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Abstract
As boreal forests face significant threats from climate change, understanding evo-
lutionary trajectories of coniferous species has become fundamental to adapting 
management and conservation to a drying climate. We examined the genomic ar-
chitecture underlying adaptive variation related to drought tolerance in 43 popula-
tions of a widespread boreal conifer, white spruce (Picea glauca [Moench] Voss), by 
combining genotype–environment associations, genotype–phenotype associations, 
and transcriptomics. Adaptive genetic variation was identified by correlating allele 
frequencies for 6,153 single nucleotide polymorphisms from 2,606 candidate genes 
with temperature, precipitation and aridity gradients, and testing for significant as-
sociations between genotypes and 11 dendrometric and drought-related traits (i.e., 
anatomical, growth response and climate-sensitivity traits) using a polygenic model. 
We identified a set of 285 genes significantly associated with a climatic factor or 
a phenotypic trait, including 110 that were differentially expressed in response to 
drought under greenhouse-controlled conditions. The interlinked phenotype–
genotype–environment network revealed eight high-confidence genes involved in 
white spruce adaptation to drought, of which four were drought-responsive in the 
expression analysis. Our findings represent a significant step toward the characteriza-
tion of the genomic basis of drought tolerance and adaptation to climate in conifers, 
which is essential to enable the establishment of resilient forests in view of new cli-
mate conditions.
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1  |  INTRODUC TION

Forest trees face significant threats from climate change, and 
their long generation time reduces their potential to adapt to rapid 
changes (Aitken et al., 2008; Shaw & Etterson, 2012). Droughts are 
predicted to continue increasing in frequency, duration and severity 
in the boreal forest, and reduced soil water availability is becoming 
one of the most critical factors responsible for the rising vulnerabil-
ity of forest trees globally (Choat et al., 2012; Girardin et al., 2016). 
Understanding the fate and adaptability of forest trees in drier 
climates has become an urgent question given the increase in ob-
served dieback following droughts (Allen et al., 2010). The adaptive 
capacity of trees (standing genetic variation, new mutations, and 
phenotypic plasticity), as well as their dispersal capacity, allow them 
to cope with local environmental changes, or to escape to more suit-
able habitats via migration (Aubin et al., 2016). However, it is unclear 
if and how local forest tree populations will be able to keep up with 
the fast pace of climate change (Kremer et al., 2012). In this context, 
improving our understanding of how long-lived species have evolved 
in response to water limitation is primordial to predict the potential 
impacts of climate change on forest ecosystems and their function-
ing (Anderegg et al., 2013; Choat et al., 2012), as well as to inform 
forest management practices, breeding programmes and strategies 
for conservation of genetic resources.

The nature of important traits for drought tolerance and 
the genes controlling them remain largely undeciphered (Allen 
et al., 2010; Moran et al., 2017). Studies of the genetic variation for 
drought tolerance in conifers have mainly focused on 13C, a proxy 
for water use efficiency (reviewed in ref. Moran et al., 2017; Plomion 
et al., 2016). The evaluation of other traits reflecting tree responses 
to climate constraints might contribute to the identification of rel-
evant genes underlying adaptation to drought. Recent association 
studies that used tree-ring phenotypes incorporating the response 
to climate were effective in identifying genes putatively involved 
in abiotic stress tolerance (Heer et al., 2018; Housset et al., 2018; 
Trujillo-Moya et al., 2018).

Genetic studies of tree-rings are facilitated by the abundance 
of provenance field trials, usually made up of seedlings from differ-
ent provenances planted in common gardens (de Villemereuil et al., 
2016). Wood increment core analyses enable phenotypic evaluation 
over several years or decades of growth, allowing researchers to ret-
rospectively investigate the effects of climate variation on adaptive 
traits (Girardin et al., 2021; Sáenz-Romero et al., 2019). This experi-
mental design is useful for detecting the existence of genetic clines 
in local adaptation by comparing among- and within-provenance 
phenotypic variation (Depardieu et al., 2020; Housset et al., 2018). 
Two main approaches can be combined to understand the genetic 
control of complex traits in such trials and identify genes involved 
in local adaptation, namely genetic association studies and gene ex-
pression studies (Moran et al., 2017). Genetic association analyses 
such as genotype–environment (GEA) and genotype–phenotype 
(GPA) associations aim to identify loci involved in adaptation to en-
vironmental factors or in the control of heritable phenotypic traits. 

The findings from association studies can come with false-positives, 
which may be mitigated by use of various methods of detection (e.g. 
Bush & Moore, 2012; Kathiresan et al., 2004) or, alternatively, by 
use of complementary experimental approaches to confirm the bi-
ological relevance of a significant genetic association. For example, 
transcriptomics can be used to further strengthen the involvement 
of genes identified in association studies at the functional level, or 
as a complementary approach to characterize gene networks linked 
to complex physiological mechanisms underlying stress responses 
(Lamara et al., 2016; Moran et al., 2017). Although both association 
and gene expression studies come with their strengths and weak-
nesses, combining these two approaches could permit the deter-
mination of whether differences in sensitivity to climate between 
genotypes can be attributed to variation in gene sequences, gene 
expression or both. Until now, studies integrating genetic associa-
tion and transcriptomics have rarely been reported in trees (but see 
Muchero et al., 2018).

Genomic resources available in white spruce (Picea glauca) are well 
developed and facilitate investigations of the genetic and molecular 
bases of local adaptation. They include a large catalogue of annotated 
expressed genes (Rigault et al., 2011), genotyping data from gene sin-
gle nucleotide polymorphism (SNP) arrays (Pavy, Deschênes, et al., 
2013; Pavy et al., 2008) and high-density gene-based linkage maps 
(Pavy et al., 2017; Pavy, Pelgas, et al., 2012), among others. Due to its 
economic and ecological importance in North America, P. glauca has 
also been the focus of several studies on the genetic variation in traits 
of economic importance (Beaulieu et al., 2011; Lamara et al., 2016; 
Lenz et al., 2013). Moreover, it has been studied using genome scans 
with the goal of identifying quantitative trait loci (QTL) for adaptive 
traits (Pelgas et al., 2011) and candidate genes for local adaptation to 
climate (Hornoy et al., 2015; Namroud et al., 2008).

Using a retrospective dendroecological approach, a signal of 
local adaptation to drought was previously detected among 43 white 
spruce populations gathered in a common garden (Depardieu et al., 
2020). In this study, we investigate the genetic basis of local adapta-
tion to drought for these populations located in the eastern part of 
the natural white spruce range in Canada (Figure 1). First, we studied 
the relationships between allele frequencies and environmental vari-
ables of provenance origins (GEA) or between genotypes and phe-
notypic traits (GPA) measured in a common garden trial to identify 
genetic variants and their genes underlying adaptation to drought 
(Figure 2, “Step 2”). Second, using transcriptomic data, we assessed 
the expression profiles of candidate genes identified with associ-
ation approaches to further support their involvement in drought 
response (Figure 2, “Step 3”). Starting from a set of 2,606 candidate 
genes (6,153 SNPs), we identified a total of 285 genes involved in 
adaptation to climate, including 110 genes that were differentially 
expressed in response to drought in an independent transcriptomic 
experiment. The intersection between GPA and GEA also revealed 
eight major genes involved in local adaptation to climate in white 
spruce, of which four were drought-responsive in the expression 
analysis. Our results provide a basis for future population-based ex-
pression studies and genomic prediction for drought tolerance.
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2  |  MATERIAL S AND METHODS

2.1  |  Study site, plant material and experimental 
design

Data were collected from a white spruce provenance-progeny trial 
containing 197 half-sib families from 43 populations (i.e., prove-
nances) distributed along a large geographical gradient of soil mois-
ture in Québec (Figure 1; Table S1). The trial was a single common 
garden site established in 1979 at the Mastigouche Arboretum in 
Quebec, Canada (46°38′N, 73°13′W, elevation 230 m). The experi-
mental design was a randomized complete block design with six 
blocks and five trees per half-sib family planted in row plots (see 
Beaulieu et al., 2014). Phenotypes and genotypes of 1,473 ran-
domly selected trees, but representing all families, provenances and 
blocks in the common garden, were analysed in this study. Details 
of numbers of trees per family and provenance and climatic condi-
tions at the experimental site and provenance origins are reported 
in Table S1.

