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In order to study the change law of the fatigue degree of grassland expressway drivers over time, this paper takes the semidesert
grassland landscape of Xilinhot city as the experimental environment and takes the provincial highway S101 (K278–K424) as an
example to design an actual driving test. Taking Urumqi, Inner Mongolia Autonomous Region, as the experimental section,
combined with the Biopac MP150 multichannel physiological instrument and its auxiliary knowledge software and mathematical
statistics methods, the relationship between EEG and time was studied.+e test results show that the primary fatigue factor F1 and
the secondary fatigue factor F2 can summarize the fatigue law characterized by 96.42% of EEG information. During 130minutes of
driving on the prairie highway, the periods of high fatigue were 105 minutes and 125 minutes, respectively. Driving fatigue can be
divided into three stages over time: 5–65min fatigue-free stage, 70–85min fatigue transition stage, and 90–130min fatigue stage.
Fatigue changes over time. +e law follows the Gaussian function and the sine function.

1. Introduction

Drivers need to keep their concentration in the road en-
vironment to ensure the safety of driving tasks [1]. Studies
have shown that low load conditions such as monotony can
lead to fatigue symptoms and impaired driving performance,
although drivers are neither tired nor lack sleep before
driving tasks [2, 3]. +is kind of fatigue is caused by driving
itself, which is called passive fatigue. Passive fatigue is caused
by nerve habituation, such as driving on similar and re-
peated routes [4], which is different from the driver’s active
fatigue caused by physiological rhythm and lack of sleep [5].
Fell and Black conducted a driver fatigue accident survey in
Sydney, which covered all accidents caused by fatigue. It was
found that 45% of crash drivers were not tired at all before
the accident, and the road geometry was very monotonous
[6]. It can be seen that the accidents caused by driving fatigue
in the monotonous environment are potential. +e research
on this kind of fatigue can effectively reduce the accident
rate. Relevant research shows that the most reliable way to
quantify driver mental fatigue in the monotonous

environment is to use electroencephalogram (EEG), which is
a very promising indicator [7].

+e influencing factors of driving fatigue include not
only the monotonous degree of the road environment, the
physiological rhythm of drivers, and the time of driving but
also the duration of work. Driving for a long time will in-
crease the fatigue degree. Research shows that 30 minutes of
monotonous driving can cause alertness disorder [8], 11% of
accidents are related to fatigue, and 62% of accidents occur
in driving less than 100 miles, that is, 87.6 minutes [4]. Larue
et al. proposed that the effect of quantitative time on fatigue
needs to be set beyond 40 minutes [9]. +erefore, in the
monotone road environment, the time task test of more than
one hour is the basis of quantifying the effect of time on
fatigue.

+emileage of roads in the InnerMongolia Autonomous
Region is increasing constantly. By the end of 2018, the total
mileage of class roads was 192,200 kilometers, of which
grassland roads accounted for 73.3%. Grassland road has the
characteristics of monotonous roadside landscape and road
alignment. When driving on prairie roads, drivers will
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encounter the problem of insufficient stimulus information,
which will easily lead to the decrease of driver’s attention and
alertness, premature driving fatigue, and traffic accidents
[10].

+e innovative content of this paper is as follows:

(1) Combining the Biopac MP150 multichannel physi-
ological instrument and its auxiliary knowledge
software and mathematical statistics methods, the
relationship between EEG and time has been studied

(2) +e EEG model is used to analyze and research
related fatigue data

(3) +e EEG model and EEG are used to study the
relationship between driving fatigue and fatigue data

2. Materials and Methods

2.1. Test Personnel. In the experimental study, the number
and representativeness of the subjects will directly affect the
reliability of the experimental results. In formula (1), n is the
required sample size [11], Z is the statistics with a certain
confidence level, and s is the standard deviation of each test
index of driving characteristics [12]. Based on the research
results at home and abroad, s� 0.094 and d� 0.04; in this
paper, z� 1.96 at 95% confidence level is taken; the mini-
mum number of subjects in this experimental study is 22.
Taking into account the characteristics of significant indi-
vidual differences in EEG signals and susceptibility to en-
vironmental factors, the number of subjects was determined
as 30 in this experiment.

n≥
z
2

× s
2

d
2 . (1)

According to the statistics that the proportion of male
and female drivers with legal driving license is 7/3 and the
analysis of driving age and age of drivers in traffic accidents
[13], the test subjects are determined, as shown in Table 1.

