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The aim of a genome-wide association study (GWAS) is to identify loci in the human genome affecting a pheno-
type of interest. This review summarizes some recent work on conceptual and methodological aspects of GWAS.
The average effect of gene substitution at a given causal site in the genome is the key estimand in GWAS, and we
argue for its fundamental importance. Implicit in the definition of average effect is a linear model relating geno-

type to phenotype. The fraction of the phenotypic variance ascribable to polymorphic sites with nonzero average
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effects in this linear model is called the heritability, and we describe methods for estimating this quantity from
GWAS data. Finally, we show that the theory of compressed sensing can be used to provide a sharp estimate of
the sample size required to identify essentially all sites contributing to the heritability of a given phenotype.
Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural Biotechnology. This
is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction 3. the use of DNA-level data to identify the precise genomic regions that

The now-classic treatise Genetics and the analysis of quantitative traits
[1], published three years before the first drafts of the human genome,
covered the following sequence of topics:

1. definitions of key quantities in the study of quantitative (continuous-
ly varying) traits affected by multiple genetic and environmental
causes,

2. methods for estimating some of these quantities without knowledge
of the individual genetic sites affecting a given quantitative trait, and
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contain one or more such polymorphic sites.

In this review we survey work in all of these areas carried out in the
decade and a half since the sequencing of the human genome. Modern
genotyping technology has enabled genome-wide association studies
(GWAS), which have led to a “golden age” of discovery in quantitative
genetics [2], and we cannot hope to cover the substantial empirical
progress in the identification of genetic loci contributing to quantitative
variation. The most that can be done at the outset is to point the reader
to the burgeoning research program in which our chosen conceptual
and methodological issues are embedded [3-10].

Much of our discussion can be extended to binary phenotypes
(such as disease diagnosis) through the device of treating liability
as a quantitative trait affected by multiple genetic and environmen-
tal causes.
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2. The Average Effect of Gene Substitution

We are interested in determining the quantitative influence of a
polymorphic site on a given phenotype. Consider a biallelic site with
alleles A; and A, where variation potentially affects a phenotype denot-
ed by Y. A direct means to determine this quantity is to measure the
phenotypic effect of experimentally changing the allelic state of the
gene borne by a gamete. Confounding such an experiment, however,
is dependence of the phenotypic effect on the allelic states of other
genes in the zygote's genome. This nonlinear interaction is called domi-
nance if it occurs between genes at the same site but inherited from dif-
ferent parents and epistasis if it occurs among genes at different sites.
(We follow the classical usage of the term gene to refer to a token of her-
itable material at a given genomic site. Thus, each chromosome contains
its own gene.) Fixing the allelic states everywhere else in the genome,
we can write the effect of substituting A, for A1, as

AYA1 — Ay |fixed background (1 )

It is not possible to estimate (1) for all backgrounds. There are
roughly 10 million single-nucleotide polymorphisms (SNPs) in the
human genome where the frequencies of both base pairs (alleles)
exceed 0.01. Considering just these polymorphic sites alone, we
have a number of multi-SNP genotypes equaling three to the power
ten million. The developmental process maps each of these geno-
types to an expected phenotypic value, but the astronomically
large number of possible genotypes rules out any attempt to esti-
mate this causal mapping in its totality. Even if a given genotype
has arelatively high probability, in the sense of containing a common
allele at each site, it is quite possible that no individuals in the popu-
lation actually bear that genotype. Thus, even if it were possible to
perform any conceivable mutagenic experiment [11], the sheer
number of such experiments would place the genetic architecture
of the phenotype—if this is defined by Eq. (1)—hopelessly out of
our grasp.

We are thus forced to seek some more tractable object that pre-
serves biological meaning. A natural thought is that we should concen-
trate on some weighted average of the possible gene substitutions at
any given polymorphic site,
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where the sums are over all possible configurations (indexed by k) of
alleles at the other genomic locations. The symbol « to represent the
average effect of gene substitution was first used by Fisher [12]. The
weights should take on the same values in the analogous expression
defining the gene substitution .4,—.4;, such that these two quantities
have the same absolute value but opposite signs.

