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Background. Live-attenuated influenza vaccine (LAIV) was licensed for prophylaxis of children 2–17 years old in Europe in 
2012 and is administered as a nasal spray. Live-attenuated influenza vaccine induces both mucosal and systemic antibodies and sys-
temic T-cell responses. Tonsils are the lymph nodes serving the upper respiratory tract, acting as both induction and effector site for 
mucosal immunity.

Methods. Here, we have studied the early tonsillar T-cell responses induced in children after LAIV. Thirty-nine children 
were immunized with trivalent LAIV (containing A/H1N1, A/H3N2, and B viruses) at days 3, 7, and 14 before tonsillectomy. 
Nonvaccinated controls were included for comparison. Tonsils and peripheral blood (pre- and postvaccination) were collected to 
study T-cell responses.

Results. Tonsillar and systemic T-cell responses differed between influenza strains, and both were found against H3N2 and B 
viruses, whereas only systemic responses were observed against A/H1N1. A significant increase in cross-reactive tonsillar CD8+ 
T cells recognizing conserved epitopes from a broad range of seasonal and pandemic viruses occurred at day 14. Tonsillar T cells 
showed significant cytokine responses (Th1, Th2, and granulocyte-macrophage colony-stimulating factor).

Conclusions. Our findings support the use of LAIV in children to elicit broadly cross-reactive T cells, which are not induced by 
traditional inactivated influenza vaccines and may provide protection to novel virus strains.
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Young children carry a considerable burden of influenza disease, 
with the World Health Organization estimating that 10%–30% of 
children are infected each year. Each year, influenza has been re-
ported to cause 20.5 million cases of severe lower respiratory tract 
infections in children <6 years old [1]. Inactivated influenza vac-
cines (IIV) are approved for use in children 6 months old or older. 
Inactivated influenza vaccines mainly confer protective immu-
nity by inducing strain-specific antibodies. Due to the continuous 
antigenic drift and occasional shift, there is an urgent need for 
vaccines capable of inducing broader protection. Historical evi-
dence showed that in the absence of influenza-specific antibodies, 
influenza-specific CD8+ and CD4+ T cells play an important role 
in recovery from influenza infection [2, 3]. The importance of 

naturally occurring T-cell immunity in protection against seasonal 
and pandemic influenza was recently demonstrated in a large 
population-based study [4]. Furthermore, CD8+ T cells from the 
lungs of patients with influenza A or B were found to cross-react 
to influenza A, B, and C viruses [5], an important finding for the 
design of future universal influenza vaccines.

Moreover, CD8+ cells were associated with less severe pan-
demic infection in 2009 and lower viral shedding, as well as in-
creased survival after H7N9 avian influenza infection in China 
[6, 7]. Furthermore, numerous studies have demonstrated that 
individuals have T-cell subsets with cross-reactivity to influenza 
A strains to which they have not been previously exposed [8–
12]. Hence, cross-reactive CD8+ T cells recognizing conserved 
internal influenza epitopes are an interesting research focus in 
the development of universal vaccines.

In 2012, a live-attenuated influenza vaccine (LAIV) was li-
censed for children 2–17 years old in Europe. Live-attenuated 
influenza vaccine is administered as a nasal spray and more 
closely resembles a natural infection inducing long-lasting sys-
temic humoral and cellular immune responses [13, 14]. In meta-
analysis studies, the LAIV has high efficacy in children <6 years 
old when the vaccine strains matched the epidemic strains [3, 
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15, 16]. However, studies have shown protection after LAIV 
also in seasons with strain mismatch, indicating a broader pro-
tective effect that we are currently not able to quantitate. At 
this time, there are no well established immunological correl-
ates of protection (COP) after LAIV, although induction of T 
cells has been highlighted. In a large field study, the majority of 
subjects with high frequencies of interferon (IFN)-γ-secreting 
cells (≥100 spot-forming cells per million lymphocytes) were 
protected from influenza infection, although the specific phe-
notype of these IFN-γ-secreting cells was not defined [3]. 
Furthermore, significant increases in IFN-γ + CD4+ and CD8+ T 
cells were observed after LAIV immunization, but not after IIV 
in children aged 5–9 years old. In adults, no increase in T or nat-
ural killer cells after IIV or LAIV vaccination was found [17]. 
Moreover, low baseline levels of T cells correlate with higher 
responses after vaccination [18]. When comparing the effect of 
different prime-boost strategies for LAIV and IIV, only regimes 
including LAIV induced CD4+, CD8+, and γδ + T cells specific 
for highly conserved influenza epitopes [19].

