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Abstract: Carbonic acid is an important species in a variety of fields and has long been regarded to
be non-existing in isolated state, as it is thermodynamically favorable to decompose into water and
carbon dioxide. In this work, we systematically studied a novel ionic complex [H2CO3·HSO4]− using
density functional theory calculations, molecular dynamics simulations, and topological analysis to
investigate if the exotic H2CO3 molecule could be stabilized by bisulfate ion, which is a ubiquitous
ion in various environments. We found that bisulfate ion could efficiently stabilize all the three
conformers of H2CO3 and reduce the energy differences of isomers with H2CO3 in three different
conformations compared to the isolated H2CO3 molecule. Calculated isomerization pathways and ab
initio molecular dynamics simulations suggest that all the optimized isomers of the complex have
good thermal stability and could exist at finite temperatures. We also explored the hydrogen bonding
properties in this interesting complex and simulated their harmonic infrared spectra to aid future
infrared spectroscopic experiments. This work could be potentially important to understand the fate
of carbonic acid in certain complex environments, such as in environments where both sulfuric acid
(or rather bisulfate ion) and carbonic acid (or rather carbonic dioxide and water) exist.

Keywords: carbonic acid; bisulfate ion; density functional theory calculations; molecular dynam-
ics simulations

1. Introduction

Carbonic acid, H2CO3, is a diprotic oxyacid and has long been considered as non-
existing in isolated state [1]. Its importance in a range of fields, including astrophysics,
astrobiology, astrochemistry, geography, and biochemistry, has been well-recognized [2–7].
It is of great significance in regulating blood pH, in adjusting ocean acidification, and in
the dissolution of carbonate minerals [8]. In recent years, its potential as an interstellar
molecule on the Martian surface, comets, and icy grain mantles has also attracted a lot of
attention since both decomposition components of carbonic acid (i.e., carbon dioxide and
water) have been discovered in those environments [4,5,9].

The non-existence of carbonic acid in isolated state was thought to be due to the
fact that it is thermodynamically favorable to decompose into water and carbon dioxide,
although theoretical calculations indicated that it might be kinetically trapped by a potential
well [10,11]. The decomposition of carbonic acid could be efficiently promoted by a variety
of species, such as water, ammonia, sulfuric acid, organics, and cloud particle surfaces.
That could be one reason why isolated H2CO3 has escaped direct detection for a long
time [11–17]. In 1987, Schwarz and co-workers reported the first observation of isolated
H2CO3 via neutralization-reionization mass spectrometry of heated ammonium bicarbonate
(NH4HCO3) vapor [1]. More than 20 years later, Endo and co-workers first spectroscopically
detected both the cis-trans H2CO3 molecule in 2009 and the cis-cis H2CO3 molecule in 2011
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using Fourier-transform microwave spectroscopy; the two H2CO3 isomers were produced
via supersonic expansion and pulsed electric discharge of a carbon dioxide and water
mixture [18,19]. In 2011, Bernard et al. also detected the two isomers of H2CO3 with
the cis-trans isomer being less stable than the cis-cis one by about 4 kJ/mol and showed
that H2CO3 is stable at temperatures above 200 K [20]. Later in 2014, Schreiner and co-
workers reported a novel and general approach to prepare H2CO3 and its monomethyl ester
(CH3OCO2H) through gas-phase pyrolysis of di-tert-butyl and tert-butyl methyl carbonate,
respectively [21]. Furthermore, they verified that the previously thought polymorph of
solid carbonic acid α-H2CO3 actually belongs to the carbonic acid monomethyl ester, and
the β-polymorph is true H2CO3. Very recently, Ioppolo et al. provided evidence that
β-H2CO3 should be ubiquitously present in space on the surface of CO2- and H2O-rich ices.
They also observed unique spectral features of γ-H2CO3, deserving future search in the
coldest regions of the interstellar medium [22]. Moreover, Wang et al. found that carbonic
acid can even be formed from CO2 on ice in the absence of high-energy irradiation and
without protonation by strong acids, implying its potential role in the upper troposphere in
cirrus clouds [23].