Eq. (2) is an advance only if the weights allow the average to be cal-
culated without knowledge of the myriad addends taking the form of
Eq. (1). Fisher defined his average effect of gene substitution such that
the weights reproduce the coefficient of the polymorphic site in the
multiple regression of the phenotype on all such sites in the genome
[13,14]. To make this equivalence more explicit, let G be the vector
whose ith entry is the expected phenotype obtained by all organisms
with a fixed multi-site genotype (arbitrarily labeled as the ith) develop-
ing within the current range of environmental conditions, X the matrix
whose ijth entry is the number of genes (0, 1, or 2) of the jth allelic type
present in the ith genotype, a the vector of average effects, and R the
vector of residuals (Fig. 1). Without loss of generality, let all variables
be standardized. Fisher effectively chose the weights in Eq. (2) such
that the sum of the squared residuals,

(2)
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Fig. 1. Breeding (additive genetic) values and dominance deviations at a biallelic locus. The
frequency of allele 4, is 0.6, and the causal effects of A;.4; — .A;.4; and A; Ay — Ay A; are 3
and — 2 respectively. The genotype frequencies are in Hardy-Weinberg equilibrium. The
phenotypic mean of each genotype is equal to the sum of its breeding value (c;) and ge-
netic residual (8;); in this case of nonlinearity within a locus, the genetic residuals are
called dominance deviations. The phenotypic means are represented by the blue points,
and the corresponding breeding values by the red points. The slope of the linear function
giving the breeding values is the average effect of gene substitution.

is minimized. Eq. (3) defines a new quantity, A; = G; — Ri = >_ Xy, the
ith individual's so-called breeding or additive genetic value. The ¢, norm
is the only choice of normin Eq. (3) that leads to the orthogonal decom-
position of the total genetic variance,

0% =04+ 0% (4)

All other choices will lead to the appearance of the covariance term 2
Cov(A, R), which essentially implies that the individual's breeding value
does not contain all possible information about its phenotypic value that
can be obtained from a linear combination of its single-site genotypes;
some is abandoned in the residual. Thus, the choice of weights in
Eq. (2) following from the use of the ¢, norm in Eq. (3) is synonymous
with the choice of variance as the measure of individual differences [15].

The variance in breeding value, 073, is called the additive genetic var-
iance. The proportion of the total phenotypic variance, 0%, taken up by
the additive genetic variance,

2
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h* =4 (5)
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is called the narrow-sense heritability of the phenotype under consider-
ation. When writers refer to “missing heritability,” they mean the dis-
crepancy between estimates of Eq. (5) from studies of pedigrees and
the percentage of the variance ascribable to phenotype-associated
SNPs identified with high confidence in GWAS. Below, we will describe
new methods for estimating h? and a means of identifying more of the
SNPs contributing to this quantity.

In general, the weights in Eq. (2) are a difficult-to-compute function
of the non-additive residuals, allele frequencies, and the correlation
structure of polymorphic sites in the genome [14]. But it is of interest
to examine the simplified case of a biallelic site that is uncorrelated—in
linkage equilibrium (LE)—with all other causal sites and is itself in
Hardy-Weinberg equilibrium. Let p, and p, denote the respective fre-
quencies of A; and A;. Suppose that we perform our hypothetical
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mutagenic experiment on a randomly sampled gamete carrying a gene
of the A; allelic class. With probability p; its partner gamete will also
carry Ay, and with probability p- its partner gamete will carry the alter-
native A;. The expected effect of the gene substitution is thus

D1 AYAl —A;|other gene is A, + pZAYA] —A;|other gene is A, 6
; (6)
P1+D;

and it happens that in this case the weights (p;, p») are precisely those
leading to Fisher's average effect of gene substitution [16]. In reality it
is likely that a causal site will be in linkage disequilibrium (LD) with
other causal sites clustering near the same coding region. Distant causal
sites may also be in very slight LD as a result of assortative mating or
natural selection [14,15,17]. Nevertheless we think that the appealingly
simple Eq. (6) will rarely give a poor approximation of the true average
effect of gene substitution at a biallelic site.

