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Abstract: The study of diabetes mellitus (DM) patterns illustrates increasingly important facts. Most
importantly, they include oxidative stress, inflammation, and cellular death. Up to now, there is a
shortage of drug therapies for DM, and the discovery and the development of novel therapeutics for
this disease are crucial. Medicinal plants are being used more and more as an alternative and natural
cure for the disease. Consequently, the objective of this review was to examine the latest results on
the effectiveness and protection of natural plants in the management of DM as adjuvant drugs for
diabetes and its complex concomitant diseases.
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1. Introduction

Diabetes mellitus (DM) is a chronic endocrine disorder, and its adverse effects currently
occupy a huge challenge for prevention and/or treatment [1]. It is categorized into three
main forms, type I, type II, and recently type III DM [2]. The acquired form of DM is type II,
as it chiefly results from insulin resistance syndrome [3]. The various fatal adverse effects
of type II DM include diabetic foot [4], diabetic bone disease [5], diabetic neuropathy [6],
and declined resistance to bacterial and viral infection via affecting the innate immunity [7].
The molecular mechanistic pathway of type II DM is attributed mainly to defects in the
kinase molecular signaling pathways, PI3K, p38MAPK, PKA, and calmodulin kinase,
which influence glucose metabolism and insulin action [8].

There are multiple synthetic antidiabetic therapeutic families such as sodium–glucose
co-transporter-2 inhibitors [9], dipeptidyl peptidase-4 inhibitors [10], glucagon-like peptide
1 analogs [11], sulfonylureas [12], thiazolidinediones [13], and biguanides [14]. However,
for nearly 20 years, the new science of natural therapy has been highlighted to minimize
some chronic diseases including type II DM [15]. The active ingredients in natural therapy
may have antidiabetic activity, e.g., nonflavonoid polyphenols such as curcumin, tannins,
lignans, and resveratrol [16] or flavonoids such as anthocyanins, epigallocatechin gallate,
quercetin, naringin, rutin, and kaempferol [17].

In brief, most polyphenols and flavonoids exhibit their antidiabetic influence via
improving the glucose control and insulin sensitivity [16], inhibiting oxidative stress [17],
reducing inflammatory cytokine levels [18], inhibiting α-amylase and α-glucosidase activ-
ity [19], and increasing tyrosine phosphorylation of insulin receptor (IR) [20].

2. Diabetes Mellitus
2.1. Prevalence, Types, Symptoms, Pathophysiology, and Molecular Mechanism of DM

DM has received huge interest from most scientists as it is an international major
public health threat. It is termed the silent killer, and it is predicted that, by the year 2030,
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the number of diabetic individuals will reach 578 million (700 million in 2045) [21]. DM is
a chronic metabolic disorder, and there are two identified types, insulin-dependent DM
(IDDM) and noninsulin-dependent DM (NIDDM). IDDM is an autoimmune disease caused
as a result of the destruction of β-cells of the islets of Langerhans in the pancreas [22]. On
the other hand, NIDDM occurs due to stress factors, obesity, and hormonal imbalance in
which there is an overproduction of both insulin and amylin hormones from β-cells of
the islets of Langerhans [23,24], as well as a reduction in adiponectin, calcium (Ca2+), and
25-hydroxyl vitamin D [25]. In recent years, Alzheimer’s disease was designated type III
DM [26], and it is usually marked by amyloid-β plaques and phosphorylated-tau protein
accumulation in the hippocampus of the brain [27]. Other types of DM may be temporary,
such as gestational DM, which occurs in the second or third trimester of pregnancy in
females and typically disappears after parturition [28]. Furthermore, in some conditions,
DM results from complete or partial dissection of the pancreas as a consequence of some
diseases related to the pancreas, such as tumors or severe inflammation [29].

In summary, the inability of pancreatic β-cells to produce insulin in IDDM [30] or
insulin resistance [31] is implicated in the failure of insulin to perform its function, leading
to hyperglycemia, polyuria, weight loss or increase, polydipsia, delayed wound healing,
and blurred vision [32]. Hyperglycemia itself leads to an increase in the production of
advanced glycation end-products (AGEs) and their receptors [33]. In this regard, especially
in NIDDM, this is accompanied by the promotion of free radicals in the mitochondrial
matrix that damage multiple biomolecules of the cell such as deoxyribonucleic acid (DNA),
lipids, and proteins [34]. Consequently, this increases susceptibility to chronic inflammation
and apoptosis, as well as impairs the function of various body organs [35].