2.2  |  Phenotypic data

Twelve phenotypic traits were assessed and classified into sets of 
dendrometric and tree-ring traits for use in this study (see Figure 2). 
The dendrometric traits were tree height (H38, in mm) and stem 
diameter at breast height (DBH38, in cm) (Figure 2) measured at 
38  years of age during summer 2017. Tree-ring traits were classi-
fied into anatomical, growth response and climate sensitivity traits. 
The anatomical and growth response traits were those reported in 

the main findings of the dendroecological study of Depardieu et al. 
(2020). Detailed information about plant material, treatment of wood 
samples, and data processing can be found therein (for convenience, 
methods are also summarized in Methods S1). The tree-ring traits 
were obtained from the sampling of 12-mm wood increment cores 
extracted at breast height on the same side of each tree in 2005 and 
2008. Tree-ring measurements were acquired by combining image 
analysis with X-ray densitometry from the Silviscan system. The ana-
tomical subset of tree-ring traits included cell wall thickness (CWT, 
in µm), radial lumen diameter (LDr, in µm) and wood density (WD, 
in kg  m−3) (Figure 2, “Anatomical traits”). For anatomical traits, the 
area-weighted average of individuals calculated for the 1995–2005 
period was used for association studies. The growth response subset 
of tree-ring traits included growth resistance (Rs), growth recovery 
(Rc), growth resilience (Rl) and relative growth resilience (Rr) indices 
(Figure 2, “Growth response traits”; Lloret et al., 2011). These indices 
were calculated relative to a drought event that occurred in 2002, 
as previously described in Depardieu et al. (2020), and were derived 
from basal area increment values (BAI, in mm2). Briefly, pre- and post-
drought periods were defined as the two years preceding and fol-
lowing the drought event, respectively. Resistance (Rs) defines the 
tree's capacity to maintain growth under drought, and was obtained 
by calculating the ratio of the mean BAI during the 2002 drought 
event to the mean BAI during the pre-drought period. Recovery (Rc) 
was calculated as the ratio of the mean BAI during the drought event 
to the mean BAI during the post-drought period, while Resilience 
(Rl) was obtained by dividing post-drought growth by pre-drought 
growth. Relative resilience (Rr, the resilience weighted by severity of 
the drought event) was determined by subtracting Rs from Rl. The cli-
mate sensitivity category of tree-ring traits captures the overall effect 

F I G U R E  1  Geographical location of the 43 Picea glauca populations and the common garden trial (red star). Mean soil water availability 
in summer (SMI) for the period 1950–1980 is overlaid on the range-wide distribution of P. glauca. The sampled populations represent 
provenances whose seeds were used to establish the common garden trial and are indicated by black circles. Population numbering 
corresponds to that found in Table S1 [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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of drought on annual fluctuations in tree wood density (CS-WD), cell 
wall thickness (CS-CWT) and lumen diameter (CS-LDr) across the 
lifespan of the tree (Figure 2, “Climate sensitivity traits”), and can be 
considered as a proxy of tree vulnerability to drought. They are repre-
sented by the correlation coefficients computed between tree-level 
indices of annual anatomical trait values and soil moisture index (SMI, 
in mm of water) in July at the common garden site from 1989 to 2007 
(see Methods S1 for details). A climate sensitivity trait value close to 
1.0 is indicative of a strong positive relationship between annual tree 
growth and soil water availability; a value close to zero indicates that 
tree growth is not limited by water availability, while negative values 
indicate that trees perform better under drought conditions.

2.3  |  Heritability and correlations between traits

The heritability of the 12 phenotypic traits was estimated to de-
termine the traits to be used in GPA analyses (Figure 2, blue box 
“Step 1”). We fitted the following individual-tree mixed models (the 
so-called “animal model”) using the asreml-r version 4.0 R package 
(Butler et al., 2017):

where � is the overall mean, b is the fixed block effect, bf is the ran-
dom plot effect, that is the interaction of the block and family effects, 

(1)y = 1� + Xb + Z1bf + Z2a + e

F I G U R E  2  Flowchart of the analyses and classification of the phenotypic traits in this study. Step 1: narrow-sense heritability estimates 
were obtained for 12 phenotypic traits. Step 2: genetic association tests were carried out between gene variants (SNPs) and (i) traits with 
significant heritability (i.e., all traits except growth resistance [Rs]) in GPA analyses and (ii) climate in a GEA approach. Step 3: drought-
responsive genes (DEGs) were identified by RNA-sequencing using a likelihood ratio test (LRT) with an FDR of 0.05. The overlap between 
association approaches revealed eight high-confidence genes for drought adaptation, four of them being differentially expressed under 
drought (number in bold and underlined in integrated insights box) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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with bf ∼ N (0, Ibf�
2
bf
), a is the random additive genetic effect, with 

a ∼ N (0, �2
a
G ), and e is the error term, with e ∼ N (0, Ie�

2
e
). The G ma-

trix is the realized genomic relationship matrix, which was computed 
from the marker data using the “A.mat” function of the R package rr-
BLUP with default options (Endelman & Jannink, 2012). The matrices 
X and Zx are incidence matrices of their corresponding effects, and Ix 
is an identity matrix of its proper dimension. To test the hypothesis of 
greater than zero additive genetic variance (Ho: �2a = 0; H1: �2a > 0), we 
performed a likelihood ratio test with one degree of freedom between 
the full model (Equation 1) and a reduced model without the additive 
genetic effect (a ). Individual narrow-sense heritability was estimated 
as:

Standard errors of the heritability estimates were obtained 
using the delta method (vpredict function from the asreml-r pack-
age version 4.0; Wolak, 2012). Given its small heritability estimate 
(mean  ±  SD of 0.029  ±  0.037) and nonsignificant additive genetic 
variance (p =.21), Rs was not used in the association analyses and is 
not presented in the Results. Genetic and phenotypic correlations 
were further estimated for the heritable traits (Figure 2, blue box 
“Step 1”), using a bivariate model (Methods S2). While genetic cor-
relations between traits depend only on the correlation of additive 
genetic effects, phenotypic relationships rely on both additive ge-
netic and environmental effects (Methods S2).