In order to ensure the effectiveness of data collection, the
requirements for the test driver are as follows: good health,
sufficient sleep before the test, no activities that stimulate the
heart within 24 hours, no smoking, and vigorous exercise 1
hour before the test.

2.2. Road Sections and Test Vehicles. +e test section is S101
provincial road in Xilinhot city, Inner Mongolia. +e rele-
vant parameters of the section are shown in Table 2: 84.9% of
the road lines are long straight lines, with large curve radius
and 61% of large radius curves. +e longitudinal slope is
gentle, and the undulation is not obvious. In addition, the
vegetation coverage is low, and the desertification is serious.
+e test section has the characteristics of monotonous
landscape and line type.

By the end of 2017, China’s car ownership was 209.0667
million, including 180.3869million small passenger vehicles,
accounting for 86.28% (China National Bureau of statistics,
http://data.stats.gov.cn/index.htm). +e research group in-
vestigated the traffic flow of the grassland road, and the
proportion of small vehicles was 91.5%. +erefore, the

Honda Civic car (automatic transmission) is used as the test
vehicle. According to the time task test, the time of the
vehicle to be tested must be more than 40min. +e test road
section is selected to be 150 km long in one way, 300 km back
and forth, and 150min under the speed limit of 80 km/h.

2.3. Test Process. +e choice of test time and the control of
the environment will seriously affect the test results. In order
to reduce the influence of factors other than time on the
results, sunny days with similar illuminance and postlunch
dip were selected for testing [14], which was the peak period
of daytime fatigue accidents. +e subjects arrived at the test
site at 12:30. Familiar with the test equipment, understand
the test requirements, complete the wiring work; 12:50, drive
for 5 minutes, familiar with the environment and equip-
ment; 13:00, officially start the test.

2.4. Test Instruments and Requirements. +e MP150 mul-
tichannel physiological recorder (maximum sampling rate:
400 kHz, including the EEG amplifier) and AcqKnowledge
4.1 data analysis software are used to obtain the EEG data.
+e research related to the fatigue of monotonous road
drivers is to characterize the driver’s mental fatigue by the
average power of three waveforms of α (8–13Hz), β
(14–30Hz), and θ (4–7Hz). +e sampling frequency is
adjusted to 250Hz based on kurtosis and probability criteria,
and the band-pass filter frequency is set to 1Hz (high-pass
filter) to 30Hz (low-pass filter) [15]. Two lead 110 shield
wires are, respectively, connected to the disposable electrode
piece on the driver’s left forehead and right mastoid, and the
other end is connected to the EEG100C EEG amplifier (the
amplifier gain is set at 5000). AcqKnowledge 4.1 software is
used to extract one EEG power every 30 s as absolute power.
+e 5-minute absolute power at the beginning and end of
driving is deleted, SPSS 20.0 software and the method of
Pauta criterion are used to remove the abnormal value of
EEG power [16], and finally, the analysis of EEG power
within 130 minutes is determined.

3. Results

3.1. Determination of the Fatigue Factor. +e absolute power
magnitude of the EEG signal varies greatly (as shown in
Figure 1). +e EEG power of each subject is normalized
according to the formula [17], and an average value is taken
every five minutes to average the EEG power of 22 drivers.
+e results are shown in Figure 2. Among them, 30 minutes
ago, the change rule was the same, and there were differences
among the three wave patterns in 30–130 minutes. +e
related research shows that the power of α and θ increases
with the increase of fatigue, the increase of β-power indicates
the increase of alertness, and the larger the ratio of fast wave
to slow wave is, the deeper the fatigue is [18, 19]. +erefore,
the accumulation rule of fatigue with time shows strong time
characteristics. In order to obtain the fatigue factors with
obvious time characteristics and strong representativeness,
dimension reduction is carried out [20].
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SPSS 20.0 and OriginPro 2019 software are used to
analyze the five indicators [21]. +e results are shown in
Figure 3 and Table 3. Autoencoder dimension reduction is
shown in Figure 4.

As shown in Figure 3, the coordinate axis and the long
and short axis of the confidence ellipse are parallel, in-
dicating that the variable of the long axis describes the
main change of the data, and the variable of the short axis

Table 1: Subject information.