Hydrogen bonding is an effective way to stabilize otherwise unstable and uncom-
mon structures [24–34]. For example, Hou et al. have performed a series of studies on
bisulfate ion-containing complexes, showing that hydrogen bonding interactions can al-
ter the protonation pattern in the complex, which violates the gas-phase proton affinity
prediction [24,27,35–38]. This motivated us to wonder whether an appropriate partner
such as bisulfate ion could also stabilize the exotic conformers of H2CO3 molecule. In fact,
Thomas et al. has recently measured the infrared spectrum of the carbonic acid–fluoride
complex anion in helium nanodroplets and found remarkable stability of F−(H2CO3) with
carbonic acid in a trans-trans conformation [39]. Similar work on the whole series of car-
bonic acid–halide complexes, X–(H2CO3) (X = F, Cl, Br, and I), has been followed by Zhang
et al. through joint photoelectron spectroscopy and ab initio calculations [40]. Here in this
work, we theoretically studied the carbonic acid–bisulfate ion complex by using density
functional theory (DFT) calculations and molecular dynamics simulations. The stability
and bonding property of the complex have been explored.

2. Theoretical Methods

Geometry optimizations of all minima and transition states on the potential energy
surface of the anionic molecular complex [H2CO3·HSO4]− were performed by using DFT
calculations. Specifically, M06-2X functional and aug-cc-pVTZ basis set were employed, as
previous studies showed that this combination could provide reliable results for hydrogen
bonded, bisulfate ion-containing complexes [24,27,35,36]. Harmonic frequency analysis
was conducted at the same level of theory. All the quantum chemical calculations were
performed with Gaussian09 program [41]. The natural bond orbital (NBO) analyses were
carried out at M06-2X/aug-cc-pVTZ level using NBO 3.1 as implemented in Gaussian09.
Ab initio molecular dynamics (AIMD) simulations using the Nosé-Hoover heat bath scheme
with the average temperature of the system at 300, 400, 500, and 1000 K were performed for
the most stable isomer, and an average temperature of 300 K for the second most stable
isomer, with the Vienna ab initio simulation package (VASP) [42–44]. The PBE functional
was used for the exchange-correlation functional [45]. A unit cell of 30× 30× 30 Å has been
employed to avoid spurious interaction in space and the reciprocal space was represented
by the Gamma point. The plane wave cut-off energy in the wave vector K space was 520 eV
with the convergence criteria for the energy as 1 × 10−4 eV. Quantum theory of atoms in
molecules (QTAIM) [46] analyses were also performed with Mutiwfn software [47] to gain
insights into the H-bonding interactions in [H2CO3·HSO4]−.

3. Results and Discussion

Figure 1 presents the optimized low-lying isomers of [H2CO3·HSO4]−. To better
understand the changes of each component in [H2CO3·HSO4]− upon complexation, we
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provide the optimized three conformers of carbonic acid, bisulfate ion, and sulfuric acid
in Figure S1. It can be seen that the optimized structures of the three conformers are in
good agreement with previous studies, and their relative stabilities are also consistent with
previous calculations at a higher level of theory CCSD(T)/cc-pVQZ [10,11,18], verifying
the reliability of the theoretical method utilized in the current work. For [H2CO3·HSO4]−,
we have obtained six stable isomers, among which isomers 2a and 2b could be considered
as enantiomers, and isomers 3a and 3b could also be considered as enantiomers. While
isomers 1, 3, and 4 may be regarded as HSO4–·H2CO3, isomer 2 is better recognized as
H2SO4·HCO3

−, which is only about 2 kJ/mol higher in energy than isomer 1. Isomer
2 is unexpected solely from gas-phase proton affinity prediction and its stability can
be attributed to the formation of two strong hydrogen bonds and highly delocalized
extra electrons according to previous findings by Hou et al. [24,27,36–38]. Such electron
delocalization can be partly reflected by the highest occupied molecular orbitals (HOMOs)
as presented in Figure S2. Since we are mainly interested in understanding if bisulfate ion
could stabilize carbonic acid molecule, in the following we will focus on isomers 1, 3, and 4.
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Figure 1. Optimized low-lying isomers of [H2CO3·HSO4]− at M06-2X/aug-cc-pVTZ level of theory.
Isomers 2a and 2b are energy degenerate, and isomers 3a and 3b are also energy degenerate.