2.4  |  Genotypic data

The original genotypic data consisted of 6,386 validated genic SNPs 
(Pavy, Deschênes, et al., 2013), for which the verification of known 
pedigrees and the reconstruction of all half-sibling families were per-
formed using the colony software (Jones & Wang, 2010; Wang & 
Santure, 2009). After quality screening of genotyping data (minor 
allele frequency [MAF] >0.01, SNP call rate >80% per individual with 
average call rate of 99%), 6,153 SNPs representing 2,606 candidate 
genes were retained in the final data set for subsequent analyses. 
Within genes, SNPs were interspaced by a minimum of 200 bp (Pavy, 
Deschênes, et al., 2013), which corresponds to about three times the 
distance for a half-decay in linkage disequilibrium in white spruce 
genes from natural populations (Pavy, Namroud, et al., 2012). Prior 
to GPA analyses, imputation of missing data was conducted using 
linkimpute version 1.1.4 (Money et al., 2015), and an imputation accu-
racy of 0.77 was estimated by randomly masking 10,000 genotypes.

2.5  |  Genotype–phenotype associations (GPA)

Genotype–phenotype associations (GPA) were estimated using the 
Bayesian sparse linear mixed model (BSLMM) implemented in the 
gemma software package version 0.97 (Zhou et al., 2013; Zhou & 

Stephens, 2012). BSLMM is a polygenic model that takes into ac-
count the contribution of single SNPs with larger effects, as well as 
the simultaneous contribution of multiple SNPs with small effects, 
to phenotypic variation. To do so, BLSMM includes the main effects 
of individual SNPs as predictors of the phenotype, and a polygenic 
effect resulting from the combination of multiple small-effect SNPs 
(Zhou et al., 2013). The polygenic effect is fitted as a random term 
using the centred kinship matrix (K) among individuals estimated 
from the marker data in gemma. The model estimates the posterior 
probability that an SNP has a main effect (posterior inclusion prob-
ability, PIP), and the proportion of phenotypic variance (PVE) ex-
plained by the genetic data (i.e., the combination of the main and 
polygenic effects).

Before GPA analyses, the initial distributions of phenotypic traits 
were inspected and, when needed, we applied Box–Cox transforma-
tions to improve normality (Shapiro–Wilk tests: p >.05). Because the 
BSLMM does not allow fitting covariates, each trait was first cor-
rected for the block effect by taking the residuals of the following 
model, fitted using the asreml-r version 4.0 software:

where � is the overall mean, b is the fixed block effect, and e is the 
error term as defined in Equation 1. By explicitly modelling the realized 
pairwise relatedness between all individuals using the kinship matrix 
(K), the polygenic effect in BSLMM captures both population structure 
and within-population family structure (Hoffman, 2013; Kang et al., 
2010). Thus, in the absence of substantial population differentiation 
(Figure S1), there is no need to correct for population structure using 
additional covariates in GPA analyses (Price et al., 2010).

We ran three independent gemma chains, each consisting of 
5,000,000 iterations, a burn-in of 1,000,000, and a thinning interval 
of 100. We assessed the convergence across runs for the param-
eters of interest using Gelman–Rubin diagnostic plots in the coda 
R package (Plummer et al., 2006). To identify significant genotype–
phenotype associations for each trait, the harmonic mean of PIP was 
calculated across the three independent chains and a strict cut-off 
of PIP >0.1 was used (Chaves et al., 2016; Pfeifer et al., 2018). To 
summarize the hyper parameters generated in gemma, we calculated 
the mean, median, and the upper and lower bounds of the 97.5% 
credible interval for each trait from the averaged posterior distribu-
tions (Table S2).

2.6  |  Genotype–environment associations (GEA)

Genotype–environment association (GEA) analyses investigating the 
relationships between population allele frequencies and various cli-
mate variables were conducted to detect loci showing signatures of 
local adaptation. Population allele frequencies were estimated using 
a two-step procedure. First, family-based allele frequencies were 
calculated using the hierfstat R package (Goudet, 2005), in order to 
take into account variation in the number of trees sampled across 

(2)h
2
=

�
2
a

(�2
bf
+ �2

a
+ �2

e
)

(3)y = 1� + Zb + e
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families within populations. Then, population-based allele frequen-
cies were obtained by averaging the family-based allele frequencies. 
For each provenance, climatic series were obtained for the 1950–
1980 period, assuming that these series are representative of the 
environmental conditions prevailing at the time of mother tree es-
tablishment and early growth. Climate variables considered for GEA 
were relevant of how plants experience droughts during summer, 
and included the mean temperature (Tmean), the mean soil mois-
ture index (SMI), the standardized precipitation–evapotranspiration 
index (SPEI), total precipitation (Prec) and the mean vapour pressure 
deficit (VPD). SMI was preselected because it was a significant and 
strong climate predictor of white spruce growth response and cli-
mate sensitivity traits (Methods S3; Depardieu et al., 2020). In this 
study, SPEI was used as a second drought index. SPEI was calculated 
based on the formula of Hargreaves and Samani (1985), which esti-
mates reference crop evapotranspiration based on temperature and 
extraterrestrial radiation.

Prior to GEA tests, population structure was assessed by using 
principal component analyses (PCAs) and the sparse non-negative 
factorization (sNMF) method implemented in the LEA R package 
(Frichot & Francois, 2015). The results indicated an absence of 
population structure in the data set (Figure S1). Data were further 
analysed using both a univariate regression method (latent factor 
mixed models, LFMM; LEA R package; Frichot & Francois, 2015) and 
a multivariate redundancy analysis (RDA; Lasky et al., 2012) in order 
to test for significant genotype–environment associations. RDA was 
shown to perform better than univariate methods to detect weak 
multilocus selection (Forester 2018), which is usually the prevalent 
scenario in white spruce (Hornoy et al., 2015). The LFMM approach 
uses a hierarchical Bayesian mixed model, which corrects for poten-
tial confounding effects including population structure and isolation-
by-distance patterns via K latent factors. We tested two different 
numbers of latent factors (K), namely K = 1 and K = 2. The genomic 
inflation factor (λ), defined as the median of squared z-scores di-
vided by the median of the chi-squared distribution (as described in 
appendix S2, from François et al., 2016), was calculated after mod-
elling. We observed more uniformly distributed histograms of ad-
justed p-values and λ values closest to 1 with K = 1, in comparison 
with K = 2. Consequently, LFMM analyses were performed by set-
ting K = 1 latent factors. For each SNP–climate variable correlation, 
|Z| scores were computed using 10,000 sweeps, after a burn-in of 
5,000 sweeps. Five independent runs per LFMM test were used to 
obtain median |Z| scores and associated p-values, which represented 
the strength of the association between a climatic variable and each 
SNP. |Z| scores from multiple runs were combined according to the 
Fisher–Stouffer method. p-values were adjusted for multiple testing 
using the Benjamini–Hochberg algorithm, with a false discovery rate 
(FDR) of 0.1 (François et al., 2016).