On the other hand, AGEs and their receptors increase the activity of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidases and their messenger ribonucleic
acid (mRNA), as well as arachidonic acid pathways [36]. The interaction of AGEs with
the receptors of advanced glycation end-products (RAGEs) leads to the stimulation of
some cell signal transduction pathways such as protein kinase C (PKC), phosphatidyli-
nositol 3-kinase/protein kinase B (PI3K/Akt) [37], p38 mitogen-activated protein ki-
nase (p38 MAPK) [38], extracellular signal-related kinases (ERK) [39], RhoA/Rho-kinase
which activates many downstream kinases and mediates Ca2+ sensitization [40], Janus
kinase/signal transducer and activator of transcription (JAK/STAT), and suppressor of
the cytokine signaling 3 (SOCS3) [41]. Furthermore, there is dysregulation of 5′-adenosine
monophosphate-activated protein kinase (5′-AMPK) activity via inhibition of gluconeo-
genesis genes [42], downregulation of glucose transporter-4 (GLUT-4) [43], stimulation
of lipogenesis through elevation of HMG CoA reductase activity [44], and initiation of
mitochondrial axonal cell death [45]. The consequence of these activated signals are (i) an
increase in the level of transcription factors including nuclear factor-κB (NF-κB) [46] and
early growth response-1 (Egr-1) protein, which is a vital zinc finger transcription factor [47],
(ii) alteration of cell metabolism, and (iii) induction of inflammation, apoptosis, and prolif-
eration by the NOD-like receptor protein-3 (NLRP-3) inflammasome [48]. Tumor necrosis
factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6),
and interleukin-1 beta (IL-1β) are among the cytokines produced [49]. These cytokines
impair insulin signaling and peripheral glucose uptake and contribute to insulin resistance,
lipolysis, and hepatic glucose production [50].

Moreover, hyperglycemia in NIDDM is a hazardous issue that disturbs the genetic
expression responsible for insulin secretion, e.g., sirtuin-1 (Sirt-1) and glucose transporter-2
(GLUT-2), in β-cells [51]. It also activates the signaling pathway of insulin in adipose
tissue and skeletal muscle, e.g., glucose transporter-4 (GLUT-4), which carries glucose
from the cytoplasm to the membrane, and peroxisome proliferator-activated gamma
receptor (PPAR-γ) [52], or in hepatic tissue, e.g., insulin receptor substrate-1 (IRS-1)
serine/threonine/Akt-1 and phosphoenolpyruvate carboxykinase (PEPCK) [53]. The
molecular mechanism of insulin resistance is illustrated in Figure 1.
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Figure 1. Molecular mechanism of insulin resistance. Akt: protein kinase B, IRS-1: insulin receptor
substrate-1, PI3K: phosphatidyl inositol-3-kinase, PIP2: phosphatidylinositol 4,5-bisphosphate, PIP3:
phosphatidylinositol 3,4,5-trisphosphate, PDK-1: phosphoinositide-dependent protein kinase 1,
GSK3: glycogen synthase kinase 3, GLUT-4: glucose transporter-4, IL: interleukin, SOCS3: suppressor
of the cytokine signaling, LPS: lipopolysaccharides, MCP-1: monocyte chemoattractant protein-1,
TNF-α: tumor necrosis factor-alpha, iNOS: inducible nitric oxide synthase, ERK: extracellular signal-
related kinase, JAK: Janus kinase-2, MAPK: mitogen-activated protein kinase, Egr-1: early growth
response-1, NF-κB: nuclear factor-kappa B, NLRP-3: NOD-like receptor protein-3, FoxO1: forkhead
box O1, MTP: microsomal triacylglycerol transfer protein, G6PC: glucose-6-phosphatase catalytic
subunit 1.

2.2. Complications of DM

Untreated DM harms the minute blood vessels of some organs such as the kidney,
heart, eye, and nervous system [54]. Hence, diabetic nephropathy [55], cardiomyopa-
thy [56], retinopathy [57], and diabetic foot infection [58] are well-known adverse outcomes.
Furthermore, vagus nerve atrophy may occur as an outcome of neuronal, autoimmune
damage, and oxidative stress [59]. DM is connected to various musculoskeletal ailments,
such as joint stiffness, gouty arthritis, osteoarthritis, rheumatoid arthritis, and diabetic amy-
otrophy [60]. In some cases, the negative effects of DM have been linked to the gut, where
there has been a decrease in butyrate-producing bacteria and an increase in opportunistic
pathogens [61]. moreover, the incidence of cancer may be a consequence of DM in some
late stages [62]. A decrease in the salivary flow and elements is also obvious in diabetic
individuals [63]. Furthermore, diabetic ketoacidosis and hyperglycemic hyperosmolar
syndrome are both considered dangerous DM risks due to insulin deficiency, which results
in the formation of ketone bodies and the occurrence of metabolic acidosis [64]. In some
diabetic individuals, low immunity is also documented to make them more vulnerable to
invasive fungal infections, such as the filamentous fungus Syncephalastrum racemosum, that
affect the gastrointestinal tract [65].