Intranasal administration of vaccines has several advantages 
over parenteral administration, with the potential of stimulating 
both local and systemic immune responses, as well as being easy 
to administer and needle-free. Human nasopharynx-associated 
lymphoid tissue, which consists of adenoids and tonsils, plays 
an important role in immune defense of the upper respiratory 
tract, both as an inductor and effector site of adaptive humoral 
and cellular immunity [20].

We have shown proof of concept that the LAIV induced sys-
temic T cells cross-reactive to drifted strains, providing poten-
tial clinical protection [21]. An unanswered question is whether 
LAIV induces T cells in the local draining lymph nodes, which 
could provide broad protection. Our current study is a contin-
uation of earlier work, in the same cohort, where we showed 
induction of tonsillar B cells and local immunoglobulin A after 
LAIV [22]. In this study, we focused on the early T-cell re-
sponses in the local tonsillar tissue, to investigate whether LAIV 
induced cross-reactive CD8+ T cells in the tonsils. To study ton-
sillar T cells, we vaccinated children with LAIV at specified 
time intervals before elective tonsillectomy, which allowed us to 
elucidate local, tonsillar-specific, and systemic T-cell responses. 
Increased understanding of these cross-protective cellular im-
mune responses induced by LAIV may aid design of a future 
universal vaccine.

MATERIAL AND METHODS

Study Design

Fifty-five healthy children (3–17  years old) were recruited 
from the Otorhinolaryngology outpatient clinic at Haukeland 
University Hospital, Norway. Thirty-nine children (20 boys and 
19 girls, median age 4 years) were immunized with the trivalent 
LAIV (Fluenz; AstraZeneca) in 2012–2013 at 3, 7, or 14 days be-
fore elective tonsillectomy. Controls consisted of age-matched 

unvaccinated children scheduled for tonsillectomy, providing a 
background comparison for postvaccination tonsillar responses 
(Figure 1). The study was approved by the Ethical Committee of 
Western-Norway and the Norwegian Medicines Agency (www.
clinicaltrials.gov: NCT01866540). Demographics and inclusion 
and exclusion criteria for this trial have been published, and this 
work is a continuation of earlier findings to decipher the im-
mune profiling after LAIV [13].

Live-Attenuated Influenza Vaccine

Trivalent LAIV contained 107 fluorescent focus units of A/
California/7/2009 (H1N1), A/Victoria/361/2011 (H3N2), and 
B/Wisconsin/1/2010. Live-attenuated influenza vaccine was 
administered intranasally as a 0.1-mL spray dose per nostril. 
Twenty-nine children <9 years old received 2 doses of vaccine 
28 days apart as recommended by the manufacturer.

Sample Collection

Blood samples were collected pre- and postvaccination (days 
0 [at tonsillectomy], 28, and 56). Cell preparation tubes (BD 
Biosciences) were used to separate peripheral blood mononu-
clear cells (PBMCs) and plasma. Peripheral blood mononu-
clear cells were used fresh in the T-cell assays, whereas plasma 
samples were aliquoted and stored at −80°C before use in the 
hemagglutination inhibition (HI) assay. Tonsils were collected 
during the operation and kept in saline, and tonsillar mononu-
clear cells (TMCs) were isolated by Ficoll gradient centrifuga-
tion and used directly in the T-cell assays [23].

