, 18–27. doi:

10.1016/j.biosystems.2008.05.008

Chadderdon, G. L., Neymotin, S. A., Kerr, C. C., and Lytton, W. W. (2012).

Reinforcement learning of targeted movement in a spiking neuronal model of

motor cortex. PLoS ONE 7:e47251. doi: 10.1371/journal.pone.0047251

Demandt, E., Mehring, C., Vogt, K., Schulze-Bonhage, A., Aertsen, A.,

and Ball, T. (2012). Reaching movement onset- and end-related

characteristics of eeg spectral power modulations. Front. Neurosci. 6:65.

doi: 10.3389/fnins.2012.00065

DeWolf, T., and Eliasmith, C. (2011). The neural optimal control hierarchy for

motor control. J. Neural Eng. 8:065009. doi: 10.1088/1741-2560/8/6/065009

Dura-Bernal, S., Chadderdon, G. L., Neymotin, S. A., Francis, J. T., and Lytton,

W. W. (2014a). Towards a real-time interface between a biomimetic model of

sensorimotor cortex and a robotic arm. Pattern Recognit. Lett. 36, 204–212. doi:

10.1016/j.patrec.2013.05.019

Dura-Bernal, S., Prins, N., Neymotin, S., Prasad, A., Sanchez, J., Francis, J., et al.

(2014b). “Evaluating hebbian reinforcement learning bmi using an in silico

brainmodel and a virtual musculoskeletal arm,” inNeural Control ofMovement.

(Amsterdam).

Edelman, G. M. (1987). Neural Darwinism: The Theory of Neuronal Group

Selection. New York, NY: Basic Books.

Fagg, A. H., Hatsopoulos, N. G., de Lafuente, V., Moxon, K. A., Nemati, S.,

Rebesco, J.M., et al. (2007). Biomimetic brainmachine interfaces for the control

of movement. J. Neurosci. 27, 11842–11846. doi: 10.1523/JNEUROSCI.3516-

07.2007

Featherstone, R., and Orin, D. (2000). “Robot dynamics: equations and

algorithms,” in Robotics and Automation, Proceedings ICRA ’00 IEEE

International Conference on, Vol. 1 (San Francisco, CA), 826–834. Available

online at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844153&

isnumber=18235

Flint, R. D., Lindberg, E. W., Jordan, L. R., Miller, L. E., and Slutzky, M. W. (2012).

Accurate decoding of reaching movements from field potentials in the absence

of spikes. J. Neural Eng. 9:046006. doi: 10.1088/1741-2560/9/4/046006

Francis, J. T. (2009). “The neural representation of kinematics and dynamics in

multiple brain regions: the use of force field reaching paradigms in the primate

and rat,” in Mechanosensitivity of the Nervous System, Mechanosensitivity

in Cells and Tissues, Vol. 2, eds A. Kamkim and I. Kiseleva (Netherlands:

Springer), 215–247.

Hatsopoulos, N., Joshi, J., and O’Leary, J. G. (2004). Decoding continuous and

discrete motor behaviors using motor and premotor cortical ensembles. J.

Neurophysiol. 92, 1165–1174. doi: 10.1152/jn.01245.2003

Hines, M. L., and Carnevale, N. T. (2001). NEURON: a tool for neuroscientists.

Neuroscientist 7, 123–135. doi: 10.1177/107385840100700207

Hogan, N., and Sternad, D. (2009). Sensitivity of smoothness measures to

movement duration, amplitude, and arrests. J. Mot. Behav. 41, 529–534. doi:

10.3200/35-09-004-RC

Holzbaur, K. R., Murray, W. M., and Delp, S. L. (2005). A model of the upper

extremity for simulating musculoskeletal surgery and analyzing neuromuscular

control. Ann. Biomed. Eng. 33, 829–840. doi: 10.1007/s10439-005-3320-7

Izhikevich, E. M. (2007). Solving the distal reward problem through linkage

of stdp and dopamine signaling. Cereb. Cortex 17, 2443–2452. doi:

10.1093/cercor/bhl152

Kerr, C. C., Neymotin, S. A., Chadderdon, G. L., Fietkiewicz, C. T., Francis, J.