Moreover, in 2020, it was confirmed that diabetic patients are very likely to be infected
with COVID-19 due to their immune impairment [66]. Normally, the angiotensin-2 conver-
sion enzyme (ACE-2) is expressed in β-pancreatic cells, and the SARS-Cov-2 virus binds
primarily to ACE-2, causing damage to β-pancreatic cells [67]. It should be noted that,
by stimulating oxidation free radicals and hypoxia-inducible factor 1 alpha (HIF-1α), DM
enhances the replication of the virus [68]. Certain NIDDM conditions in different tissues
are shown in Figures 2 and 3.
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Figure 2. Effect of noninsulin-dependent diabetes mellitus (NIDDM) on liver, pancreas, blood vessels,
and skeletal muscle. ER: endoplasmic reticulum, DNA: deoxyribonucleic acid.

Figure 3. Effect of noninsulin-dependent diabetes mellitus (NIDDM) on kidney, nerve cell, and
foot. VEGF: vascular endothelial growth factor, CTGF: connective tissue growth factor, TGF-β1:
transforming growth factor-beta 1, IL-1: interleukin-1, IL-6: interleukin-6, IL-18: interleukin-18,
TNF-α: tumor necrosis factor-alpha, ROS: reactive oxygen species.

3. Natural Therapy: A Safe Tool for DM Management

Today, due to their improved cost-effectiveness and avoidance of side-effects of certain
drugs, medicinal plants may be used in the handling of DM. As shown in Figure 4, some
herbal plants were found to improve hyperglycemia and insulin resistance via the AMPK
signaling pathway.

3.1. Nigella Sativa (NS)

NS is often known as black cumin, belonging to the Ranunculaceae family, which
grows extensively in many countries; it has many traditional uses as a spice and food
preservative [69]. NS seeds have many biological functions, including carminative, stim-
ulant, analgesic, antipyretic, and diuretic functions [70]. A complex blend of fatty acids,
vitamins, pigments, and volatile components constitutes NS oil (NSO), which includes
thymoquinone (TQ) and its associated compounds, thymol and dithymoquinone. It is
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important for the treatment of many diseases such as tumors, gastrointestinal disorders,
cirrhosis, hepatitis, and chemical poisoning [71]. NSO also exhibited in vivo antidiabetic
and neuroprotective effects in an animal model of experimental diabetes [72,73]. NS seed
extract also had a beneficial effect on the liver [74]. NS regenerates β-cells of the pancreas
during hyperglycemia as a consequence of its high polyphenol content, which enhances the
metabolic process of carbohydrates and lipids [75] and its ability to hinder the upregulation
of gluconeogenesis enzymes [76].

Figure 4. Effect of some natural plants on adenosine monophosphate-activated protein kinase
(AMPK) signaling pathway. NS: Nigella sativa, BER: berberine, CUR: curcumin, MO: Moringa olifera,
PO: Portulaca oleracea; PG: Punica granatum, ACC: acetyl CoA carboxylase, Akt: protein kinase B, NF-
κB: nuclear factor-kappa B, TNF-α: tumor necrosis factor-alpha, ROS: reactive oxygen species, PI3K:
phosphatidyl inositol-3-kinase, IRS-1: insulin receptor substrate-1, GLUT-4: glucose transporter-
4, FBS: fasting blood sugar, PEPCK: phosphoenolpyruvate carboxykinase, α-glucosidase: alpha-
glucosidase, DM: diabetes mellitus.

Several processes involving NSO itself or its main active ingredient, TQ, are respon-
sible for the antidiabetic activity of NSO. Via stimulation of AMPK phosphorylation in
hepatic and muscle tissues, NSO can increase insulin sensitivity [77]. Furthermore, NSO im-
proves GLUT-4, insulin-like growth factor-1, and phosphatidyl inositol-3-kinase (PI3K) [78].
By inhibiting sodium–glucose co-transporters, NSO decreases glucose absorption from
the intestine [79]. Another theory clarified that the decrease in the amount of glucose
by NSO is due to its inhibitory effect on α-glucosidase [80]. NSO increases PARP-γ in
the adipocyte and inhibits an enzyme that degrades insulin considered a cause of hyper-
glycemia [81]. Because of its unsaturated fatty-acid content and the downregulation of the
3-hydroxy-3-methylglutaryl-coenzyme reductase gene, which inhibits cholesterol oxidation
and triacylglycerol lipoproteins, NSO affects hyperlipidemia caused by DM [82].