Antigens and Peptides

Split virus antigens from the vaccine strains A/
California/7/09(H1N1), A/Victoria/361/2011(H3N2) and 
B/Wisconsin/1/2010, were provided by GlaxoSmithKline, 
Belgium. By using the Immunome Epitope Data Base, a panel 
of cross-reactive CD4+ (33 peptides) and CD8+ (31 peptides) 
T-cell epitopes were selected from influenza isolates spanning 
from 1934 to 2009, according to sequence conservancy, human 
leukocyte antigen (HLA) supertype coverage, and prevalence 
[24]. Only the peptides with the highest conservancy score 
were selected among the CD4 or CD8 T-cell epitopes to de-
tect cross-protective responses using 2 and 7 peptides from 
the internal proteins, respectively (Supplementary Table 1). 
These peptide epitopes have been empirically shown to differ-
entiate between CD4 and CD8 T-cell responses. The peptides 
were chemically synthetized by Fmoc chemistry (Mimotopes, 
Clayton, Australia) and dissolved in 100% dimethyl sulfoxide 
at 20 mg/mL.

Hemagglutination Inhibition Assay

The influenza strain-specific HI antibody was measured pre- 
and postvaccination. Plasma samples were treated with receptor 
destroying enzyme ([RDE] Seiken, Japan). Duplicate samples 
from each subject (starting dilution of 1:10) were tested at 
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the same time, using 8 hemagglutinating units of the homol-
ogous H1N1 and H3N2 vaccine strains or ether-treated B virus 
(Influenza Reagent Resources) and 0.7% turkey red blood cells 
[25]. An HI titer of 40 has been shown to be protective in adults.

Interferon-γ Enzyme-Linked Immunospot Assay

Secretion of IFN-γ from TMCs and PBMCs were detected as 
described earlier [13] by using an IFN-γ ELISpot kit (Mabtech 
AB, Sweden). In brief, 4 × 105 lymphocytes/well were added in 
Roswell Park Memorial Institute 1640 medium supplemented 
with 10% fetal calf serum with negative control (medium alone), 
split virus antigen, or peptides at a concentration of 2 µg/mL. 
Plates were incubated overnight (37°C, 5% CO2) and developed 
the next day according to the manufacturer’s instructions. Spots 
were counted using an Immunoscan reader and associated soft-
ware (CTL Europe). The negative control (medium alone) value 
was subtracted from the influenza-specific (A/H1N1, A/H3N2, 
B, or peptide panel) responses.

Multiplex Cytokine Assay

Tonsillar mononuclear cells and PBMCs (1 × 106 cells/well) were 
incubated in lymphocyte medium for 72 hours in the presence 
of a mixture of 2.5 μg/mL of 3 split influenza antigens (A/H1N1, 
A/H3N2, and B), as previously described [26]. The cytokines 
present in the supernatants were quantified using a 10-Plex kit 
(LHC0001M; Thermo Fisher Scientific) using a Luminex 100 

machine (Luminex Corporation) and StarStation v.3.0 Software 
(Applied Cytometry, UK).

Statistical Analysis

Differences between pre- and postvaccination responses were 
analyzed by non-parametric Kruskal-Wallis multiple compari-
sons test or the Mann-Whitney test using GraphPad Prism ver-
sion 6 for Mac OS X. The correlation analysis was performed by 
non-parametric Spearman correlation. P < .05 was considered 
significant.

RESULTS

Early Hemagglutination Inhibition Antibody Responses After Live-

Attenuated Influenza Vaccine

The influenza-specific HI responses were measured after LAIV. 
The majority of subjects (59%) had prevaccination HI titers 
≥40 to H1N1, and no increase in antibodies was observed after 
vaccination, except for 1 subject (Figure 2). H3N2-specific HI 
titers ≥40 were observed in 49% of children prevaccination, 
and titers increased from day 14 with all subjects having titers 
≥40 at day 56. Most children (89%) had no prevaccination HI 
antibodies to influenza B, but antibodies increased at day 14. 
By 56  days postvaccination, 84% of children had titers ≥40. 
The nonvaccinated controls had similar antibody titers to the 
prevaccination titers of the vaccinees, supporting their use as 
relevant controls for analysis of tonsillar T cells.