The second multivariate GEA approach (i.e., RDA) was conducted 
using the vegan package in R (Oksanen et al., 2007), as previously de-
scribed in Capblancq et al. (2018). Briefly, climate variables were scaled 
to a mean of 0 and a variance of 1. We ran RDAs without correcting 
for population structure. This approach has been shown to be more 

powerful than RDA approaches that correct for population structure 
under various demographic scenarios similar to those generally found in 
conifers, including isolation by distance, while resulting in only a slight 
increase in false positives (Forester et al., 2018). The statistical signif-
icance of the model and of each axis was tested using a permutation-
based analysis of variance (999 permutations). Following the constrained 
ordination step, outlier SNPs were detected using the pcadapt method-
ology (Capblancq et al., 2018; Luu et al., 2017). After visual inspection of 
the amount of information retained on the different axes of RDA, only 
z-scores of the two most significant ordination axes were retained for 
subsequent analysis. For each locus, a robust Mahalanobis distance was 
computed to identify outlier vectors of z-scores (Capblancq et al., 2018). 
An FDR approach was used to control for false positives, with markers 
having q-values less than 0.1 considered as significantly associated with 
climatic gradients. Each SNP was assigned to the climatic predictor for 
which the correlation was the highest (Forester et al., 2018, see https://
popgen.nesce​nt.org/2018-03-27_RDA_GEA.html for details).

2.7  |  Gene expression data

Transcriptomic (RNA-seq) data were used to investigate if genes iden-
tified in GEA or GPA analyses showed differential expression patterns 
related to drought response in white spruce (Figure 2, blue box “Step 
3”). Data were obtained from foliage samples of three genetically unre-
lated 2-year-old clonally propagated white spruce genotypes sampled 
at 0, 7, 14, 18 and 22 days from the onset of drought treatments in 
the greenhouse, as previously described by Stival Sena et al. (2018). 
The protocols for RNA extraction, library synthesis, sequencing meth-
ods, and transcript counts and filtering are further detailed in Methods 
S4. deseq2 version 1.20.0 was used to identify differentially expressed 
genes (DEGs) between drought-treated and control foliage samples, 
by applying the likelihood ratio test (LRT) approach with an FDR of 
0.05 to 33,824 genes (Love et al., 2014; R Core Team 2018). Genes 
with a significant interaction effect between condition and sampling 
day (referred to as “Drought” herein) were considered differentially 
expressed under drought conditions. The complete list of identified 
DEGs is presented in Table S3. We classified the DEGs into upregu-
lated genes (positive values of log fold change, LFC) and downregu-
lated genes (negative values of LFC). Note that pairwise comparisons 
on each sampling day were used instead of a time course differen-
tial expression analysis, as the former outperformed or were equally 
good at identifying DEGs in short time series (fewer than eight time 
points, Spies et al., 2019). The drought-responsive genes whose ex-
pression differed between the three genotypes tested (referred to as 
“Genotype” herein) were also identified.

2.8  |  Functional and structural annotation of 
significant SNPs

Functional annotations of genes carrying significant markers iden-
tified by association or transcriptomic approaches were examined 

https://popgen.nescent.org/2018-03-27_RDA_GEA.html
https://popgen.nescent.org/2018-03-27_RDA_GEA.html
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based on sequence similarity searches by using blastx (cut-off E-
value of ≤10−10) against the RefSeq database using blast2go version 
5.1.13 (Gotz et al., 2008). The protein domain descriptions and Gene 
Ontology (GO) annotations were also obtained using the blast2go 
pro suite. To detect protein signatures, homologous protein domains 
from translated sequences were identified by searching against the 
Interpro database. GO molecular function and biological process 
terms were obtained for each individual transcript and GO plant 
slims were assigned by mapping the set of GO annotations to the 
terms in the GO slim. Enrichment analyses for GO terms and protein 
domains were performed using the blast2go pro suite by compar-
ing the different gene lists with the complete set of 2606 candi-
date genes. Fisher's exact tests were used and p-values <.05 were 
considered significant. Structural annotation of SNPs relied on the 
GCAT3.3 white spruce gene catalogue (Rigault et al., 2011). SNPs 
located in coding regions were classified into synonymous (S) and 
nonsynonymous (NS) substitutions, while those located in noncod-
ing regions were annotated as intron or untranslated regions (i.e., 
3′UTR or 5′UTR). Venn diagrams were generated using an online tool 
(http://bioin​forma​tics.psb.ugent.be/webto​ols/Venn/) to compare 
the lists of significant SNPs.

3  |  RESULTS

3.1  |  Heritabilities and genetic correlations 
between traits

Narrow-sense heritability estimates (h2) were first calculated for 12 
phenotypic traits (Figure 2). Except Rs, for which the heritability esti-
mate was close to 0, all the phenotypic traits were low to moderately 
heritable (h2 ranging from 0.11 to 0.32; Table 1) and associated ad-
ditive genetic variances were statistically significant (see stars in the 
grey shaded cells, Table 1). The climate-sensitivity traits CS-CWT, 
CS-WD and CS-LDr, as well as DBH38, were the least heritable with 
h2 varying from 0.11 to 0.18. H38, LDr and the three growth re-
sponse traits (Rc, Rl, and Rr) were moderately heritable with h2 rang-
ing from 0.23 to 0.25. Cell wall thickness (CWT) and wood density 
(WD) were the most heritable traits with h2 = 0.30 and h2 = 0.32, re-
spectively. Positive and moderate to high genetic correlations were 
found between the growth response traits to drought (Rc, Rl, and 
Rr) and the dendrometric traits (H38 and DBH38), suggesting that 
drought resilience and productivity are controlled by similar sets of 
genes. Rc, Rl and Rr were negatively correlated to CS-WD and CS-
CWT, indicating that trees that were able to substantially modulate 
their wood anatomy across their lifespan were less resilient to the 
2002 extreme drought event.

3.2  |  Genotype–phenotype associations (GPA)

The main and polygenic effects of SNPs included in the BSLMM ex-
plained from 11.0% (CS-CWT) to 33.6% (CWT) of the phenotypic 

variance (PVE; Figure 3; Table S2), which closely reflected the 
narrow-sense heritability estimates. No significant SNP associations 
were detected for Rl and H38 (Table 2a). Between one and 18 sig-
nificant SNPs were identified for the other traits tested, resulting 
in a merged “GPA list” of 57 unique SNPs representing 53 unique 
genes. The 57 SNPs discovered included 50 that were located in 
exons (20 synonymous, 12 nonsynonymous and 18 located in UTRs) 
and five located in introns, while the annotation of two SNPs was 
undetermined (Table S4). Only two SNPs showed significant asso-
ciations with the dendrometric traits H38 and DBH38, while 14 and 
18 significant associations were found for the climate-sensitivity 
and the growth response traits, respectively. A larger number of sig-
nificant markers (24 SNPs) were detected for the anatomical traits 
(Table 2a). Pairwise comparisons between traits revealed that eight 
SNPs were shared between CWT and WD, while seven SNPs were 
common to Rc and Rr (Notes S1). These overlaps are in agreement 
with the high pairwise genetic correlations observed between these 
traits (i.e., r = .85 between CWT and WD and r = .99 between Rc and 
Rr; Table 1).

The GPA list of significant SNPs contained genes involved in 
hydrolase activity, ion binding and heterocyclic compound binding 
(Figure S2; Table S5). The major gene families identified coded for 
glycoside hydrolases (six genes), zinc fingers (four genes) and puta-
tive transporters (four genes; Table 3a). Two putative pectinester-
ases were also identified.