T., and Lytton, W. W. (2012). Electrostimulation as a prosthesis for repair of

information flow in a computer model of neocortex. Neural Syst. Rehabil. Eng.

IEEE Trans. 20, 153–160. doi: 10.1109/TNSRE.2011.2178614

Lee, G., Matsunaga, A., Dura-Bernal, S., Zhang, W., Lytton, W., Francis, J., et al.

(2014). Towards real-time communication between in vivo neurophysiological

data sources and simulator-based brain biomimetic models. J. Comput. Surg.

3:12. doi: 10.1186/s40244-014-0012-3

Li, K., Dura-Bernal, S., Francis, J., Lytton, W., and Principe, J. (2015). “Repairing

lesions via kernel adaptive inverse control in a biomimetic model of

sensorimotor cortex,” in Neural Engineering (NER), 2015 7th International

IEEE/EMBS Conference. (Montpellier).

Luque, N. R., Garrido, J. A., Carrillo, R. R., Coenen, O. J., and Ros, E.

(2011). Cerebellar input configuration toward object model abstraction

in manipulation tasks. Neural Netw. IEEE Trans. 22, 1321–1328. doi:

10.1109/TNN.2011.2156809

Lytton, W. W., and Omurtag, A. (2007). Tonic-clonic transitions

in computer simulation. J. Clin. Neurophysiol. 24, 175–181. doi:

10.1097/WNP.0b013e3180336fc0

Frontiers in Neurorobotics | www.frontiersin.org 13 November 2015 | Volume 9 | Article 13

http://journal.frontiersin.org/article/10.3389/fnbot.2015.00013
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844153&isnumber=18235
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=844153&isnumber=18235
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

Dura-Bernal et al. Spiking Interface Virtual Robotic Arms

Lytton, W., and Stewart, M. (2005). A rule-based firing model for neural networks.

Int. J. Bioelectromagn. 7, 47–50. doi: 10.1016/j.neucom.2005.12.066

Lytton, W. W., Neymotin, S. A., and Hines, M. L. (2008a). The virtual slice setup.

J. Neurosci. Methods 171, 309–315. doi: 10.1016/j.jneumeth.2008.03.005

Lytton, W. W., Omurtag, A., Neymotin, S. A., and Hines, M. L. (2008b). Just-in-

time connectivity for large spiking networks. Neural Comput. 20, 2745–2756.

doi: 10.1162/neco.2008.10-07-622

Lytton, W. W., and Stewart, M. (2006). Rule-based firing for network simulations.

Neurocomputing 69, 1160–1164. doi: 10.1016/j.neucom.2005.12.066

Mahmoudi, B., Pohlmeyer, E. A., Prins, N. W., Geng, S., and Sanchez, J. C. (2013).

Towards autonomous neuroprosthetic control using hebbian reinforcement

learning. J. Neural Eng. 10:066005. doi: 10.1088/1741-2560/10/6/066005

Marsh, B., Tarigoppula, A., Chen, C., and Francis, J. T. (2015). Towards

an autonomous brain machine interface: integrating sensorimotor reward

modulation and reinforcement learning. J. Neurosci. 35, 7374–7387. doi:

10.1523/JNEUROSCI.1802-14.2015

Neymotin, S. A., Chadderdon, G. L., Kerr, C. C., Francis, J. T., and Lytton,

W. W. (2013). Reinforcement learning of 2-joint virtual arm reaching in a

computer model of sensorimotor cortex. Neural Comput. 25, 3263–3293. doi:

10.1162/NECO/a/00521

Neymotin, S. A., Lee, H., Park, E., Fenton, A. A., and Lytton, W. W. (2011).