The oxidative stress present in DM is due to substantial production of the reduced
form of nicotinamide adenine dinucleotide (NADH) that disrupts the equilibrium between
NADH and its oxidized form NAD+, thus resulting in oxidative stress. Therefore, it is
a redox imbalance disease [83]. Via the NADP-dependent redox cycle, TQ in NSO can
re-oxidize NADH and, thus, decrease the NADH:NAD+ ratio. The re-oxidation of NADH
to NAD+ by TQ stimulates glucose and fatty-acid oxidation, as well as Sirt-1-dependent
pathways [84]. Moreover, NAD+ activates Sirt-1, which is an NAD+-dependent histone
deacetylase that plays a key role in controlling both carbohydrate and lipid metabolism, as
well as the secretion of adiponectin and insulin, and that protects pancreatic β-cells from
oxidative stress and inflammation by inhibiting NF-κB activity [85]. The anti-inflammatory
effect of NS during DM is notably linked with its repressing influences on cyclooxygenase
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and 5-lipoxygenase pathways, reducing nitric oxide, MCP-1, and TNF-α production and
inhibiting IL-1β and IL-6 [86]. Furthermore, NS disrupts some DM complications such as
nephropathy through upregulation of vascular endothelial growth factor-A (VEGFA) and
transforming growth factor-β (TGF-β1) [87]. The molecular mechanistic pathways of the
antidiabetic effect of NS are reported in Figure 5.

Figure 5. The molecular mechanistic pathways of antidiabetic effect of NS. GSH: reduced glutathione,
CAT: catalase, SOD: superoxide dismutase, GPx: glutathione peroxidase, ROS: reactive oxygen
species, NO: nitric oxide, IL-1β: interleukin-11 beta, TNF-α: tumor necrosis factor-alpha, IL-6:
interleukin-6, IFN-γ: interferon-gamma, COX-I: cyclooxygenase-I, COX-II: cyclooxygenase-II, NF-κB:
nuclear factor-kappa B, Sirt-1: Sirtuin-1, AMPK: adenosine monophosphate-activated protein kinase,
Akt: protein kinase B, GLUT-4: glucose transporter-4, PPAR-γ: peroxisome proliferator-activated
receptor-gamma, ACC: acetyl CoA carboxylase, PGC1-α: peroxisome proliferator-activated receptor
gamma coactivator 1-alpha.

3.2. Berberine (BER)

BER is a quaternary ammonium isoquinoline alkaloid, which is present in some plant
families such as Berberidaceae, Papaveraceae, Ranunculaceae, Rutaceae, and Menisperma-
ceae [88]. BER achieves notable effects in treating and/or preventing various metabolic
factors such as DM, hyperlipidemia, obesity, liver dysfunction, and some diseases related
to disorders in nucleic acid metabolism [89]. In this review, we focus on the antidiabetic
targets of BER that have multiple pathways. BER promotes insulin secretion, glucose
uptake, and glycolysis [90], and it can also improve glycogenesis as a consequence of
the inactivation of glycogen synthase kinase enzyme [91]. On the other hand, it prevents
gluconeogenesis due to the reduction in its key regulatory enzymes, glucose-6-phosphate
dehydrogenase and PEPCK [92]. Furthermore, BER reduces insulin resistance by upregu-
lating PKC-dependent IR expression [93]; by blocking mitochondrial respiratory complex
I, the adenosine monophosphate/adenosine triphosphate (AMP/ATP) ratio increases,
thereby stimulating AMPK [94]. Hence, activated AMPK regulates transcription of uncou-
pling protein 1 in white and brown adipose tissue [95] and helps the phosphorylation of
acetyl-CoA carboxylase (ACC) and carnitine palmitoyltransferase I enzymes, causing a
reduction in lipogenesis and an increase in fatty-acid oxidation [96]. Via retinol-binding
protein-4 and phosphatase and tension homolog downregulation, as well as sirt-1 acti-
vation, BER has a hypoglycemic function, thus improving insulin resistance in skeletal
muscles [97].