3.3  |  Genotype–environment associations (GEA)

To identify genes along environmental gradients that are indicative 
of local adaptation, allele frequencies were tested against climate 
variables using both univariate (LFMM) and multivariate (RDA) ap-
proaches. Using an FDR of 0.1, a total of 290 unique SNPs were de-
tected using LFMM. A large number of markers were significantly 
associated with SPEI (153) and SMI (109), followed by Tmean (72), 
VPD (48) and Prec (three) (Table 2b; Table S6). Using RDA, 130 SNPs 
were significantly associated with the five climatic variables tested, 
with a large proportion of SNPs being more specifically attributed to 
SMI (51 SNPs), Tmean (31) and VPD (29), while only 10 and nine SNPs 
were attributed to Prec and SPEI, respectively (Table 2b). When both 
LFMM and RDA methods were combined (union), 307 SNPs repre-
senting 240 genes were identified (Figure 4). A majority of markers 
were located in exons (97 synonymous, 66 nonsynonymous and 115 
located in UTRs), 25 SNPs were located in introns, while the annota-
tions for four SNPs remained undetermined (Table S8).

Considering the statistical limitations of each GEA method used 
(see Section 4.1 for further details), genes detected by at least one 
GEA approach were considered in subsequent steps to minimize 
the rejection of true positives. This set included 240 genes and 
will be referred to as the “GEA list” hereafter. The GO classifica-
tion revealed that those genes represented a broad range of mo-
lecular functions with the highest proportion being associated with 
catalytic activity (transferase activity) and heterocyclic compound 

http://bioinformatics.psb.ugent.be/webtools/Venn/
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binding (Table S9, Figure S2b). GO analysis also showed a significant 
enrichment for heterocyclic compound binding, protein metabolic 
process and transferase activity categories (Figure S2d). The kinase, 
zinc finger and leucine-rich repeat genes were the most represented 
families, with 24, 14 and eight genes significantly associated with 
the five climate variables (Table 3b; Table S9). Among the 12 protein 
families presented, six protein domains were overrepresented in the 
candidate gene lists (i.e., GEA, GEA_DEGs or GEA_genotype lists; 
Table 2b; Table S10). While putative zinc finger proteins were asso-
ciated with all the climate variables tested, kinases and transporters 
were associated with SPEI, SMI, Tmean and VPD but not precipita-
tion. The three glycosyltransferases identified were related to SPEI, 
SMI and VPD. Four putative chlorophyll binding proteins showed 
associations with drought gradients (SPEI and SMI) while three 
members of the enriched heat shock protein family were specifically 
associated with soil moisture (Table 2b; Table S10).

3.4  |  Overlap with gene expression and functional 
annotation of high-confidence genes

Among the 285 genes carrying significant SNPs according to GEA 
and GPA analyses, eight were found in common and were therefore 
considered high-confidence candidates (Figure 5). Next, we investi-
gated the expression profiles of these 285 genes to assess the over-
lap between association and transcriptomic approaches.

Gene expression data revealed that 10,788 genes out of the 
22,532 genes initially surveyed were DEGs in response to drought, 
and were referred to as “drought-responsive genes” (Table S3). 
Transcriptomic data identified 110 drought-responsive genes 

among the 285 genes identified in GPA or GEA (Figure 5; Figure S3). 
Drought-responsive GPA genes included 23 DEGs mostly involved 
in heterocyclic compound binding as well as transferase and hydro-
lase activities (Figure S2a). These genes were particularly overrep-
resented in the GO category response to stress, followed by the 
positive regulation of response to stimulus and the regulation of re-
sponse to water deprivation (Figure S2c). The 91 drought-responsive 
GEA genes were mostly involved in heterocyclic compound binding 
and transferase activity at GO level 3 and were overrepresented in 
anion binding, the generation of precursor metabolites and energy, 
and photosynthesis (Figure S2b,d).

The intersection of GPA and GEA lists revealed a set of eight high-
confidence genes (Table 4, Figure 5). These genes included a pyro-
phosphokinase (GQ04005_G11), one glutaredoxin (GQ0182_F04), a 
putative zinc-finger transcription factor (GQ03707_G19), a phenylala-
nine ammonia lyase (GQ04102_C19), a glycoside hydrolase (GQ03203_
B22), a pectinesterase (GQ03617_M21) and a polyadenylate binding 
protein (GQ03612_M08). Four of them were drought-responsive (re-
ferred to as key genes, see Figure 2). The glutaredoxin and the zinc-
finger transcription factor were upregulated while the expression of 
the pectin esterase and the putative folate receptor were reduced 
under drought (Table 4). A significant genotypic effect was detected for 
two drought-responsive genes coding for the putative pectinesterase 
(GQ03617_M21) and glutaredoxin (GQ0182_F04) (Table 4).

4  |  DISCUSSION

We examined the underlying genomic architecture of adaptive diver-
gence related to drought in 43 white spruce provenances growing in 

F I G U R E  3  Results of genotype–phenotype association (GPA) analyses. Violin plots summarize the kernel densities of the posterior 
distributions taken from BSLMM analyses for the proportion of genetic variance explained by allelic variants (PVE). The median (black circle) 
and the standard deviation of the observations (thin line) are presented. Abbreviations for the phenotypic are as follows: H38: height at 
38 years; DBH38: stem diameter at breast height at 38 years; WD: wood density; CWT: cell wall thickness; LDr: radial lumen diameter; Rc: 
growth recovery; Rl: growth resilience; Rr: relative growth resilience; CS-CWT: climate sensitivity of cell wall thickness to drought; CS-WD: 
climate sensitivity of wood density to drought; CS-LDr: climate sensitivity of radial lumen diameter to drought [Colour figure can be viewed 
at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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a common garden by linking variation in genotype, phenotype and 
environmental conditions. We report on a set of 285 genes asso-
ciated with climate variables and/or adaptive traits, including 110 
high-confidence drought-responsive genes. We propose that the 
four genes at the intersection between all association approaches 
and transcriptomics are of highest relevance for drought tolerance 
in white spruce and labelled them as key genes.

4.1  |  Signatures of polygenic adaptation to drought

The polygenic nature of traits involved in local adaptation to climate 
is well documented in coniferous and other plant species (Csillery 
et al., 2018; Sork, 2018; Sork et al., 2013). Adaptation usually builds 

up from a number of covarying small-effect alleles rather than a few 
major-effect alleles, resulting in the detection of multiple loci show-
ing weak selection signals (Hornoy et al., 2015; Le Corre & Kremer, 
2012). In this context, previous studies highlighted the value of using 
a combination of univariate and multivariate analyses when testing 
for signatures of adaptation in landscape genomic studies (Harrisson 
et al., 2017; Rellstab et al., 2015). In the present study, the overlap 
of significant SNPs identified by both LFMM and RDA was moder-
ate (36.81%; Table 2a), in accordance with previous observations 
(Capblancq et al., 2018; Forester et al., 2018). However, the major-
ity of SNPs detected by RDA (90%) were also detected by LFMM. 
A comparison of multivariate approaches (i.e., RDA) and univariate 
approaches (LFMM) recently concluded they had similar power 
to identify genetic markers significantly associated with climate 

TA B L E  2  Number of significant single nucleotide polymorphisms (SNPs) detected and number of corresponding genes after genotype–
phenotype associations (GPA) (a) and genotype–environment associations (GEA) (b).