3. The Linear Model of Quantitative Genetics
The concept of average effect is encapsulated in the linear model
Y =Xa +R+E, (7)

where Y is the vector of phenotypes, X is the genotype matrix, R is the
vector of genetic residuals and E is the vector of non-genetic (“environ-
mental”) residuals.

We have tacitly assumed the absence of any correlation between the
non-genetic residuals and any column of X. Such confounding must be
absent or remediable if we are to use empirical regression analysis to
estimate the elements of ¢, as defined causally above. The inability to
address analogous forms of confounding has been a bane to many fields
of science limited to observational data [18]. A remarkable feature of
GWAS, however, is that the correlation between the non-genetic resid-
ual and any given SNP is indeed often negligible [19]. We can point to a
variety of checks supporting this claim, but perhaps the simplest and
most convincing such check is the agreement between estimates of
effects from samples of unrelated individuals and estimates from within
families [5,8,20]. Recall that among the gametes produced by the same
heterozygous parent, the allelic class of the transmitted allele is ran-
domly selected and thus equivalent to treatment status in a randomized
experiment [21,22]. A positive result in a within-family study thus pro-
vides powerful evidence that a SNP is indeed linked and associated with
a site where the average effect is nonzero.

A potential objection to the linear model of quantitative genetics,
which features coefficients that are averages over a large number of
contexts, is that it sacrifices too much of biological interest for dubious
gain. Holders of such a position tend to emphasize the importance of
the full genetic architecture as represented by Eq. (1), although as a con-
cession to the problem of combinatorial explosion they often begin with
simplifying strategies such as limiting the first-pass analysis to pairwise
interactions [23-25].

An important preliminary point is that scans for linear average ef-
fects (more or less standard GWAS practice) will not necessarily pre-
clude the detection of causal sites that interact nonlinearly with each
other. In order for a site involved in an epistatic interaction to exhibit
an average effect equaling zero, the various terms in Eq. (2) must mutu-
ally cancel, which is an extremely unlikely occurrence.

The detection of sites with nonzero average effects thus serves as an
excellent starting point even if the investigator's ultimate goal is the
characterization of epistasis. There is an important respect, however,
in which epistasis (defined in this quantitative-genetic sense) is less
biologically significant than average effects. It turns out that nonlin-
ear interactions do not make substantial contributions to familial
resemblance.

Fig. 1 demonstrates this point in the case of a single causal site.
The dominance deviations—nonlinear deviations of the conditional

phenotypic means of the three genotypes from their corresponding
breeding values—do not enter the correlations between ancestors and
descendants [15]. To explain this remarkable fact, we start with the ob-
servation that dominance deviations are equivalent to the residuals in
the least-squares linear regression of the conditional means on gene
count. The residuals in any linear regression have an expected value of
zero; the values of the outcome variable will show no systematic ten-
dency to lie either above or below the regression line. If Hardy-
Weinberg equilibrium holds, we can write this fact as

Zpipjﬁij =0, (8)
ij

where §; is the dominance deviation of the genotype with alleles 4; and
Aj with respective probabilities p; and p;. Eq. (8) can be partitioned into
terms that individually equal zero [26,27]. That is,

> " pip;6;j = 0 for eachii, )
Jj

which can also be put in the following way. In a subpopulation
consisting of all individuals inheriting a particular allele (say .4 ) from
a given parent (say the father), the mean of the dominance deviations
is zero—just as in the population as a whole. The geometry of Fig. 1
should make this plausible. Since adjacent dominance deviations have
opposite signs, the frequency-weighted sum of dominance deviations
after fixing one allele will intuitively tend to cancel and in fact does so
exactly.