Another mechanism of BER antidiabetic influence is attributed to its ability to regulate
both short-chain fatty acids and branched-chain amino acids [98], whereby it diminishes
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the butyric acid-producing bacteria that destroy the polysaccharides [99]. A previous study
displayed the role of BER in preventing cholesterol absorption from the intestine through
improving cholesterol-7α-hydroxylase and sterol 27-hydroxylase gene expression [100].
Moreover, BER provides a vigorous defense against insulin resistance via the normalization
of protein tyrosine phosphatase 1-B [101] and PPAR-γ/coactivator-1α signaling pathways
that enhance fatty-acid oxidation [102]. Additionally, it was illustrated that BER adjusts
GLUT-4 translocation via AS160 phosphorylation as a consequence of AMPK activation in
insulin-resistant cells [103].

During DM there is a relationship between inflammation and oxidative stress which
leads to the creation of proinflammatory cytokines such as IL-6 and TNF-α [104]. It was
reported that BER counteracts some inflammatory processes where it attenuates NADPH
oxidase (NOX) that is responsible for reactive oxygen species (ROS) generation, thereby de-
creasing AGEs and increasing endothelial function in DM [105]. BER displayed a tendency
to ameliorate the inflammation resulting from DM via various pathways, e.g., suppression
of phosphorylated Toll-like receptor (TLR) and IkB kinase-β (IKK-β) that is responsible
for NF-κB activation; thus, BER interferes with the serine phosphorylation of IRS and
diminishes insulin resistance [106]. Moreover, BER activates P38 that inhibits nuclear
factor erythroid-2 related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) enzyme blockage,
leading to proinflammatory cytokine production [107]. In addition, BER inhibits activator
protein-1 (AP-1) and, thus, suppresses the production of cyclooxygenase-2 (COX-2) and
MCP1 [108]. It was stated that BER alleviates some DM complications due to its capability
of attenuating DNA necrosis in different affected tissues and enhancing the cell viabil-
ity [109]. It was shown that BER protects the lens in diabetic eyes from cataract incidence
by improving the polyol pathway through inactivation of the aldose reductase enzyme
responsible for the conversion of glucose into sorbitol that degenerates the lens fiber [110].
Figure 6 shows some of the hypoglycemic mechanisms of BER mentioned above.

3.3. Curcumin (CUR)

CUR, a polyphenolic compound derived from the turmeric rhizomes of Curcuma longa,
is commercially used as a spice and food preservative agent [111]. It also has beneficial
effects on several chronic disease states linked with inflammation and oxidative stress,
as observed in DM and cancer [112]. Recently, it was reported that CUR inhibits the
COVID-19 protease enzyme [113]. One proposed mechanism of CUR ameliorating DM is
related to its antihyperlipidemic activity via suppression of fatty-acid synthase, carnitine
palmitoyltransferase 1, 3-hydroxy-3-methyl glutaryl coenzyme A reductase, and acyl-CoA
cholesterol acyltransferase enzymes [114]. Moreover, CUR can diminish lipogenesis in
insulin resistance syndrome, which is attributed to the inactivation of two transcription
lipogenic factors: sterol regulatory element-binding protein-1-c (SREBP-1c) and carbo-
hydrate response element-binding protein [115]. Furthermore, CUR was able to correct
elevated protein-tyrosine phosphatase 1-B resulting from insulin resistance syndrome [116],
leading to an improvement of the phosphorylation of insulin receptor substrate-1 (IRS-1)
and JAK-2 [117], as well as suppression of STAT3 and SOCS3 [118]. CUR also stimulates
Akt and ERK 1/2 [119], as well as alters the phosphatidylinositol 3-hydroxy kinase/Akt
signaling pathway [120].

Moreover, the anti-inflammatory properties of CUR are attributed to its ability to in-
hibit macrophage infiltration and migration into metabolic organs, as well as decline some
transcription inflammatory markers, including NF-κB and proinflammatory cytokines such
as TNF-α, IL-1β, TLR-4, and C-reactive protein [121]. Other inflammatory indicators such
as cyclooxygenase, phospholipases, and MCP-1 can be decreased in DM after the therapeu-
tic use of CUR [122]. CUR has been found to play a role in the diabetic effect by obstructing
TLR-4 activation and modifying caveolin-1 phosphorylation in diabetic patients [123].

Another effect of CUR is that it maintains mitochondrial destruction and disruption
while improving mitochondrial membrane potential and biogenesis [124]. The importance
of mitochondria is reflected by their role in mediating metabolic pathways and preserving
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cellular functions such as ion hemostasis, antioxidant defense, fatty-acid oxidation, amino-
acid biosynthesis, and energy production [125]. CUR potentiates the mitochondrial activity
by enhancing (i) cytochrome c protein level, which has a vital function in mitochondrial
oxidative phosphorylation, and (ii) mitochondrial carnitine palmitoyltransferase 1 enzyme,
which transports long-chain fatty acids into the mitochondria for β-oxidation [126].