Days post vaccination

Vaccinees
Male/Female
Previously vaccinated
Median age (range)

39#

20/19
21

4 (3,5–17yrs) 3,5 (3–14) 4 (3–15) 4,5(3 –17)

291)

Controls
Male/Female
Previously vaccinated
Median age (range)

16*

8/8
6

4,5 (3–17yrs)

55
9

11
16

37 32

0 3 7 14 28 56

Tonsillectomy

No. of 
children  N =

•  Non-vaccinated controls.  # One vaccinated child provided samples on day of tonsillectomy, but no sample day 0
1) Only children under the age of 10 years old required two doses of LAIV. Two children <10 did not receive a second dose,  one child 
    was sick on the day of second vaccination and another child withdrew from the study due to post operative discomfort.
2) The patients had both their tonsils removed in one operation, and therefore tonsils were only sampled at a single time-point. Non-
    vaccinated controls were used as pre-vaccination (day 0) comparator for tonsillar samples. Tonsils were collected from vaccinated
    children at 3 or 7 or 14 days post vaccination. Serum samples were collected at multiple time-points from each vaccinated subject and 
    at only a single time point at tonsillectomy from the non-vaccinated controls.

1st Dose 2nd Dose

Figure 1. Study design. Healthy, young children were recruited from the Department of Otorhinolaryngology scheduled for elective tonsillectomy and vaccinated intranasally 
with a live-attenuated influenza vaccine (LAIV) at 3, 7, or 14 days before tonsillectomy. Tonsils were extracted in total and collected from the operation theater from vaccinated 
children (n = 39) and a group of matched nonvaccinated controls (n = 16). Tonsil mononuclear cells were separated from the tonsils immediately after operation and used in the 
T-cell assays. Blood samples were taken before vaccination, at the time of tonsillectomy, and up to 56 days postvaccination. Peripheral blood mononuclear cells were separated 
and used in the T-cell assays, and plasma was stored for use in the hemagglutination inhibition assay. The number of subjects providing samples at each time point is shown.
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Interferon-γ T-Cell Responses in Tonsils and Blood

Antigen-specific IFN-γ responses were measured in TMCs 
and PBMCs from LAIV-vaccinated and control subjects 
after stimulation with either split antigens (Figure 3) or pep-
tides representing conserved CD4+ and CD8+ T-cell epitopes 
(Figure 4). Low levels of H1N1-specific IFN-γ-secreting TMCs 
were detected in nonvaccinated controls, and no increase in 
IFN-γ-secreting TMC response was detected after vaccina-
tion. These findings were confirmed by using CD4+ and CD8+ 
H1N1-specific peptides (Supplementary Figure 1). In con-
trast, the H1N1-specific IFN-γ response in PBMCs was signif-
icantly enhanced from day 0 and 3 to 56 days postvaccination 
(means = 58–167 and 9–167 spot-forming units [SFU]/1 × 106 
cells, respectively), with a peak reached at day 14 (mean 200 
SFU/1 × 106 cells). The H3N2-specific IFN-γ response of TMC 
was higher 14  days postvaccination compared with controls 
(day 14 mean = 181 and control = 80 IFN-γ SFU/1 × 106 cells, 
respectively), although not statistically significant. Vaccination 
did not significantly enhance the H3N2-specific IFN-γ re-
sponse in PBMCs. In contrast, both the tonsillar and the 
systemic PBMC B-strain-specific IFN-γ responses were sig-
nificantly higher 14  days postvaccination compared with the 
nonvaccinated subjects (tonsillar mean  =  134 and systemic 
mean 325 versus nonvaccinated tonsillar mean  =  18 and sys-
temic mean = 58 IFN-γ SFU/1 × 106 cells, respectively).