Let us say that A; is the allelic class of the gene that a parent trans-
mits to its offspring. Under random mating the other gene at each
individual's locus can be treated as drawn randomly from the entire
population of genes. To simplify the notation, we now use pand 1 — p
to denote the respective frequencies of .A4; and .4,. With probability
(1 — p)?, parent and offspring have the same dominance deviation
611. Similarly, with probability 2p(1 — p) they have different deviations
(611 and 6,), and with probability p? they share the heterozygous devi-
ation (613). Observe that

Cov (5721, 6P} — (1—p)*6}, +2p(1-p)ondrz + P61,
— 61 [(1=p)*61 + (1—p)pérs
+ 612 [p(1—p)é11 + p*612]
=611-0+012-0
0. (10)

It follows that the correlations between the phenotypes of ancestors
and descendants are exactly the same regardless of whether the condi-
tional phenotypic means of the possible genotypes actually lie on the
line determined by the average effect or deviate nonlinearly.

This absence of nonlinear contributions to ancestor-descendant
correlations does not generalize to all other forms of residual (non-
additive) genetic variance. In particular, when there are interactions
among genes at different loci, these can alter the correlations between
relatives. However, these epistatic variance components have coeffi-
cients in the expression for a given correlation that decrease geometri-
cally with the order of the interaction, and thus the great bulk of the
contribution to the resemblance between relatives (other than mono-
zygotic twins) continues to be made by the additive genetic variance.
And this brings us to a commonsensical observation: if individual
differences were caused primarily by non-additive genetic differences,
then relatives would not strongly resemble each other, but it is unques-
tionably true that in our world relatives do resemble each other. This
simple fact points to the importance and size of h?, the proportion of
the phenotypic variance due to variance in additive genetic value.
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Given the undoubted importance of physical interactions between
gene products in biological pathways, why do we not observe a more
prominent role of epistasis in the genetic architectures of quantitative
traits? One answer is that the typical allele frequencies at polymorphic
sites may suppress the effects of the interactions that do occur. Once a
new allele appears by mutation, the amount of time that it spends at
each possible frequency p between zero and one before absorption at
one of these two boundaries should be roughly proportional to 1/p
[28], which means that we are much more likely now to observe the
mutant when it is rare rather than common. This implies in turn that
any genotype composed of many rare alleles must be much less com-
mon than its alternatives. One can appreciate the resulting tendency
to linearize the genotype-phenotype mapping by inspecting Fig. 1.
Suppose that the frequency of 4, evolves to be close to zero rather
than 0.6. Then the homozygous genotype .4,.4; will be so rare as to be
given virtually no weight in the least-squares regression determining
the average effect, and the regression line will then have to fit essential-
ly only two points. An almost perfectly additive genetic architecture will
have evolved out of an intrinsically nonlinear arrangement of the three
conditional means. Likewise, in the case of multiple sites, the frequency
spectrum of mutant alleles ensures that the least-squares hyperplane
does not have to fit as many points as we might naively think [29,30].
Nonlinear architectures can be specially constructed to defeat this
basic argument [24], but they require fine tuning [31].

Another answer is suggested by the striking concordance of GWAS
findings across distinct populations. For instance, genetic effects from
studies of East Asians are strongly correlated with estimates from stud-
ies of Europeans [32]. Because separately evolving populations differ in
allele frequencies and LD patterns, the weights defining their respective
average effects in Eq. (2) may be quite different. It seems to us that the
simplest explanation for the agreement of the respective weighted av-
erages despite the likely divergent weights is that the dependence on
genomic background in Eq. (1) is often not very strong. This inference
is explicable in light of a robust empirical regularity gleaned from
GWAS: the individual effects of sites with common variants on a typical
quantitative trait are quite small, often failing to account for even 1% of
the phenotypic variance [2,33-35]. The heritability of a typical quantita-
tive trait is thus spread across thousands of genomic sites, each account-
ing for a very small portion of Var(A). A fair conclusion to draw from this
trend is that variation at a typical causal site perturbs the relevant
biological system by a small amount. The smallness of individual effects
implies even smaller nonlinear deviations from strict additivity [36].