CUR diminishes hypoxia-induced cell injury and HIF-1α, which is an oxygen-dependent
conversion activator and is closely related to oxidative stress specific to diabetic cardiomy-
opathy [127]. CUR also plays a role in increasing wound healing in experimental diabetic
rats by enhancing the expression of certain granulation tissue growth factors such as vascu-
lar endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), and
tumor growth factor-β1. Endothelial nitric oxide synthase was also enhanced [128]. CUR
treatment was able to improve insulin sensitivity and diabetic cardiac complications via
upregulation of some thermogenic genes such as uncoupling proteins 1, 2, and 3 [129],
which are mitochondrial anion carriers, and it can adjust the heart’s energy metabolism and
protect it against ROS by modulating mitochondrial respiration [130]. CUR treatment leads
to a decrease in the accretion of S-phase kinase-associated protein 2 (S-phase Skp2) and
enhances p27 protein accumulation in the pancreatic cancer cell, resulting in a significant
amelioration of diabetic nephropathy [131,132]. The potential hypoglycemic role of CUR is
shown in Figure 7.

Figure 6. Molecular pathways of BER in ameliorating NIDDM. InsR: insulin receptor,
IRS: insulin receptor substrate, IRS-1: insulin receptor substrate-1, IRS-2: insulin receptor
substrate-2, Shc: mammalian Shc locus encoding three protein variants with molecular
mass of 46, 52, and 66 kDa and identical modular structure, PKC: protein kinase C, PTP1B:
protein tyrosine phosphatase 1B, GLP-1: glucagon-like peptide-1, GLP-IR: glucagon-like
peptide-1 receptor, cAMP: cyclic adenosine monophosphate, PKA: protein kinase A,
GLUT-1: glucose transporter-1, GLUT-4: glucose transporter-4, GLUT: glucose transporter,
AMPK: adenosine monophosphate-activated protein kinase, p38 MAPK: p38 mitogen-
activated protein kinase, Nrf2: protein regulating the expression of antioxidant proteins
that protect against oxidative damage triggered by injury and inflammation, HNF-4α:
hepatocyte nuclear factor-4 alpha, MAPK: mitogen-activated protein kinase, TORC2:
target of rapamycin 2 kinase, CREB: cAMP response element-binding protein, IL-1β:
interleukin-1 beta, IL-1βR: interleukin-1 beta receptor, LPS: lipopolysaccharides, TLR:
Toll-like receptor, IRAK: interleukin-1 receptor-associated kinase, AP-1: activator protein-1,
TNF-α: tumor necrosis factor-alpha, TNF-αR: tumor necrosis factor-alpha receptor, IKK:
IkB kinase (a cytokine-activated protein kinase complex), NF-κB: Nuclear factor kappa B.
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Figure 7. Mechanisms of the potential antidiabetic effect of CUR. IRS-1: insulin receptor substrate-1,
PI3K: phosphatidyl inositol-3-kinase, PIP2: phosphatidylinositol 4,5-bisphosphate, PIP3: phos-
phatidylinositol 3,4,5-trisphosphate, PDKI: phosphoinositide-dependent protein kinase 1, Akt: pro-
tein kinase B, AMPK: adenosine monophosphate-activated protein kinase, ACC: acetyl CoA car-
boxylase, PGC-1: peroxisome proliferator-activated receptor-gamma coactivator, TNF-α: tumor
necrosis factor-alpha, NF-κB: nuclear factor-kappa B, FFA: free fatty acids, STAT: Signal transducer
and activator of transcription, COX-2: cyclooxygenase-2, ROS: reactive oxygen species.