Gender Number Age Driving age BIM
Female 6 32.51± 5.23 3.12± 1.33 19.53± 5.42
Male 24 35.46± 7.47 3.97± 2.29 21.59± 2.77

Table 2: Statistics of relevant parameters for the S101 section line.

Speed limit Line type Landscape

80 km/h

Route
length
(km)

+e
longest
straight
line (m)

Linear
density
(km/km)

Maximum
curve radius

(m)

Curve radius
distribution
(m) and

proportion (%)

Maximum
longitudinal
grade (%)

Desertification
is serious (%)

Medium
vegetation

coverage (%)

High
vegetation
coverage

(%)
150 8741 0.849 40,000 1000–2000/61 − 4.92 13 67 20
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Figure 1: Absolute power (α, β, and θ) of 6 drivers.

Journal of Healthcare Engineering 3



describes the secondary change of the data [22]. +e
characteristic value shows that F1 represents 3.686 times
of the original data, F2 represents 1.135 times of the
original data, and the cumulative percentage of them is
96.42%, which can explain the fatigue rule represented by
five indicators [23]. Similar to the principal component
analysis (PCA), we also use the autoencoder to provide
visual analysis on the two feature dimensions, and the
relationship of the power of α, β, and θ is also given
accordingly. Expressions (2) and (3) of the main fatigue
factor F1 and the secondary fatigue factor F2 are derived
from the linear relationship between the main compo-
nents and variables. +e change rule of fatigue factors F1
and F2 with time is shown in Figure 5 [24].

+e larger the fatigue factor is, the deeper the fatigue
degree is. +e smaller the fatigue factor is, the shallower the
fatigue degree is. +ere is no physiological significance for
positive and negative factors [25].

F1 � 0.931θ +
0.99θ
α + β

+
0.975θ

α
+
0.923θ

β
− 0.189

α
β

, (2)

F2 � − 0.079θ +
0.081θ
α + β

−
0.164θ

α
+
0.367θ

β
+ 0.98

α
β

. (3)

3.2. Clustering of Fatigue Factors and Determination of High-
Fatigue Time. In order to describe the stage characteristics
of fatigue, K-means test was used to cluster F1 and F2.
According to the trend analysis of Section 2.1, F1 and F2 were
clustered into three categories (I and IV, II and V, and III
and VI, in which the fatigue degree ranked I< II< III,
IV<V<VI, but I, II, III and IV, V, VI had no statistical
relationship) [26]. +e results are shown in Figure 6.

In order to quantitatively describe the rule of fatigue
factor and time, regression analysis is used to fit F1 with
logistic, and the results are shown in Figure 7 and Table 4.
According to Figure 5, the fatigue state in 130min can be
divided into two stages: 5–85min and 90min–130min (one
EEG average value is taken every 5min, which represents the
EEG power in 5min. In this paper, the time point at the end
of every 5min represents the EEG power in this period) [27].
In 5–85min, class I F1 is dominant, class II F1 only accounts
for 17.65%, and class II and class III F1 alternate in
90min–130min, which account for the same proportion. It
can be seen that the driver’s fatigue accumulates and fluc-
tuates greatly in 90–130min. Further sine fitting is carried
out for the fatigue factor F1-1 (100–130min) in this time, and
the results are shown in Tables 3 and 5. Although 90min and
95min belong to class II, they are quite different and have no
statistical significance, so they are not fitted. F1 logistic fitting
is shown in Figure 7. F1 sine fitting is shown in Figure 8 [28].

In the same way, Gauss fitting is carried out for F2, and
the results are shown in Figure 9 and Table 5. +e overall
fatigue state is divided into three stages: 5–65min,
70–85min, and 90–130min [29]. In 5–65min, F2 completely
belongs to category IV, in 70–85min, there are two cate-
gories V and VI, and the peak value appears in 80min. In
90–130min, category IV and category V F2 alternately ap-
pear and share the same proportion. It can be seen that the
driver fatigue accumulates and fluctuates greatly in
90–130min. Furthermore, 70–85min and 90–130min were
fitted.+e results are shown in Figures 10 and 11 and Table 4
[30].