4. Estimation of Heritability Using Unrelated Individuals

Having established that the average effect is the biologically relevant
quantity to estimate, we now address how such quantities are estimat-
ed. The most straightforward approach is to estimate the average effects
in Eq. (7) directly by regressing the phenotypes of a population against
their genotypes. However, in real applications the number of imputed
or sequenced polymorphic sites p will typically exceed the number of
individuals in the dataset n. In so-called p > n problems of this kind,
the partial regression coefficients are not identifiable with ordinary
least squares. In the next section, we show how the statistical theory
of compressed sensing can be applied to directly estimate the individual
average effects in the p > n regime. Here, we show how an important ag-
gregate quantity—h?, the proportion of the phenotypic variance due to
all genomic sites with nonzero average effects—can be estimated with-
out knowledge of the individual sites contributing to this aggregate.

Classical methods of quantitative genetics estimate h? by determin-
ing the extent to which the correlations between relatives increases
with the degree of biological relatedness. Under some simplifying
assumptions the correlation between relatives is given by

Corr <Y(relative i)’ Y(relative i’)) _ Ai‘i’hzs (11

where A, ; is a coefficient that depends on the pedigree relationship. For
example, the coefficient equals unity if the relatives are monozygotic
twins, 1/2 if they are parent and offspring, 1/4 if they are uncle (aunt)
and nephew (niece), and so on.

The use of Eq. (11) to estimate h? from empirical correlations be-
tween relatives is often thought to be problematic because of the possi-
bility that relatives resemble each other not only for genetic reasons but
environmental ones [24]. This concern is probably overstated [37], but it
is important to devise alternative estimators of h? so as to minimize the
possibility that the so-called missing heritability is attributable to biases
of pedigree studies.

Classical methods based on the correlations between relatives have
been substantially augmented by a novel technique that makes use
of GWAS data from nominally unrelated individuals [38,39]. This
technique—often called genomic-relatedness-matrix restricted maximum
likelihood (GREML) (we list URLs for all software tools at the end)—is
perhaps the most important innovation in quantitative genetics to
have been introduced in the last dozen years, and it has provided nearly
definitive evidence for the view that undiscovered sites with common
alleles account for a substantial portion of missing heritability.

For the moment we redefine the additive genetic variance, 0%, to
mean the variance that would be removed from the total phenotypic
variance by multiple regression on all markers genotyped, sequenced,
or imputed in a given study, as sample size goes to infinity. Because
causal sites with a rare allele may not be present or represented by LD
proxy in a given study, this additive genetic variance is less than the
true additive genetic variance contributed by all polymorphic sites in
the genome that we defined previously. Likewise, a site with a nonzero
partial coefficient in the multiple regression now under consideration
may not be a true causal site with a nonzero average effect but only
an LD proxy for such a site. For convenience, however, we continue to
use the terms “additive genetic variance,” “heritability,” “average effect”
and their corresponding symbols in what follows.

We see from Eq. (7) that the total phenotypic variance can be
written as

Var(Y) = %E(Y’Y)
= %E(a’X’Xa +e'e) (12)

=02 4 02,

where e = R + E and the expectation is over random e. As before, the
heritability is h* = 03/(03 + of). If we assume that LE holds approxi-
mately, then X’X =~ nl,, and the additive genetic variance is approxi-
mately o’a.. We can see that Eq. (12) holds because (1/n)E(w'Z'Zu) is
the variance of chip-based breeding values and hence equal to 03.

The goal is to estimate o7 given X and Y. GREML treats Eq. (7) as the
mixed-effects linear model

E(YY') = E(Xao'X' + ee’)

2 2 (13)
= A0} cremr + InOF greme

and estimates the parameters 03 cgemr and OF gremr, Where, in the
notation of [38], A = (1/p)XX’ is the matrix of realized relatedness
coefficients.