(a)

Trait subset or name

gemmaa 

No. of SNPs No. of genes

Dendrometric 2 2

Height (H38) 0 0

Diameter at breast height (DBH38) 2 2

Anatomy 24 21

Wood density (WD) 11 10

Cell wall thickness (CWT) 18 15

Radial lumen diameter (LDr) 3 3

Growth response 18 17

Growth recovery (Rc) 18 17

Growth resilience (Rl) 0 0

Growth relative resilience (Rr) 7 7

Climate-sensitivity 14 14

CS-WD 14 14

CS-CWT 2 2

CS-LDr 1 1

All traits tested 57 53

(b)

Predictors

RDAb  LFMMb 

No. of SNPs No. of genes No. of SNPs No. of genes

Precipitation (Prec) 10 9 3 3

Standardized precipitation 
evapotranspiration index (SPEI)

9 9 153 128

Soil moisture index (SMI) 51 42 109 84

Temperature (Tmean) 31 27 72 58

Vapor pressure deficit (VPD) 29 21 48 37

All climatic variables tested 130 101 290 229

agemma: genome-wide efficient mixed-model association. 
bRDA: redundancy discriminant analysis; LFMM: latent factor mixed models. 
Different colors to identify the trait subsets.
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variables (Capblancq et al., 2018). However, RDA was reported as 
more powerful than LFMM at identifying markers undergoing weak 
selection, and more robust to deviations in demographic histories, 
sample sizes and population structure (Ahrens et al., 2018; Forester 
et al., 2018). Their potentially divergent insights support the utility 
of combining LFMM and RDA methods to identify adaptive SNPs in 
white spruce.

In this study, the five environmental variables used for GEA 
analyses were complementary to each other and thus provide a 
comprehensive set of environmental drivers of local adaptation to 
drought. A high proportion of SNPs detected by LFMM (37.6%) and 
RDA (39.2%) were associated with SMI (Table 2b), indicating that soil 
moisture is a very informative index for the detection of drought 

adaptation in the populations investigated. Previous work showed 
that SMI was a strong predictor of growth resilience in the same 
43 white spruce populations (Depardieu et al., 2020). Because SPEI 
integrates the effects of anomalous temperatures on drought and 
precipitation, it is likely to better capture the frequency of drought 
events than Tmean and Prec. The largest number of significant SNPs 
was obtained for SPEI in the LFMM analyses (153 SNPs or 52.8%; 
Table 2b), while only 6.9% of significant SNPs were associated with 
this variable using the RDA method (Table 2b). The univariate LFMM 
allows an SNP to be associated with more than one climatic variable, 
whereas each significant marker was assigned to the climatic pre-
dictor for which the correlation was the highest in RDAs. Indeed, 
in our study we found that 27 SNPs were associated with VPD and 

TA B L E  3  Summary of the most well-represented or enriched putative protein families identified in genotype–phenotype associations (a) 
or genotype–environment associations (b).

(a)

Protein family (GPA analyses) Enriched protein domaina No. of genes No. of DEGs

Glycoside hydrolase No 6 1

Heat shock protein Yes 1 0

Kinase Yes 2 1

Methyltransferase Yes 1 1

MYB Yes 1 1

Pectinesterase Yes 2 1

Peptidase Yes 2 0

Transporter Yes 4 2

Zinc finger Yes 4 3

Total number of genes — 23 10

(b)

Protein family (GEA 
analyses)

Enriched protein 
domaina No. of genes No. of DEGs Prec SPEI SMI Tmean VPD

Chlorophyll binding 
protein

Yes 4 3 * *

Glycosyltransferase Yes 3 2 * * *

Glycoside hydrolase No 5 2 * * *

Heat shock Yes 3 0 *

Kinase Yes 24 9 * * * *

Leucine rich repeat No 8 3 * * *

Methyltransferase No 6 2 * * * *

MYB No 4 1 * *

Pectinesterase No 3 1 * *

Peptidase No 6 3 * * * *

Transporter Yes 4 3 * * * *

Zinc finger Yes 14 5 * * * * *

Total number of genes — 34 — — — — —

Note: Significant SNP–climate associations are indicated by stars in (b). Results of protein domain enrichment analyses are presented in the “Enriched 
protein domain” column, including unenriched protein domains (No) and enriched protein domains in the GEA or DEG lists (Yes). The complete list of 
enriched protein domains can be found in Table S10.
Abbreviations: Prec, total precipitation in summer; SMI, mean soil moisture index in summer; SPEI, standardized precipitation–evapotranspiration 
index in summer; Tmean, mean temperature in summer; VPD, vapour pressure deficit in summer.
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SPEI using LFMM (Figure S4a), with 20 of them formally associated 
with VPD using RDA (Figure S4b). Our results show that SPEI, SMI 
and VPD are prevalent climatic variables capturing allele frequency 
changes along environmental gradients. Of the 240 significant genes 
identified in GEA (Figure 4), 43 genes were previously reported as 
involved in adaptation to climate or pertaining to gene families with 
high levels of amino acid changes in white spruce (Table S11; Hornoy 
et al., 2015; Namroud et al., 2008; Pavy, Gagnon, et al., 2013). This 
supports their relevance in capturing signals of local adaptation in 
this species.

For GPA analyses, several studies reported that multilocus ap-
proaches generally outperformed single locus approaches (Ehret 
et al., 2012; Moser et al., 2015). This is particularly true when causal 
variants have small size effects on phenotypes (Jiang & Zeng, 1995; 
Konigorski et al., 2017), as is the case in conifers where individual 
loci generally explain <5% of trait variance (e.g. Beaulieu et al., 2011; 

González-Martínez et al., 2007; Lu et al., 2017; Prunier et al., 2013). 
In the present study, the main and polygenic effects of SNPs included 
in the Bayesian sparse linear mixed model explained 11.0%–33.6% 
of the phenotypic variance of the traits tested (Figure 4; Table 2b). 
These estimates are in line with those reported in Pinus albicaulis 
(Lind et al., 2017), where the genetic variance of SNPs included 
in the polygenic model explained 14.4%–37.6% of the variance of 
phenology-related traits and dendrometric traits such as height.

4.2  |  The phenotype–genotype–environment 
interplay, the cornerstone of local adaptation

We have identified a set of eight high-confidence genes by intersect-
ing GEA and GPA lists of significant SNPs, and believe that four of 
these may be key genes based on their drought-responsiveness ex-
pression (Table 4). The 13 significant SNPs carried by the eight high-
confidence genes included four nonsynonymous, three synonymous 
and six SNPs located in noncoding regions (Table 4). Although non-
synonymous SNPs are usually thought to be the main target of selec-
tion because they induce a change in protein sequence, silent SNPs 
(i.e., synonymous and noncoding SNPs) can also affect transcription, 
RNA splicing, transport and translation (Barrett et al., 2012; Komar, 
2007). Furthermore, given the rapid decay of linkage disequilibrium 
in white spruce natural populations (Pavy, Namroud, et al., 2012), it 
is possible that some of these SNPs are linked to a causal DNA poly-
morphism located nearby in the same gene. Therefore, these signifi-
cant markers represent useful information for the identification of 
candidate genes involved in drought adaptation.