Emergence of physiological oscillation frequencies in a computer model of

neocortex. Front. Comput. Neurosci. 5:19. doi: 10.3389/fncom.2011.00019

Prins, N. W., Sanchez, J. C., and Prasad, A. (2014). A confidence metric

for using neurobiological feedback in actor-critic reinforcement learning

based brain-machine interfaces. Front. Neurosci. 8:111. doi: 10.3389/fnins.

2014.00111

Roll, J.-P., Albert, F., Ribot-Ciscar, E., and Bergenheim, M. (2004). “Proprioceptive

signature” of cursive writing in humans: a multi-population coding. Exp. Brain

Res. 157, 359–368. doi: 10.1007/s00221-004-1853-x

Sanchez, J., Lytton, W., Carmena, J., Principe, J., Fortes, J., Barbour, R.,

et al. (2012). Dynamically repairing and replacing neural networks: using

hybrid computational and biological tools. IEEE Pulse 3, 57–59. doi:

10.1109/MPUL.2011.2175640

Sanchez, J. C., Tarigoppula, A., Choi, J. S., Marsh, B. T., Chhatbar, P. Y.,Mahmoudi,

B., et al. (2011). “Control of a center-out reaching task using a reinforcement

learning brain-machine interface,” in Neural Engineering (NER), 2011 5th

International IEEE/EMBS (Cancun: IEEE), 525–528.

Sartori, M., Gizzi, L., Lloyd, D. G., and Farina, D. (2013). A musculoskeletal model

of human locomotion driven by a low dimensional set of impulsive excitation

primitives. Front. Comput Neurosci. 7:79. doi: 10.3389/fncom.2013.00079

Schutte, L. M., Rodgers, M. M., Zajac, F., and Glaser, R. M. (1993). Improving the

efficacy of electrical stimulation-induced leg cycle ergometry: an analysis based

on a dynamicmusculoskeletal model. Rehabil. Eng. IEEE Trans. 1, 109–125. doi:

10.1109/86.242425

Shadmehr, R., andMussa-Ivaldi, F. A. (1994). Adaptive representation of dynamics

during learning of a motor task. J. Neurosci. 14, 3208–3224.

Song, W., Kerr, C. C., Lytton, W. W., and Francis, J. T. (2013). Cortical plasticity

induced by spike-triggered microstimulation in primate somatosensory cortex.

PLoS ONE 8:e57453. doi: 10.1371/journal.pone.0057453

Sussillo, D., Churchland, M. M., Kaufman, M. T., and Shenoy, K. V. (2015). A

neural network that finds a naturalistic solution for the production of muscle

activity. Nat. Neurosci. 18, 1025–1033. doi: 10.1038/nn.4042

Teulings, H.-L., Contreras-Vidal, J. L., Stelmach, G. E., and Adler, C. H. (1997).

Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor

control. Exp. Neurol. 146, 159–170. doi: 10.1006/exnr.1997.6507

Thelen, D. G., Anderson, F. C., and Delp, S. L. (2003). Generating dynamic

simulations of movement using computed muscle control. J. Biomech. 36,

321–328. doi: 10.1016/S0021-9290(02)00432-3

Wolpert, D. M., Diedrichsen, J., and Flanagan, J. R. (2011). Principles of

sensorimotor learning. Nat. Rev. Neurosci. 12, 739–751. doi: 10.1038/

nrn3112

Zajac, F. E. (1989). Muscle and tendon: properties, models, scaling, and application

to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17:359.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Dura-Bernal, Zhou, Neymotin, Przekwas, Francis and Lytton.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 November 2015 | Volume 9 | Article 13

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive

	Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm
	1. Introduction
	2. Materials and Methods
	2.1. Virtual Musculoskeletal Arm
	2.2. Biomimetic Spiking Neuronal Model
	2.3. Learning Rule
	2.4. Interface between Neuronal Model and Virtual Arm
	2.5. Interface between Neuronal Model and Robotic Arm

	3. Results
	3.1. Encoding of Virtual Arm in the Biomimetic Spiking Model
	3.2. Virtual Arm Trajectories and Forces
	3.3. Robot Arm Trajectories

	4. Discussion
	Acknowledgments
	Supplementary Material
	References