Interferon-γ CD4+ and CD8+ T-Cell Responses in Tonsils

To further determine the CD4+ and CD8+ T cells with cross-re-
active potential, elicited by LAIV, we used peptide epitopes 
from internal influenza antigens, which are highly conserved 
among viral strains over several decades. After stimulation with 
the conserved influenza-specific CD4+ (Figure 4A) or CD8+ 
(Figure 4B) peptides, a significant increase in CD8+ T-cell re-
sponses between the nonvaccinated controls and the LAIV 
immunized children at 14  days postvaccination was seen, 
indicating cross-reactive responses (means = 12 and 45 IFN-γ 
SFU/1  ×  106 cells, respectively). Likewise, a nonsignificant 
trend towards increased CD4+ T-cell responses was observed 
(means = 5 and 28 IFN-γ SFU/1 × 106 cells, at days 0 and 14, 
respectively). Although the TMC numbers are low, they repre-
sent a substantial number of T cells, because the total number 
of lymphocytes in the tonsils is large (109). Some subjects re-
mained nonresponders to the peptides, indicating that the 
donor is antigenically naive or lacks peptide presentation due 
to HLA mismatch.

Cytokine Responses in Tonsils and Blood After Live-Attenuated Influenza 

Vaccine

Tonsillar mononuclear cells and PBMCs were stimulated with a 
mixture of the trivalent split vaccine antigens, and the cytokine 

Figure 2. Serum hemagglutination inhibition (HI) antibody response after live-
attenuated influenza vaccine (LAIV). Plasma was collected pre- and postvaccination 
including at the time of tonsillectomy from children vaccinated with LAIV. The data 
show the influenza A H1N1 (A), influenza A H3N2 (B), and (C) B-strain specific HI 
responses of each individual subject. Influenza strain-specific HI antibody was 
measured by HI assay, prevaccination (day 0), the day of tonsillectomy (day 3, 7, 
or 14), and days 28 and 56 postvaccination. Control refers to the nonvaccinated 
group, which had similar HI titers as the day 0 vaccinees supporting their use as 
controls for the tonsillar results. The horizontal lines represent the geometric mean 
titers ± 95% confidence interval. The dotted line represents an HI titer of 40 re-
garded as protective antibody titers.
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responses detected after LAIV were grouped as Th1 (interleukin 
[IL]-2, IFN-γ, and tumor necrosis factor [TNF]-α), Th2 (IL-4, 
IL-5, IL-10, and IL-13), Th17 (IL-17), or granulocyte-macrophage 
colony-stimulating factor (GM-CSF) (Figure 5). Low levels of 
Th1-cytokines (IL-2, IFN-γ, and TNF-α) were observed in the 
unvaccinated controls, whereas a significant increase of IL-2 
and IFN-γ levels was detected at day 14. The levels of Th2 cyto-
kines (IL-4 and IL-13) as well as GM-CSF increased over time 
postvaccination, with day 14 levels being significantly higher 
than the controls. However, no significant increases were ob-
served for IL-10, IL-5, or IL-17 during the same observation 
period. No significant increases in cytokine responses in PBMCs 
(Th1, Th2, Th17, or GM-CSF) were observed postvaccination 
compared with prevaccination (data not shown).

DISCUSSION

T cells contribute to the protection against severe influenza 
illness and in recovery from infection [2]. Influenza-specific 
cytotoxic CD8+ T cells have been linked to reduced viral shed-
ding and increased survival after H7N9 avian influenza in-
fection [6, 7]. Furthermore, pre-existing T-cell immunity has 
been found to protect against confirmed influenza disease in 
the community [4]. T cells often provide broad cross-reactive 
immune responses due to preferential recognition of epitopes 
from conserved internal influenza antigens [8–12]. Our study 
is the first to describe the induction of influenza cross-reac-
tive CD8 T cells in the tonsils of healthy children after LAIV 
immunization. We used peptides representing conserved CD8 