It is interesting to note that in isomers 1, 3a, 3b, and 4, carbonic acid moiety is in
the form of trans-trans, cis-trans, cis-cis, and cis-trans, respectively. For bare carbonic acid,
cis-cis conformer is the most stable one, and cis-trans and trans-trans are higher in energy by
6.1 and 41.2 kJ/mol, respectively. Upon complexation with bisulfate ion, the isomer with
carbonic acid moiety in trans-trans becomes to be the most stable one, which could be due
to the formation of two equivalent hydrogen bonds. The energy differences of isomers with
carbonic acid moiety in cis-trans and cis-cis relative to the most stable trans-trans one are
much smaller compared in the bare case, suggesting the efficient stabilization of carbonic
acid molecule by bisulfate ion. The smaller energy difference implies that these isomers
may convert to each other upon gaining sufficient perturbation (for example, by thermionic
heating or photoabsorption).

In Figure 2, we present the isomerization pathways between the different isomers of
[H2CO3·HSO4]− and the energy barriers needed to be overcome. The calculations show
that the isomerization between isomers 2a and 2b, isomers 3a and 3b involves the rotation
of −OH group in bicarbonate or carbonic acid, and the barriers are almost equal to be
45.4 and 46.4 kJ/mol, respectively. Such relatively high energy barriers may preclude
the isomerization between the enantiomers of 2 and 3, and they may all exist at finite
temperatures. Isomerization between isomers 2a and 3a, isomers 2b and 3b has low barriers
of only about 8 kJ/mol, indicating that the proton translocation between the two negatively
charged oxygen atoms should not be difficult, as found in HCOO−·H+·HSO4

– [36,48].
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Visually, it seems isomerization between isomer 4 and isomer 3b is more likely due to the
fact that they have same hydrogen bond pattern between the two partners. However, due
to the low energy barrier of proton translocation, our calculations show that isomerization
happens between isomers 4 and 2b via a transition state ts42b in which a proton translocates
to bisulfate ion moiety simultaneously with the H transfer. This isomerization process has
a large barrier of about 140 kJ/mol which is likely mainly resulted from the H transfer,
making the isomerization between isomers 4 and 2b not likely under ambient conditions.
Conversion between isomers 1 and 4 is a stepwise process via an intermediate state in14.
The first step is the H transfer from the −SOH moiety to the O of HSO4

– that connects to
the H2CO3 via a OH–O hydrogen bond; this step has a high energy barrier of ~125 kJ/mol.
The second step is the swing of the H of one −OH of the H2CO3 with a comparably lower
barrier of about 56 kJ/mol. This stepwise process has been confirmed by intrinsic reaction
coordinate (IRC) scan (Figure S3 in the Supplementary Material). The large barrier of
the first step renders the isomerization to be only possible at elevated temperatures or
heating conditions.
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The optimized structures of transition states are provided, and the energy barriers are in kJ/mol
in parenthesis.

To further evaluate the thermodynamical stability of the different isomers of
[H2CO3·HSO4]−, we performed AIMD simulations for isomers 1 and 2a, as presented
in Figure 3. It can be seen that after 10,000 simulation steps (10 picoseconds), the structures
of both isomers only show slight deformation compared to the ground state at 0 K, suggest-
ing their high thermodynamic stability. Temperature and energy fluctuate over time in a
steady-state, and the difference of the maximum and the minimum energies (∆E) of isomer
1 and isomer 2a are only about 0.5 eV, confirming their high-temperature stability [49,50].
We further simulated isomer 1 at higher temperatures of 400, 500, and 1000 K, all presenting
its good stability (see animations in Figure S4).
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isomers 1 (a) and 2a (b) both at 300 K.