3.4. Moringa Oleifera (MO)

MO is a persistent deciduous tropical plant belonging to the genus Moringa of the
family Moringaceae; it is described as the marvel tree because all its parts have multiple
uses in medicinal, industrial, agricultural, or functional foods [133]. The flowers, pods,
leaves, and seeds of MO are regarded as food sources that contain growth promoters, as
they are characterized by a high content of vitamins, minerals, and proteins [134]. From the
pharmacological view, it possesses anticancer, antidiabetic, anti-inflammatory, antimicro-
bial, antihypertensive, and antiulcer purposes [135]. Several mechanisms contribute to the
hypoglycemic curative effect of MO derived from its active constituents, particularly three
classes of phytochemicals, phenolic acids (chlorogenic acid), flavonoids (quercetin and
kaempferol), and glucosinolates, which have good antioxidant scavenging activity toward
ROS [136]. In this regard, certain phytochemicals in MO such as quercetin and terpenoid
were found to enhance glucokinase enzyme activity and pancreatic β-cells, respectively,
thereby minimizing insulin resistance [137]. Due to the presence of isothiocyanates as
one of its active ingredients, MO can inhibit both gluconeogenesis and glycogenolysis
in the liver, as well as the absorption of glucose into adipose tissue and muscles [138].
MO also battles insulin resistance in the muscle via GLUT-4 activation, which leads to an
improvement in the Akt signaling pathway [139]. On the one hand, via triggering Sirt-1,
which interacts with and deacetylates peroxisome proliferator-activated receptor-1 alpha
(PPAR-1α), the presence of niazirin, a phenolic glycoside in MO seeds, increases the phos-
phorylation of AMPKα [140]. It minimizes the levels of forkhead box protein O1 (FOXO1)
and hepatocyte nuclear factor 4 alpha (HNF-4α), allowing peroxisome-proliferator acti-
vated receptor-α (PPAR-1α) to obstruct the gluconeogenesis process. Moreover, it regulates
the PKC-zeta/Nox4/ROS signaling pathway that potentially decreases the oxidative stress
produced in DM [141].

Furthermore, MO improves fatty-acid oxidation via the AMPK/ACC and/or PPAR-
α pathways; however, it hinders triacylglycerol and cholesterol biosynthesis through
sterol regulatory element-binding protein-1 (SREBP-1) regulation [142]. MO is closely
related to the downregulation of α-glucosidase, pancreatic lipase, and lipoprotein lipase
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enzymes, which are crucial rate-restrictive enzymes obligatory for the hydrolysis of dietary
carbohydrates and fats during carbohydrate and lipid metabolism [143].

3.5. Portulaca Oleracea (PO)

PO belongs to the Portulacaceae family. It is an annual succulent herb that grows
in warm climates and is dispersed as turfgrass weed or field crop [144]. It exhibits good
nutritional quality due to its high content of α-linolenic acid, ascorbic acid, β-carotene, and
vitamin B complex [145]. Furthermore, it reveals a broad range of biological activities such
as antiaging, antiulcerogenic, antimicrobial, antidiabetic, anticancer, anti-inflammatory, an-
tiseptic, and neuroprotective properties, in addition to improving the immune system [146].
Here, we present several hypotheses underlying the hypoglycemic influence of PO. One
such theoretical effect of PO is correlated with the promotion of insulin production in
pancreatic cells via closure of potassium–ATP channels, membrane depolarization, and
enhancement of Ca2+ influx [147]. PO also boosts glycolysis and animates phosphofructok-
inase, lactate dehydrogenase, and pyruvate kinase enzymes [91].

PO lessens the chronic inflammation produced due to insulin resistance through inhibi-
tion of the Rho/ROCK/NFκB pathway, which is implicated in the production of proinflam-
matory molecules [148]. Moreover, PO can prevent DM complications by regulating lipid
metabolism via phosphorylation of ACC at Ser79, which is an AMPK phosphorylation site.
As a result, fatty-acid and triacylglycerol biosynthesis is inhibited, and the PI3K/Akt and
AMPK pathways in skeletal muscle are improved, resulting in increased glucose uptake in
adipose tissue [149]. In addition, PO is one of the richest green plant sources of phenolic
acids, flavonoids, alkaloids, triterpenoids, glutathione, and other antioxidants, making
it an effective antioxidant herb for DM pancreatic cell protection [150]. As a result of its
phytochemical content, especially triterpenoids and homoisoflavonoids, PO can initiate
the GLUT-4 translocation [151].

3.6. Punica Granatum (PG)

PG is an ancient perennial plant species of the Punicaceae family, which can be found
in Africa, America, Europa, and Asia [152]. The roots, barks, fruits, peels, and leaves of
PG are used in numerous ailments in the treatment of cancer, microbial infections, obesity,
ulcer, inflammation, and Alzheimer’s disease [153].

In general, there are several valuable PG phenolic constituents such as ellagic acid,
punicalagin, flavonoids, anthocyanins, and flavonoids that provide high antioxidant capac-
ity [154]. Polyphenols in PG play a significant role in its hypoglycemic effect via multiple
pathways, including (i) improving the sensitivity of insulin receptors, (ii) increasing the
activity of PPAR-γ [155] and paraoxonase 1 level, which is a high-density lipoprotein-
associated lipolactonase and possesses antioxidative characters [156], (iii) modulating the
expression of GLUT-4 [157], and (iv) enhancing the glucose uptake by peripheral tissues
and hindering gluconeogenesis [158].