Figure 3. Strain-specific T-cell responses in tonsils and peripheral blood mononuclear cells (PBMCs) after live-attenuated influenza vaccination (LAIV). The influenza H1N1, 
H3N2, and B strain-specific interferon (IFN)-γ responses in tonsillar mononuclear cells ([TMC] A, C, and E) and PBMCs (B, D, and F) were determined by IFN-γ enzyme-linked 
immunospot in nonvaccinated controls and subjects vaccinated with the LAIV. Each symbol represents the influenza-specific IFN-γ response (spot-forming units [SFU] per 
1 × 106 cells) after stimulation with split virus antigens. The horizontal bars represent the mean IFN-γ response for each time point ± standard error of the mean. Statistical 
significance was determined by the non-parametric Kruskal-Wallis multiple comparisons test (*, P < .05; **, P < .005).
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T-cell epitopes, and we found that tonsillar CD8+ T cells with 
cross-protective potential were elicited as early as 7–14  days 
postvaccination. This early mucosal T-cell response, close to the 
anatomical site of vaccine application, may provide protection 
at a population level, lessening the societal burden from drifted 
or shifted strains.

Interferon-γ has powerful antiviral activity, and increased 
levels may help prevent severe influenza illness [27, 28]. 
Elevated numbers of IFN-γ-producing T cells were detected 
in the blood after LAIV vaccination, lasting up to 1  year as 

previously described [13, 17, 19, 29, 30]. In this study, we have 
assessed the local influenza-specific IFN-γ response by enzyme-
linked immunospot (ELISPOT) using split virus antigens, 
which mainly detect CD4+ T-cell responses. Differences in the 
IFN-γ T-cell responses were observed between the 3 vaccine 
strains. Responses to the B strain were significantly elevated in 
both tonsils and blood, whereas the increase detected against 
H3N2 occurred in the tonsils but did not reach significance. 
In contrast, the H1N1-specific response increased only in the 
blood. The study was conducted 3  years postpandemic, and 
the immune response appears to be influenced by the higher 
prevaccination HI titers towards H1N1, which could have re-
duced viral replication and hence the local tonsillar immune 
response. Lower prevaccination titers were found towards the 
influenza H3N2 and B strains, with the strongest tonsillar re-
sponse towards the B strain, suggesting less exposure to influ-
enza B and efficient replication of the B strain. Differences in 
LAIV effectiveness data between the United States and Europe 
have been found, which may be due to regional differences in 
vaccination strategies and infection pressure [31–33].

We observed a mixed cytokine response in blood and tonsils 
of both Th1 and Th2 signatures, indicating the vaccine stimu-
lates a broad immune response, with a wide range of immune 
competent cells involved. More important, we did not see signif-
icant increases in influenza-specific cytokine levels in the blood 
up to day 14 postvaccination, corresponding to the findings of 
low reactogenicity after vaccination. However, we have previ-
ously observed a significantly elevated systemic multifunctional 
CD4+ response (IFN-γ, IL-2, and TNF-α) after 2 doses of LAIV 
in children [13]. This suggests that cytokine responses can be 
detected earlier in tonsils compared with blood. In agreement 
with this, we have previously found an early increase in tonsillar 
B cells and Tfh cells after LAIV [22, 34].

A postpandemic study found that the level of pre-existing 
cellular immunity was inversely correlated to HI antibodies 
[35]. This raised concerns that vaccination of children with IIV 
may not induce cross-reactive T-cell immunity, because IIVs 
primarily induce antibodies and not cellular responses [36]. 
However, this concern does not apply to LAIV, supported by 
our findings in the pediatric population that LAIV induced 
both broad cellular and humoral immune responses. Studies 
have also shown that animals challenged with heterosubtypic 
influenza strains were protected after LAIV [37–40]. More im-
portant, human studies have found that LAIV provided protec-
tion in children against a drifted H3N2 variant virus, naturally 
occurring during the studies and not contained in the vaccine 
[19, 41]. Furthermore, we have previously shown proof of con-
cept that LAIV boosts cross-reactive, protection associated sys-
temic CD8+ T-cell responses after LAIV, which could provide 
broad immunity to drifted and shifted influenza strains [21]. 
However, it is not known whether these T cells provide protec-
tion at the site of infection in the upper respiratory tract.