The number of genes identified by combining both GEA and GPA 
analyses was small (eight genes out of 2,606 tested or 0.31%) com-
pared to previous results relying on both GEA and GPA approaches 
in coastal Douglas-fir (six significant genes out of 117 candidates 

F I G U R E  4  Results of genotype–environment association (GEA) 
analyses. Venn diagram showing the numbers of significant SNPs 
and genes (reported in parentheses and italics), and the intersection 
between sets detected with the latent factor mixed models (LFMM) 
and the redundancy analysis (RDA)

F I G U R E  5  Distribution of genes carrying significant SNPs classified into different sets. (a) Venn diagrams showing unique and common 
sets of genes identified using genotype–environment (GEA) and genotype–phenotype (GPA) associations, and transcriptomic methods. (b) 
Venn diagram illustrating unique and common sets of drought-responsive genes (DEGs) identified in GEA (GEA_DEGs) and GPA (GPA_DEGs). 
DEGs were classified into upregulated genes (Up, with log fold change LFC >0) and downregulated genes (Down, with LFC <0) [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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involved in cold hardiness, or 5.13% of genes; Vangestel et al., 2018), 
but in the same range as that found previously in white spruce using 
GEA only (e.g., 0.4%; see Hornoy et al., 2015; Namroud et al., 2008; 
Table S11). The proportion of markers displaying signals of local ad-
aptation and identified using GEA-only studies varied from 0.09% 
to 4.42% in other conifer species, such as Picea sitchensis (Holliday 
et al., 2010), Pinus lambertiana (Eckert et al., 2015) or Pinus taeda 
(Talbot et al., 2017). Such large variation is expected when different 
experimental designs, methods and statistical thresholds are used.

The small overlap observed between the GEA and GPA lists of 
genes carrying significant SNPs was somehow expected, given that 
GEA identified genes carrying variants beneficial in the environ-
mental conditions prevailing at provenance locations, whereas GPA 
revealed genes for which genetic variation is involved directly in 
tree fitness in the conditions prevailing at the common garden site, 
and which would implicate a larger set of physiological processes. 
Conifers are perennial plants that originated over 300 million years 
ago (Farjon, 2018; Gernandt et al., 2011) and have evolved a diver-
sity of genetic adaptations and capacities for physiological plas-
ticity in response to ever changing local environmental conditions. 
Significant GEAs detected in our study indicate that white spruce 
populations occurring in heterogeneous environments are probably 
under divergent selection. Given the typically multigenic control of 
adaptive traits and high within-population genetic diversity in white 
spruce (Depardieu et al., 2020), it is likely that high selection pres-
sures resulting from extreme climatic conditions or climatic shifts 
translated into small to moderate allele frequency shifts at many 
genes. It is commonly assumed that, at the evolutionary timescale, 
genetic adaptation to drought is the result of constant climatic con-
straints in addition to punctual extreme climatic events (Combes, 
2008). One should note that, because adaptation to drought is 
generally the result of additive effects of various adaptive traits (de 
Micco & Aronne, 2012), the small overlap observed between our 
GEA and GPA lists might be partially explained by the limited num-
ber of phenotypic traits examined in this study. Current research 
efforts in white spruce are focusing on precision phenotyping to 
identify novel traits that could help find mechanisms underlying 
drought adaptation (e.g., D’Odorico et al., 2020).

While the GEA analyses conducted herein probably identified 
gene variants providing a selective advantage under dry climatic con-
ditions or frequent drought events, GPA analyses also uncovered gene 
variants leading to improved drought resilience following the severe 
2002 drought event. The genes discovered in GPA are potentially 
relevant to overcome extreme drought events. We used the same 
set of provenances in previous work and showed that white spruce 
populations from drier geographical origins had higher growth resil-
ience to extreme drought events (Depardieu et al., 2020). Thus, the 
genes derived from the overlap of GEA and GPA lists of significant 
SNPs (Table 4) probably carry variants providing a selective advantage 
to trees evolving in dry conditions. They are especially relevant if we 
assume that most significant natural selection episodes occur during 
extreme climatic events, which set up strong selective pressures on 
individuals and populations (see Grant et al., 2017).

4.3  |  Putative functions of significantly associated 
genes and relationships with drought-responsive 
gene expression

The significant proportion of genes involved in white spruce climate 
adaptation exhibiting transferase and hydrolase activities (Figure 
S2) was consistent with previous observations in both white spruce 
(Hornoy et al., 2015) and Norway spruce (Azaiez et al., 2018). The 
most well-represented protein families among significant genes 
detected with association methods were the kinase and zinc finger 
proteins (ZFP) (with 36 and 18 genes identified in GEA and GPA, 
respectively) including 10 kinases and eight ZFPs that had drought-
responsive expressions (Table 3a,b). MYB transcription factors 
were also found differentially expressed under drought conditions 
(Table 3; Tables S5 and S9). Many members of these gene families 
are involved in plant development, hormone and stress response 
pathways in plants (Golldack et al., 2014; Joshi et al., 2016; Sharma 
& Pandey, 2016). In trees, the overexpression of ZFP and MYB tran-
scription factors resulted in enhanced photosynthesis, production of 
antioxidant enzymes and enhanced growth under water stress (for 
a review, see Polle et al., 2019). Other functional proteins, such as 
glycosyltransferases, glycoside hydrolases, pectinesterases, one de-
hydrin (GQ03914_N06) and one dehydratase (GQ03213_K13), were 
also differentially expressed in response to drought (Tables S5 and 
S9). Drought-responsive members of these gene families have been 
previously reported in several conifer species (Behringer et al., 2015; 
Perdiguero et al., 2012; Stival Sena et al., 2018).

The overlap of GEA and GPA lists highlighted eight genes of 
highest relevance for drought adaptation and coding for putative 
proteins serving regulatory, enzymatic and structural functions 
(Table 4). We found no empirical evidence for a direct involvement of 
these genes in drought tolerance in Arabidopsis thaliana. In particu-
lar, the expression of the putative pectinesterase and folate receptor 
was reduced in response to drought, while the putative glutaredoxin 
and zinc finger protein were up-regulated under drought conditions 
(Table 4). Pectins have been shown to play a key role in modulating 
cell wall structure in response to drought stress (Le Gall et al., 2015). 
Functional studies have shown the role of glutaredoxin genes in en-
hancing drought tolerance in herbaceous plant species (Wu et al., 
2017). The A. thaliana homologue of the putative zinc finger protein 
(GQ03707_G19) has been shown to improve plant tolerance to ox-
idative stress (Huang et al., 2011). Similarly, the homologous folate 
receptor gene was reduced under both oxidative and salt stresses 
in this model plant (Luhua et al., 2013). Considering the signalling 
crosstalk in response to different abiotic stresses, this transcription 
factor is likely to be involved in drought tolerance in white spruce.

Transcriptomic data were used to identify two sets of drought-
responsive genes among those underlying local adaptation as a com-
plementary approach to the GEA and GPA studies. Of the 285 genes 
identified by GEA or GPA analyses, 110 genes were regulated under 
drought conditions (Figures 2 and 5), including 59 upregulated and 
51 downregulated genes (Figure 5b). Variation in gene expression 
can occur through cis- and trans- regulations, which can promote 
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adaptation and divergence within and among natural populations 
(Signor & Nuzhdin, 2018). Cis-acting polymorphisms induce variation 
in expression in the gene carrying them or in a gene linked to it, while 
trans-acting effects refer to polymorphisms in other loci affecting 
gene expression. About 39% of the genes identified in genetic as-
sociations were DEGs, indicating that those genes are likely to carry 
cis-acting elements, as previously observed in black spruce from an 
overlap of 17% between significant GEA gene SNPs and differen-
tial gene expression among genotypic classes (Prunier et al., 2015). 
Because the SNPs analysed here were mainly located in exons, it 
would be relevant to further investigate whether these 110 genes 
carry additional variants in their cis-regulatory regions that would be 
in linkage with the significant SNPs identified herein. Nonetheless, 
our results suggest that a large proportion of DEGs carrying high-
confidence SNPs identified by GPA or GEA analyses could underpin 
trans-acting effects, in accordance with previous observations at the 
intraspecific level (Signor & Nuzhdin, 2018).