Eq. (13) is appealing because it assumes the same form as Eq. (11),
except that the theoretical coefficient derived from the pedigree
connecting biological relatives i and i’ is replaced by the chance genetic
similarity (which is either slightly greater or slightly less than a mean of
zero) between essentially unrelated individuals [40]. Because the slight
genetic similarities between unrelated individuals in a homogeneous
population are not likely to be correlated with environmental similari-
ties, it becomes safer to make the assumption above that breeding
values are uncorrelated with the total residuals.
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Despite the surface similarity between Egs. (11) and (13), h? and
hZgrent are not necessarily equal even under the same conditions that
render Eq. (11) an unbiased estimator of h? [41]. The GREML Eq. (13)
implicitly assumes that the outer product ac’ can be replaced by a diag-
onal matrix with all elements equal to the inner product o’c.. As shown
in [42] a sufficient condition for this approximation to be valid and as a
result the equality of h? and hZggw is that all sites are in LE. In practice,
the two quantities will be very close if the causal sites are distributed
randomly across the genome with respect to LD [42]. In other words,
it must be the case that the extent of a site’s LD with neighbors provides
no information about its average effect (which may be zero). Since it is
likely that causal variants tend to have lower minor allele frequencies
(and hence are less well tagged by neighbors than a typical genotyped
SNP) as a result of natural selection [33,35], we will usually have hZgrgni”
< h%. A number of methods have been proposed to bring these two
quantities into close agreement regardless of minor allele frequency
and LD [43-45]. It appears that the most robust means of addressing
this issue is to form several different relatedness matrices, stratifying
the SNPs by LD, and then to estimate the additive genetic variance as
the sum of the scalars weighting the LD-defined relatedness matrices
in the natural extension of Eq. (13) [46].

The GREML method and variants have been used to estimate the
heritabilities of several human traits and also the genetic correlations
between them. The genetic correlation is simply the correlation between
the breeding values with respect to two phenotypes. [47] gives the
model for estimation of the genetic correlation between two traits and
[48] for the entire genetic correlation matrix of arbitrarily many traits.
The multivariate applications of the GREML method have led to some
of its most interesting results. For instance, it turns out that the genetic
correlation between schizophrenia and bipolar disorder approaches
0.70 [49].

One advantage of GREML-type methods for heritability estimation
over classical pedigree-based methods is that the former can partition
heritability among different regions of the genome. Partitioning by
chromosome has shown that the heritability contributed by each chro-
mosome is often strongly correlated with its length [8,50], providing yet
further evidence that the number of sites with nonzero average effects
is typically very large. Partitioning by functional annotation has sug-
gested that causal sites are disproportionately found in the vicinity of
regions that are protein coding or DNase [ hypersensitive [51]. Since
the accuracy of the partitioning depends on the thoroughness of the im-
putation, these results should be taken as tentative. It is worth noting
that both multivariate estimation and functional partitioning are more
robust against LD than simple univariate estimation because of a ten-
dency for biases to cancel from the numerators and denominators of
the various estimands.

Very recently, a new method called LD Score regression has been in-
troduced, and it can be put to some of the same uses as GREML [52-54].
When the chi-square statistics of the SNPs tested in a given GWAS are
regressed against the “LD Scores” of the SNPs—the LD Score being
a measure of the extent to which the focal SNP is in LD with its
neighbors—the empirical result is an upwardly sloping straight line.
This pattern is explicable in light of the fact that a SNP tagging more of
its neighbors is thus more likely to tag one or more causal sites. Heuris-
tically one might expect the value of the positive slope to provide an
estimate of the trait's heritability, but the same GREML assumption
regarding the absence of any relationship between average effect and
LD must also hold for a valid estimate of h? to be obtainable from LD
Score regression. (Others conditions may also be necessary.) For in-
stance, if high-LD genomic regions tend to be devoid of causal SNPs,
then the slope of LD Score regression will be biased downward (and
the intercept biased upward).

In fact, the first use of LD Score regression suggested by its devel-
opers is not the estimation of heritability but rather the control of con-
founding. This use follows from the interpretation of the intercept as
the expected chi-square statistic of a SNP with an LD Score of zero.