As stated above, the high stability of those isomers comes from hydrogen bond
formation and extra electron delocalization. The electron delocalization could partly be
reflected by the HOMOs as shown in Figure S2 and partly by the charge distributions as
summarized in Table S1. QTAIM is a useful approach to evaluate the nature of hydrogen
bond and its strength in addition to the geometrical analysis [37,46]. According to Bader’s
theory, the critical points (3,−3) are the nuclear positions where the charge density is local
maximum in all directions, and the BCPs (3,−1) correspond to the second-order saddle
points, for which two eigenvalues of the charge density Hessian matrix are negative and
one is positive. The BCPs and the nuclei are connected by the maximum charge density
paths. Figure S5 presents the molecular graphs showing all the BCPs. The electron density
(ρ) and its Laplacian (∇2ρ) at BCP are closely related to bonding strength and bonding type,
respectively; the potential energy density (V(r)), gradient kinetic energy density (G(r)), and
electronic energy density (K(r)) are highly correlated with the hydrogen bond energies.
These values are summarized in Table 1.

Table 1. Electron density (ρ), Laplacian (∇2ρ), potential energy density (V(r)), gradient kinetic energy
density (G(r)), and electronic energy density (K(r)) at BCPs of the hydrogen bonds in the different
isomeric structures of [H2CO3·HSO4]−. All units are in a.u, except that EHB is in kcal/mol.

[H2CO3·HSO4]−
ρ (10−2) a ∇2ρ (10−2) V(r) (10−2) G(r) (10−2) K(r) (10−2) EHB

I b II I II I II I II I II I II

Isomer 1 4.696 4.695 10.923 10.923 −4.960 −4.959 3.845 3.845 1.115 1.114 −16.67 −16.67
Isomer 2a 8.397 8.454 7.844 7.692 −10.000−10.087 5.980 6.005 4.019 4.082 −28.97 −29.16
Isomer 2b 8.448 8.403 7.699 7.837 −10.080−10.009 6.002 5.984 4.077 4.025 −29.14 −28.99
Isomer 3a 12.889 3.760 −6.519 10.678 −17.922−3.696 8.146 3.183 9.776 0.513 −43.90 −13.56
Isomer 3b 11.976 3.629 −1.754 10.665 −16.088−3.535 7.825 3.101 8.263 0.435 −40.87 −13.13
Isomer 4 9.311 2.160 6.644 8.408 −11.505−1.786 6.583 1.944 4.922 −0.158 −32.01 −8.24

a Positive values of ρ indicate closed-shell interactions between two hydrogen bonded atoms according to Koch
and Popelier [51]. b See Figure S5 for the notation of hydrogen bonds I and II in each isomer.



Molecules 2022, 27, 8 6 of 9

From Table 1, it can be seen that the electron density distribution (ρ) and its Laplacian
(∇2ρ) at BCPs of the two hydrogen bonds of isomers 1 and 2 are almost identical, while
those of isomers 3 and 4 differ a lot, consistent with the structural analyses. Such difference
can also be seen from the values of electronic energy density K(r), whose magnitude is
related to the hydrogen bond strength. In 2019, Emamian et al. investigated a series of
hydrogen bonded complexes and fitted an equation EHB = −332.34 × ρBCP − 1.0661 to
estimate the hydrogen bond energy (EHB) for hydrogen bonded ionic complexes. This
equation gives a mean absolute percentage error (MAPE, in kcal/mol) of 10.0%, and ρBCP is
the electron density at the BCP of hydrogen bonds in a.u., and EHB is in kcal/mol [52]. The
hydrogen bond energies estimated in this way are summarized in Table 1, and it is shown
clearly that the calculated hydrogen bond strengths are consistent with the optimized
geometric structures (i.e., the shorter O–HO distance, the higher hydrogen bond energy).