Previous work in A. thaliana suggested that both cis-regulatory 
evolution and genetic variation in stress responsive gene expres-
sion may be important mechanisms of local adaptation (Lasky et al., 
2014). To our knowledge, only a few studies in plants have clearly 
illustrated how RNA-sequencing (RNA-seq) or quantitative poly-
merase chain rection data could be used to identify locally adapted 
genes in response to climate (Gugger et al., 2016; Lasky et al., 2014; 
Prunier et al., 2015). Among the genes exhibiting a strong response 
to stress (referred to as “eSR genes”, for stress expression response), 
Lasky et al. (2014) identified a restricted set of genes that differ 
across genotypes in their gene expression response (referred to as 
“eGEI genes”, for the gene-by-environment interaction expression). 
For instance, genes with genetically variable responses to drought 
or cold (eGEI genes) had stronger associations with climate than eSR 
genes (Lasky et al., 2014). This suggests that eGEI genes should play 
a role in plasticity across different environments, thus reflecting 
local adaptation.

Other studies conducted in bacteria and some plants showed 
that a large proportion of genes responsive to a specific stress are 
not adaptive for this stress, suggesting that regulated genes might 
reflect neutral evolutionary drift or dynamic changes in gene regula-
tory networks (for a review see Joshi et al., 2016; López-Maury et al., 
2008; Swindell et al., 2007). In this study, combining association ge-
netics and transcriptomics helped to untangle the genes involved in 
adaptive divergence from those involved in short-term responses to 
stress. However, one limitation of our study was that the genotypes 
(and families) evaluated by RNA-seq were different from those used 
to perform GEA and GPA analyses. A second limitation was that 
seedling response to drought (used in our transcriptomic approach) 
may not be indicative of tree response throughout its lifespan. Thus, 
we should be cautious when interpreting the results of the combi-
nation of the GEA/GPA and DEG gene lists. Nevertheless, the in-
tersection of the two approaches does indicate drought-responsive 
genes with a potential adaptive value. To date, understanding how 
short-term gene expression responses to drought are linked to 
drought adaptation remains challenging, and studies that aim to 

estimate selection on gene expression are scarce in long-lived plants 
such as conifers. Future studies incorporating phenotypic, genotypic 
and environmental data measured on the same individuals are likely 
to provide strong inferences of selection targets in natural white 
spruce populations.

4.4  |  Building resilience under a drier climate: 
opportunities and practical implications

Forest managers and tree breeders are faced with rapid climate change 
and need to update their strategies to foster the drought resilience of 
forest ecosystems, while maintaining wood quality and productivity. In 
this context, it is crucial to examine potential trade-offs between traits 
reflecting fitness and traits related to vulnerability to climate. The 
range of narrow-sense heritability estimates that we observed using 
the conservative G-matrix approach (0.11 ≤ h2 ≤ 0.32, Table 1) and esti-
mates from previous work in spruces (e.g. Depardieu et al., 2020; Lenz 
et al., 2010; Li et al., 1993; Zeltins et al., 2018) indicates that the traits 
studied here will respond to breeding selection. In particular, the higher 
genetic control observed for the growth response traits (Rc, Rl and Rr) 
compared to the other traits tested in this study (Table 1) suggests that 
this suite of traits could be used to improve the resilience of plantations 
under dryer climate in the future. In Douglas-fir (Pseudotsuga menziesii 
var. menziesii) and oak (Quercus series Virentes), height gains can be 
achieved by selecting parental trees with higher growth rates, but this 
may come at the expense of tolerance to abiotic stresses (Darychuck 
et al., 2012; Koehler et al., 2012). In contrast, no consistent trade-offs 
between height gain and tolerance to climate were observed in interior 
spruce (De la Torre et al., 2014; MacLachlan et al., 2017). In the ab-
sence of a trade-off between height growth improvement and drought 
tolerance in white spruce (Table 1) it seems possible to select drought-
resilient germplasm, while maintaining high productivity. These ob-
servations are in accordance with previous observations we made at 
the population level (Depardieu et al., 2020). However, the absence of 
observed trade-offs may only hold in the growing conditions prevailing 
at the common garden site specific to our study. Even if low genotype-
by-environment (GxE) interactions have been noted in eastern white 
spruce for productivity and phenology traits (Li et al. 1993), potential 
GxE interactions for drought tolerance traits could exist and should be 
assessed in other common gardens to support the generalization of 
these conclusions.

The present genomics study is one of the few that has combined 
association and transcriptomic approaches to examine adaptation 
to climate such as drought episodes in a widely distributed conifer. 
We showed an absence of trade-offs between growth resilience and 
various dendrometric traits (i.e., height and radial growth), indicating 
that drought resistance and productivity are positively correlated 
in white spruce. The combination of these approaches uncovered a 
set of key genes probably involved in genetic adaptation to climate 
and more specifically involved in the regulation of physiological re-
sponse to drought. The present set of 110 high-confidence candi-
date genes should prove valuable for future fundamental studies of 
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physiological processes including the functional characterization of 
drought tolerance in conifers.

From an applied standpoint, once repeatability is validated in inde-
pendent tree sets, the markers identified in this study may prove use-
ful in marker-assisted selection schemes and also to monitor adaptive 
genetic resources. One possible way to move forward with monitoring 
would be to screen established breeding populations for the presence 
of beneficial alleles and their prevalence, compared to that in natural 
populations. Because drought-adaptive traits are probably controlled 
by many small-effect genes, new genetic diversity could be infused in 
established breeding populations by testing candidate trees for the 
simultaneous presence of a number of potentially beneficial alleles. 
Other applications could be considered such as integrating the most 
significant markers in genomic selection models that would aim to im-
prove drought tolerance, so as to improve the prediction accuracy of 
these models especially in breeding populations with large effective 
population size (e.g., Beaulieu et al. 2014). Together, our findings pro-
vide a background for predicting population response to rapid climate 
change and lay the foundation for genomic-based breeding efforts for 
drought resistance in conifer species.

5  |  DATA AND CODE AVAIL ABILIT Y

The original phenotypic data are part of the network of the Natural 
Resources Canada white spruce genecological tests, and have been 
stored in our institution's database (https://trees​ource.rncan.gc.ca). 
Full access can be shared upon request to the corresponding author 
according to the intellectual property policies (IPP) of participating 
governmental institutions. Genotyping data are accessible through 
the Dryad Digital Repository (https://doi.org/10.5061/dryad.6rd6f). 
The data and R scripts used in the present study are available on 
the Github website (https://github.com/Clair​eDepa​rdieu​/Genet​ic_
basis_drought). The raw transcriptomic data were deposited in the 
European Nucleotide Archive (ENA) as part of the study SRP134160, 
bioproject PRJNA437248 (SRA accession nos. SRR6816977 to 
SRR6816983).
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