In addition, the time corresponding to the extreme point is
the high-fatigue period. According to the application scope of
each function, the high-fatigue period of F1 tends to the end of
the driving task; the high-fatigue period of F1-1 is 106.47min
and 124.47min; the high-fatigue period of F2-1 is 79min; the
high-fatigue period of F2-1 is 80min; the high-fatigue period of
F2-2 is 104.13min and 123.17min. Among them, F1-1 and F2-2
were the same for 105min and 125min, while F2 and F2-2
indicate that the fatigue factor fluctuates greatly in 70–85min
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and peaks at 80min. At this time, the F1 fitting curve in
Figure 7 shows a significant inflection point and the trend of
sudden increase. It can be seen that 70–85min is the transition
stage from the driver to the fatigue state [31].+erefore, fatigue
can be divided into three stages: 5–65min no fatigue stage,
70–85min fatigue transition stage, and 90–130min fatigue
stage. F2-1 Gauss fitting is shown in Figure 10.

3.3. FatigueVariationwithTime. Based on the above analysis,
the driver fatigue shows significant time characteristics.+ere is
no obvious fatigue accumulation within 5–65 minutes, and the
fatigue factor fluctuates in a small range. Each increase and
decrease is controlled within 10 minutes. +e driver’s fatigue
regulation mechanism can completely prevent the

accumulation of fatigue on the time axis. +e specific rule is F1
and F2 decrease within 5–10min, the driving task is just started,
the driver needs to adapt to the driving task, fbe concentrated
with full of freshness to the environment, and should not show
a negative mental state of fatigue. Within 15–65 minutes, the
driver’s mental state is stable, even though F1 fluctuates slightly,
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Table 3: Principal component analysis results.

+e total variance of the principal components Component matrix
Characteristic value Cumulative percentage (%) θ θ/(α + β) θ/α θ/β α/β

F1 3.686 73.728 0.931 0.990 0.975 0.923 − 0.189
F2 1.135 96.419 − 0.079 0.081 − 0.164 0.367 0.980

Autoencoder
–6 –4 –2 0 2 4 6

–0.6 –0.4 –0.2 0.0 0.2 0.4 0.6

–1.0

–0.5

0.0

0.5

1.0

–4

–2

0

2

4

α/β
θ/(α + β)

θ

θ/α

θ/β

Figure 4: Autoencoder dimension reduction.
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Table 4: +e accuracy of classification results.

Classification matrix
Model

ANN-BP (%) ANN-PSO (%) RBF-ROLS +D-opt (%) [32] (%) [33] (%) Our model (%)
Sensitivity/TPR 76.67 71.81 80.00 92.36 82.36 93.26
Specificity/TNR 76.94 62.78 95.56 93.06 83.09 92.78
Accuracy (%) 76.81 67.29 87.78 86.98 85.72 90.07

Table 5: Fitting formula and fitting degree.

Fitting formula Adj. R2 t dF/dt � 0
F1 � 1.21 − (1.77/1 + (0.01t)40.94) 0.61> 0.4 5–130 t⟶ +∞
F1− 1 � 1.2 + sin[(t + 6.03/9)π] 0.48> 0.4 100–130 t� − 1.53 ± 9k, k� 0, 1, 2, 3· · ·

F2 � − 0.29 + 2.83e− 0.02(t− 79)2 0.45> 0.4 5–130 79
F2− 1 � 1.22 + 1.62e− 1.06(t− 80)2 1.00 > 0.4 70–85 80
F2− 2 � 0.3 + sin[(t − 1.37/9.5)π] 0.80> 0.4 90–130 t� 18.45± 9.52k, k� 0, 1, 2, 3· · ·
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but fatigue does not accumulate with time. F2-2 sine fitting is
shown in Figure 11.

In 70–85min, F2 showed a significant Gauss wave
pattern. +e significant peak appeared at 80min, and the
recovery period from the peak appeared to 15min.

In 90–130 minutes, F1 and F2 showed a significant sine
wave pattern. F1-1 fluctuates periodically in 9min and F2 in
9.52min. At the same time, the peak value of the two in-
creases. It can be seen that although the driver’s fatigue
regulation ability can play a role, fatigue still increases with
time. From the analysis of Section 2.2, it is known that the fit
of F1 and F2 for the high-fatigue period is only 2.34min,
within 5min, and the gap tends to decrease, so it is more
reasonable to use the secondary fatigue factor F2 to describe
the rule of the fatigue transition stage and fatigue stage. +e
fatigue model of the grassland road driver is summarized as
the following formula:

F �

1.22 + 1.62e
− 1.06(t− 80)2

, 70≤x≤ 85,

0.3 + sin
t − 1.37
9.5

 π , 90≤x≤ 130.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

3.4. 4e Classification Accuracy in Driving Fatigue Detection.
Table 4 summarizes the classification accuracy in driving
fatigue detection as achieved by the six classification
models for each subject. +e results show that our model
classifier achieves the highest accuracy for all the subjects in
classifying the fatigue vs. alert states. Our model achieves
higher accuracy and yields lower variance than the RBF-
ROLS +D-opt network. +is shows that among these two
RBF-based classifiers, the EEG driving fatigue detection
proposed in this paper is a more accurate and robust
classifier.