Moreover, PG inhibits the dipeptidyl peptidase-4 enzyme that is linked to glucose
metabolism by degrading the incretin hormones glucagon-like peptide-1 and glucose-
dependent insulinotropic polypeptide, thereby stimulating insulin secretion [159]. Further-
more, PG exhibited powerful activity in reducing glucose absorption via the inhibition of
pancreatic lipase and α-amylase enzyme activities responsible for the digestion of fat and
carbohydrates, respectively [160]. It was reported that PG can establish its hypoglycemic
influence via inhibition of cytochrome P450 (CYP)2C9 that is responsible for the metab-
olization of some hypoglycemic sulfonylureas such as tolbutamide, thus increasing the
efficacy of hypoglycemic drugs [161]. PG has a role in the prevention of some cardio-
vascular complications of DM through the suppression of lipogenesis in adipose tissue
and triacylglycerol biosynthesis in the liver, as well as inhibition of fatty-acid synthase
enzyme and SREBP-1c. Multiple studies have explored the antidiabetic potential of PG;
one revealed the reduction in blood glucose levels and increase in insulin levels in rats by
exciting β-cells and increasing their number. Another study found that, in an IDDM model
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treated with PG, hepatic lipid peroxidation was reduced and immune cell infiltration into
pancreatic islets was inhibited [162].

The role of the abovementioned selected antidiabetic herbal plants is summarized in
Table 1. Further in vivo studies of these plants are outlined in Table 2.

Table 1. Antidiabetic effect of medicinal plants.

Scientific Name Plant Family Common Name Traditional Use References

Nigella sativa Ranunculaceae Black cumin Anti-inflammatory, antidiabetic,
antiparasitic, and analgesic [163,164]

Berberis vulgaris Berberidaceae Berberine
Antihyperlipidemic, anticancer,
anti-inflammatory, antioxidant,

hepatoprotective, and
hypoglycemic agent

[165,166]

Curcuma longa Zingiberaceae Turmeric

Anticancer, antihyperglycemic,
neuroprotective, antiapoptotic,

antimicrobial, and
cardioprotective

[167,168]

Moringa oleifera Moringaceae Moringa
Hypoglycemic, neuroprotective,
hepatoprotective, hypolipidemic,

and antiviral agent
[169,170]

Portulaca oleracea Portulacaceae Purslane

Anti-inflammatory, antidiabetic,
anticancer, analgesic,

immunostimulant, antimicrobial,
and antiviral

[171,172]

Table 2. Previous in vivo studies on the effect of medicinal plants on DM.

Scientific Name Treatment
Form Dose

Fasting Blood Glucose Level
(mg/dL)

Fasting Insulin Level
(µIU/mL) References

Pre-Treatment Post-Treatment Pre- Treatment Post- Treatment

Nigella sativa Oil 100 mg in 10% DMSO/kg Bwt * 581.31 ± 36.31 142.76 ± 16.94 101.59 ± 5.78 127.86 ± 1.27 [73]
Berberis vulgaris Berberine

chloride 100 mg/kg Bwt 180.1 ± 4.38 97.7 ± 5.61 20.17 ± 2.93 15.67 ± 2.42 [97]
Curcuma longa Curcumin 50 mg/kg Bwt 481 ± 0.71 109.20 ± 0.86 180.44 ± 0.43 80.44 ± 0.15 [173]
Moringa oleifera Ethanolic extract

of leaves 200 mg/kg Bwt 167.0 ± 1.96 94.0 ± 4.96 45.03 ± 13.8 36.4 ± 4.66 [174]
Portulaca oleracea Water extract 250 mg/kg Bwt 293.2 ± 2.4 125.0 ± 1.3 18.97 ± 0.09 33.50 ± 0.08 [175]

* Bwt: body weight.

4. Conclusions

The use of medicinal plant therapy for diabetes mellitus suggests its importance in
the prevention and treatment of this disease. Several herbs have displayed antidiabetic
activities via various mechanisms, such as attenuating oxidative stress and inflammation,
increasing insulin sensitivity and glucose uptake, and regulating insulin-induced signaling
in different tissues. Furthermore, various types of herbs are readily available all over the
world with low cost, low toxicity, and important phytochemical contents. Nevertheless,
further clinical studies are needed to confirm the valuable effects of these plant-derived
preparations in treating and managing diabetes.
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