The lowest possible LD Score of a SNP is in fact one, which is obtained
when a SNP is in perfect LE with all other SNPs. This essentially means
that a hypothetical SNP with an LD Score of zero fails to tag the average
effect of any SNP in the genome, including whatever average effect the
SNP itself may have. Therefore, if the intercept of LD Score regression
departs upward from unity (the theoretical expectation of the chi-
square distribution with one degree of freedom), the departure must
be due to confounding, poor quality control, sample overlap, or other ar-
tifacts. This simple and ingenious method of estimating the distribution
of truly null SNPs should in most cases lead to a much better global in-
flation of the association statistics than the overly conservative genomic
control [55].

We close this section with some practical recommendations. In as-
yet unpublished work, we have found that LD Score regression can re-
turn different heritability estimates than GREML even when applied to
the same data. Thus, when the purpose is to estimate the heritability
of a phenotype, GREML is the tool of choice since it is unbiased or can
be made to be nearly so. In contrast, when the purpose is functional
partitioning of heritability, we strongly recommend LD Score regression
over GREML because the former method scales much better computa-
tionally with the number of categories to which the heritability is
allocated. LD Score regression can also estimate a genetic correlation
from the association Z-statistics of two traits, and here it also offers
many advantages over GREML: computational speed, input consisting
of summary statistics rather than individual-level data, and absorption
of confounding into the intercept. So far LD Score regression has pro-
duced estimates of genetic correlations very similar to those yielded
by GREML [54], and in our unpublished work it has also produced esti-
mates very similar to those of an intuitive in-house method that is based
on the simple correlation between the two vectors of marginal regres-
sion coefficients. As is the case with GREML, functional partitioning
and bivariate estimation with LD Score regression are more robust
than simple heritability estimation because of a tendency for biases to
cancel from numerator and denominator.

5. Finding Trait-associated Genetic Markers With Compressed Sensing

For the vast majority of phenotypes studied so far, the majority of
the sites with nonzero average effects contributing to the heritability
have not yet been identified. We now discuss a particular means by
which progress toward this goal might be advanced.

A typical GWAS evaluates millions of polymorphic sites (p). The
number of subjects (n) is increasing dramatically, but p > n will probably
continue to hold for some time. As we stated earlier, the partial re-
gression coefficients are not identifiable in this regime. Partly for
this reason, GWAS investigators usually perform separate univariate
regressions of their phenotype on each SNP and take forward the
marginal coefficients obtained in this way. This approach is inherent-
ly unsatisfying, however, because the concepts of average effect and
heritability rest on the partial coefficients. Therefore there is value in
introducing some constraint (assumption) to deal with the ill-posed
p > n problem in the GWAS setting.

The Bayesian approach known as genomic selection (GS) depends on
a prior distribution quantifying the assumption that most of the SNPs in
a given panel have no average effect. A major drawback of this approach
is the heavy computational cost of sampling methods for estimating the
parameters of a Bayesian model. Reference [56] applied an approach
based on combinatorial geometry and random matrix theory called
compressed sensing (CS) [57-59], which, in contrast to the Bayesian ap-
proach, requires little more than the computationally tractable minimi-
zation of the lasso objective function

IY=YII7, + N, (14)

where ¥ is the estimated breeding value given by Xé. The optimal choice
of A depends on the heritability contributed by the SNPs assayed in the
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study, which can be estimated with GREML. The minimum of Eq. (14)
over & can be found efficiently with the pathwise coordinate optimiza-
tion (PCO) algorithm [60]. In the case of LE, PCO has the same computa-
tional complexity as the standard GWAS approach, O(np). LD increases
the number of computations by either a constant or an amount that in-
creases slowly with p (consistent with log p). A memory-efficient imple-
mentation of lasso employing PCO is available in the latest version of
PLINK [61].