Figure 4. Cross-reactive CD4+ and CD8+ T-cell responses after live-attenuated 
influenza vaccination (LAIV) vaccination. The T-cell immune response was evalu-
ated by measuring the number of influenza-specific interferon (IFN)-γ-secreting T 
cells (spot-forming units [SFU]) after LAIV, using the enzyme-linked immunospot 
assay. Tonsillar mononuclear cells (TMC) isolated from tonsils were tested for re-
sponses against panels of peptides representing conserved T-cell epitopes (A and 
B). Responses to CD4 T-cell epitopes (major histocompatibility complex [MHC] 
class  II restriction) are shown to the left, and responses to CD8 epitopes (MHC 
class I restriction) are shown to the right of the figure. Each symbol represents the 
number of influenza-specific SFU per million TMC for each child with the mean 
and stand error of the mean shown. Statistical differences between vaccinated 
and nonvaccinated subjects were determined by the non-parametric Kruskal-Wallis 
(*, P < .05; **, P < .005).
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The use of conserved peptide epitope panels provides an im-
portant tool to evaluate cross-protective, T-cell responses after 
LAIV vaccination. Due to the high conservancy score of the 
universal epitopes used in this study, we conclude that LAIV 
vaccination of children can induce cross-reactive mucosal 
T-cell responses that cover a wide range of seasonal and po-
tential pandemic strains. This important knowledge supports 
the use of LAIV in this age group to elicit cross-protective 

cellular immune responses. Together with our previous find-
ings of systemic CD8+ T cells, this new knowledge indicates 
a broader protective immune response after LAIV than pre-
viously acknowledged. These findings might provide the im-
munological basis to explain the protection observed in the 
absence of protective HI antibodies (HI) and the lower hos-
pitalization rates after childhood LAIV vaccination in the 
United Kingdom [41, 42].
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Figure 5. Cytokine responses after live-attenuated influenza vaccination (LAIV) in tonsillar mononuclear cells (TMCs). The TMCs were isolated from nonvaccinated controls 
and from vaccinees at 3, 7, and 14 days after immunization with LAIV. The TMCs were stimulated for 72 hours with a mixture of split virus antigens from influenza A H1N1, 
influenza A H3N2, and B vaccine strains, and supernatants were analyzed by multiplex for the presence of cytokines. The Th1 (interleukin [IL]-2 [A], interferon [IFN]-γ [B], and 
tumor necrosis factor [TNF]-α [C]), Th2 (IL-4 [D], IL-5 [E], IL-10 [F], and IL-13 [G]), and Th17 (IL-17 [H], granulocyte-macrophage colony-stimulating factor [GM-CSF] [I]). Each 
symbol shows the influenza-specific cytokine response of 1 subject, and the horizontal lines represent the mean ± standard error of the mean. Statistical significance be-
tween the cytokine responses in nonvaccinated controls and vaccinated subjects was determined by the non-parametric Kruskal-Wallis multiple comparisons test. *, P < .01.
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The HI is commonly used as a COP when evaluating inacti-
vated vaccines. However, induction of HI antibodies after mu-
cosal LAIV does not sufficiently reflect the immune responses, 
due to the compartmentalization of the immune system. 
A body of experimental data supports the introduction of cel-
lular assays as a relevant correlate of protection, although they 
are not yet fully accepted by the regulatory authorities for ap-
proval of vaccines [43]. A  large efficacy trial in children sug-
gested IFN-γ ELISPOT counts of ≥100 SFU/million PBMCs, as 
a correlate of protection after LAIV. Furthermore, background 
levels of <20 SFU/million PBMCs have been found in a United 
Kingdom child cohort [4]. However, prevaccination levels of 
>100 SFU/million PBMCs were found in our Norwegian cohort 
[21], probably due to previous infection. The IFN-γ ELISPOT 
assays may have a great potential as a correlate of protection, 
but this is laborious in a clinical setting [3, 44, 45]. A consensus 
has not been reached within the field, and the number of 100 
IFN-γ-producing cells is considered arbitrary [3]. Advances in 
the research field may lead to the development of a more rapid 
and convenient assay.