Compared to the other models, our model exhibits the
best performance regardless of the specificity, sensitivity,
and accuracy. In addition, the RBF-TLLH model signifi-
cantly outperforms the RBF-ROLS +D-opt model in sen-
sitivity, demonstrating the superiority of the proposed
approach to detect driving fatigue. Compared to RBF-
ROLS+D-opt, the proposed RBF-TLLH model achieves a
slightly lower specificity, but a much higher accuracy and
sensitivity.

4. Discussion

(1) +e conclusion shows that the driver enters the
fatigue stage obviously after 90 minutes. Although
the fatigue factor increases and fluctuates greatly, the
peak increase of the sine wave is small. Up to now,
there is no clear division of light, medium, and heavy
fatigue in the world. Because the driving task in this
paper is only 130 minutes, there is no comparison
between other types of fatigue, and it can only be
defined as fatigue. As for the fatigue level, it is true
that it is necessary to arrange long-term driving tasks
for comparative study.

(2) 70–85min is the transition period from the driver
to fatigue. According to F2 interpretation, the rule
changes with the sine function after 80min peak,
and each cycle of fatigue and recovery is 9.52min;
according to F1 interpretation, 70–85min does not
show fatigue, and it suddenly increases within
85–100min, from which fatigue begins to accu-
mulate. +e derivative of F1 in 85–110min is an-
alyzed, as shown in Figure 11; the derivative is 37
times of the derivative of 85min, which is similar to
the mutation rule characterized by F2 in 70–85min.
+e mutation period is 15min at the same time, and
F2 is mutated before F1. It is confirmed that the
transition from the fatigue-free stage to fatigue
stage needs to be completed by mutation and re-
covery of the fatigue factor, but it is impossible to
determine that F1 mutation lags behind F2. +e
analysis of the change rule of the fatigue transition
period is of guiding significance for the measures to
prevent the formation of fatigue. +erefore, a large
number of experimental samples are needed to
study the change rule of the fatigue transition
period.

(3) For the fatigue prediction after 100min, the sine
wave function of F1 and F2 has a high fitting degree,
with a period difference of 0.52min (see Figure 11).
At first, the peak value corresponds to a time dif-
ference of 1/4 sine cycles, F2 is earlier than F1, but
because of the long period of F2, F1 will reach the
peak value at t� 142.47min and F2 will reach the
peak value at t� 142.21min with the increase of time;
at this time, F1 and F2 change rule coincide. Later, if
F1 and F2 still meet the current sine function law,
they will fluctuate according to the superposition
sine wave law.+e peak value of F1 is 0.76min earlier
than that of F2. According to the superposition
principle of wave, at this time, fatigue will accu-
mulate to a higher peak value in the time-axis di-
rection, indicating the deepening of fatigue. Due to
the limited time of driving tasks in this paper, the
driving fatigue after 100 minutes cannot be deter-
mined, only the effect can be predicted, and large
samples and simulation experiments are needed to
arrange long-term driving tasks for further
explanation.

5. Conclusions

In this paper, we propose an ant colony optimization algorithm
based onmobile sink data collection in industrial wireless sensor
networks. +e fatigue factors are determined as F1 � 0.931θ +

(0.99θ/α + β) + (0.975θ/α) + (0.923θ/β) − (0.189α/β) and
F2 � − 0.079θ+ (0.081θ/α+β) − (0.164θ/α) + (0.367θ/β) +

(0.98α /β).
F1 and F2 contain 96.42% EEG power information of

fatigue changing with time during 130min driving.+rough
regression analysis, F1 and F2 together show that the high
incidence time of driving fatigue is 105min and 125min.
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+e change of driving fatigue with time can be divided into
three stages: 5–65min is the nonfatigue stage, 70–85min is
the fatigue transition stage, and 90–130min is the fatigue
stage. +e variation of fatigue with time obeys function
expression (4).
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