Temperature-controlled infrared spectroscopy is a useful experimental approach to
probe the proton translocation dynamics as demonstrated by Johnson and co-workers [53,54]
and very recently also by von Helden and co-workers [39,48]. To guide future infrared spec-
troscopic experiments, we simulated the harmonic vibrational spectra of the six isomers of
[H2CO3·HSO4]−, as presented in Figure 4.
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Figure 4. Simulated harmonic infrared spectra of the six isomers (a–f) of [H2CO3·HSO4]− at M06-
2X/aug-cc-pVTZ level of theory. The calculated vibrational frequencies have been broadened using
Gaussian line shape of 12 cm−1 full width half maximum, and a scaling factor of 0.956 [55] has
been applied.

In isomer 1, there is a very weak vibrational mode at ~3680 cm−1 corresponding to
the O–H stretching of the HSO4

– moiety, and the strong vibration at ~3180 cm−1 is the
symmetric double O–H stretching of the H2CO3 moiety. The spectra of isomers 2a and 2b
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are almost identical, as they are enantiomers; the vibrations at ~2230 and 2410 cm−1 are
the asymmetric and symmetric stretching of the two shared H+ between SO4

2– and HCO3
–

moieties. Similarly, the spectra of isomers 3a and 3b are almost identical; the weak mode at
~3700 cm−1 is the free O–H stretching of the H2CO3 moiety, and the two strong modes at
~1810 and 3270 cm−1 are the shared H+ translocation and hydrogen bonded O–H stretching
of the HSO4

– moiety. In the simulated spectrum of isomer 4, the vibrations at ~2130, 3590,
and 3700 cm−1 are the shared H+ translocation, hydrogen bonded O–H stretching of the
HSO4

– moiety, and the free O–H stretching of the H2CO3 moiety. Those vibrational vectors
are included in Figure S6 in the Supplementary Materials. It should be mentioned that
more accurate description of the vibrations in those structures requires more advanced
theoretical treatments including both anharmonic effects and nuclear quantum effects, and
is beyond the scope of current study [48].

4. Conclusions

In summary, we theoretically explored the potential energy surface of the anionic
[H2CO3·HSO4]− complex to investigate if bisulfate ion is capable to stabilize the exotic con-
formers of carbonic acid. Our results showed that compared to the bare H2CO3 molecule,
the energy differences between the different isomers of [H2CO3·HSO4]− complex with
H2CO3 moiety in the conformation of trans-trans, cis-trans, and cis-cis become smaller, sug-
gesting that bisulfate ion can efficiently stabilize the three conformers of H2CO3. Notably,
for bare H2CO3, the cis-cis conformer is the most stable, while in [H2CO3·HSO4]− the iso-
mer with H2CO3 in trans-trans becomes the most stable due to the formation of two strong
hydrogen bonds. Combining quantum theory of atoms in molecules topological analysis
and a fitted empirical equation, we estimated the strengths of the hydrogen bonds. The
calculated isomerization pathways between the different isomers of [H2CO3·HSO4]− and
also ab initio molecular dynamics simulations of the first two low-lying isomers revealed
that these isomers could coexist at finite temperatures. We further simulated their harmonic
infrared spectra to facilitate future infrared spectroscopic experiments to fully understand
the proton translocation dynamics in this interesting complex.

Supplementary Materials: The following are available online. Figure S1: Three conformers of
isolated carbonic acid molecule, bisulfate ion, and cis-cis sulfuric acid molecule; Figure S2: Molecular
orbitals of the optimized isomers of [H2CO3·HSO4]−; Figure S3: Intrinsic reaction coordinate (IRC)
scan for the stepwise conversion of isomer 1 to isomer 4 via an intermediate state in14; Figure S4:
Animations showing the AIMD simulations for isomers 1 and 2a; Figure S5: Molecular graphs of
[H2CO3·HSO4]−; Figure S6: Vibrational vectors for the selected vibrational modes of the isomers of
[H2CO3·HSO4]−; Figure S7: Vibrational vectors for the imaginary vibrational modes of the transition
states of [H2CO3·HSO4]−; Table S1: Charge distributions from natural population analysis for the
different isomers of [H2CO3·HSO4]−; Table S2: Cartesian coordinates.
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