In this study, we have used a relatively small cohort of 
children, but the data shown here are in line with previous 
published results for LAIV vaccination [46–48]. The ELISPOT 
analysis was done based on unfractionated tonsil cells, and the 
distinction made between CD8+ and CD4+ T-cell responses was 
based on the selective ability of the peptide epitopes used to 
be presented by major histocompatibility complex class I or II 
molecules as empirically verified [49]. A low level of additional 
cross-presentation can nonetheless not be excluded.

Children are the main transmitters of influenza in the com-
munity, and, when infected, they shed virus for a longer period 
compared with adults. Hence, childhood vaccination cam-
paigns could limit the spread of influenza in the community. 
Indeed, after the United Kingdom commenced LAIV vaccina-
tion of children, signs of herd immunity have been observed 
in areas with widespread vaccination, such as reduced hospital 
admission of children [42]. In Japan, childhood IIV vaccina-
tion was found to have an indirect effect with a reduction in 
mortality rates in adults [50]. Successful LAIV immunization 
requires replication of the LAIV viruses in the mucosa of the 
upper airways to induce protection. Pre-existing antibodies or 
local cellular immunity could inhibit replication and hence im-
mune response. The LAIV may be most suitable in the youngest 
children, with a naive immune response, and perhaps subse-
quent booster vaccinations should be with IIV. This would en-
sure a broad cellular and humoral response after LAIV, which 
can be further expanded by IIV immunizations to secure neu-
tralizing immunity [35].

CONCLUSIONS

In this study, we provide the first evidence of LAIV eliciting 
cross-reactive CD8+ T-cell responses in the tonsils of young 

children. These T cells have the potential to provide broad pro-
tection against seasonal and pandemic viruses, supporting the 
use of LAIV as a childhood vaccine.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.

Supplementary Table 1. Set of Conserved CD4o and CD8 or 
AH1N1pdm09-Specific Epitopesa

aPeptides covering unique CD4 and CD8 epitopes from the 
A(H1N1)pdm09 influenza virus. All of these epitopes are con-
served in all 4 swine-origin H1N1 strains (A/California/07/2009, 
A/England/195/2009, A/Mexico-city/004/2009, and A/
Paris/2592/2009). Epitopes are listed in the order of their se-
lection by a greedy algorithm (Order). For each epitope, its es-
timated response frequency from the literature (ie, Prevalence), 
fraction of strains that contain 100% matches of the epitope 
(Conservancy), and the fraction of predicted HLA supertype 
coverage (S-type_coverage) are also listed in the table.

Supplementary Figure 1. Cross-reactive CD4+ and CD8+ 
T-cell responses to H1N1pdm09 after LAIV vaccination. 
The T-cell immune response was evaluated by measuring the 
number of influenza-specific IFN-γ-secreting T cells (spot 
forming units [SFU]) after LAIV, using the ELISPOT assay. 
TMCs isolated from tonsils were tested for responses against 
panels of peptides representing conserved T-cell epitopes of 
H1N1pdm09 influenza strain (A and B). Low levels of H1N1-
specific IFN-γ-secreting TMCs were detected in nonvaccinated 
controls, and no increase in IFN-γ-secreting TMC response 
was detected after vaccination. Each symbol represents the 
influenza-specific SFU per million TMC for each child with the 
mean and stand error of the mean (SEM) shown. Statistical dif-
ferences between vaccinated and nonvaccinated subjects were 
determined by the nonparametric Kruskal-Wallis (*,  P  <  .05; 
**, P < .005).
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