Suppose that the number of nonzero elements in the true « is equal
to s. CS theory shows that under fairly general conditions, if n is suffi-
ciently large compared to s—but, crucially, not necessarily larger than
p and perhaps much smaller—then the lasso or other /;-penalized
schemes can select all polymorphic sites with nonzero coefficients in a
multiple regression problem with high probability. (There is a major
qualification, which we will explain shortly.) More specifically, if the
sample size n’ < n is treated as a free parameter, then successive appli-
cations of the lasso to increasingly larger subsets of the data will result
in a sharp transition from very poor selection to excellent selection.
This transition can be observed in the behavior of the P-values returned
by the standard univariate regressions of the phenotype on each of the
SNPs selected by the lasso.

The CS approach makes no assumption about the distribution of the
average effects. Instead it implicitly attempts to confine the estimate ¢
to an s-dimensional subspace. That is, if the true «in fact has s < p non-
zero elements, then these will be recovered by the lasso with high prob-
ability. There is evidence that, at least among sites where both alleles are
common, s < p for a wide range of traits [62,63]. Since n is expected to
exceed s by a large factor even while falling well short of p, the prospects
of recovering more heritability are quite promising, especially in light of
the current push to generate large and widely available datasets. Note
that although there is a relationship between ¢;-constrained solvers
and the double Laplace prior that is debated in GS, CS theory is not
based on this and holds for many different coefficient distributions
and design matrices [57].

Finally, a given SNP is often strongly correlated—in tight LD—with
several neighboring SNPs in the genome. This raises an obvious problem
for the standard GWAS approach, since a causal SNP will lead many
neighboring SNPs to exhibit nonzero univariate regression coefficients.
The lasso does not in fact solve this problem. Although the lasso is
statistically consistent under fairly general conditions, it may require
a prohibitively large sample size to select only the causal sites in an
LD block while setting the coefficients of all other sites to zero.
Thus, in the presence of LD, “good recovery” means the selection of
many sites that are false positives strictly speaking but nevertheless
are in strong LD with one or more sites where the average effect is
truly nonzero [56]. It is likely that no approach relying on statistical
evidence alone can adequately address the problem of identifying
the causal sites; external sources of biological evidence will be nec-
essary. Particularly promising are empirical-Bayes approaches that
use the trait-specific genome-wide relationship between GWAS sig-
nal and functional annotations (e.g., nonsynonymous status, tissue-
specific DNase I hypersensitivity, chromatin modification, evolution-
ary conservation) to upweight the posterior probability of causality
at certain sites [64,65].

6. Summary and Outlook

In this review we have argued that the average effect of gene
substitution—a weighted average of the phenotypic changes that
would result from idealized mutagenic experiments—is the pivotal
quantity to be estimated in GWAS. Although this averaging may conceal
important nonlinear effects of genetic variation on the focal phenotype,
the identification of sites with nonzero average effects is at least an
important starting point. In any event new methods of heritability
estimation based on DNA-level data confirm classical findings from

the correlations between relatives that much phenotypic variation is at-
tributable to the average effects of gene substitution across all causal
sites. Pinning down all of this additive genetic variance to individual lo-
cations in the genome with high confidence continues to be a challenge,
since the average effects are typically very small, but the theory of CS
provides reason to believe that a transition to good recovery is attain-
able with a combination of /;-penalization and large but reasonably re-
alistic sample sizes.

Lurking not so far in the background behind all of these issues are the
complications introduced by LD. Even if an oracle reveals to us the iden-
tity of a true causal site, that site's univariate regression coefficient may
fail to equal its average effect of gene substitution as a result of LD.
Perhaps a far more important concern is that LD prevents easy identifi-
cation of causal sites responsible for GWAS signals in the first place. Fur-
thermore, LD raises problems for GREML-type methods of heritability
estimation that can probably stand further scrutiny. Notwithstanding
these issues, however, the remarkable progress in quantitative genetics
over the last decade leaves little doubt about the bountifulness of this
research frontier.

URLs

GCTA-GREMIL, http://cnsgenomics.org/software/gcta;
LD Score regression, http://www.github.com/bulik/Idsc;
PLINK, https://www.cog-genomics.org/plink2.
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