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This review highlights the multifunctional properties of perlecan (HSPG2) and its potential
roles in repair biology. Perlecan is ubiquitous, occurring in vascular, cartilaginous, adipose,
lymphoreticular, bone and bonemarrow stroma and in neural tissues. Perlecan has roles in
angiogenesis, tissue development and extracellular matrix stabilization in mature weight
bearing and tensional tissues. Perlecan contributes to mechanosensory properties in
cartilage through pericellular interactions with fibrillin-1, type IV, V, VI and XI collagen and
elastin. Perlecan domain I - FGF, PDGF, VEGF and BMP interactions promote embryonic
cellular proliferation, differentiation, and tissue development. Perlecan domain II, an LDLR-
like domain interacts with lipids, Wnt and Hedgehog morphogens. Perlecan domain III
binds FGF-7 and 18 and has roles in the secretion of perlecan. Perlecan domain IV, an
immunoglobulin repeat domain, has cell attachment and matrix stabilizing properties.
Perlecan domain V promotes tissue repair through interactions with VEGF, VEGF-R2 and
α2β1 integrin. Perlecan domain-V LG1-LG2 and LG3 fragments antagonize these
interactions. Perlecan domain V promotes reconstitution of the blood brain barrier
damaged by ischemic stroke and is neurogenic and neuroprotective. Perlecan-VEGF-
VEGFR2, perlecan-FGF-2 and perlecan-PDGF interactions promote angiogenesis and
wound healing. Perlecan domain I, III and V interactions with platelet factor-4 and
megakaryocyte and platelet inhibitory receptor promote adhesion of cells to implants
and scaffolds in vascular repair. Perlecan localizes acetylcholinesterase in the
neuromuscular junction and is of functional significance in neuromuscular control.
Perlecan mutation leads to Schwartz-Jampel Syndrome, functional impairment of the
biomechanical properties of the intervertebral disc, variable levels of chondroplasia and
myotonia. A greater understanding of the functional working of the neuromuscular junction
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may be insightful in therapeutic approaches in the treatment of neuromuscular disorders.
Tissue engineering of salivary glands has been undertaken using bioactive peptides
(TWSKV) derived from perlecan domain IV. Perlecan TWSKV peptide induces
differentiation of salivary gland cells into self-assembling acini-like structures that
express salivary gland biomarkers and secrete α-amylase. Perlecan also promotes
chondroprogenitor stem cell maturation and development of pluripotent migratory stem
cell lineages, which participate in diarthrodial joint formation, and early cartilage
development. Recent studies have also shown that perlecan is prominently expressed
during repair of adult human articular cartilage. Perlecan also has roles in endochondral
ossification and bone development. Perlecan domain I hydrogels been used in tissue
engineering to establish heparin binding growth factor gradients that promote cell
migration and cartilage repair. Perlecan domain I collagen I fibril scaffolds have also
been used as an FGF-2 delivery system for tissue repair. With the availability of
recombinant perlecan domains, the development of other tissue repair strategies
should emerge in the near future. Perlecan co-localization with vascular elastin in the
intima, acts as a blood shear-flow endothelial sensor that regulates blood volume and
pressure and has a similar role to perlecan in canalicular fluid, regulating bone development
and remodeling. This complements perlecan’s roles in growth plate cartilage and in
endochondral ossification to form the appendicular and axial skeleton. Perlecan is thus
a ubiquitous, multifunctional, and pleomorphic molecule of considerable biological
importance. A greater understanding of its diverse biological roles and functional
repertoires during tissue development, growth and disease will yield valuable insights
into how this impressive proteoglycan could be utilized successfully in repair biology.

Keywords: perlecan, repair biology, vascular repair, cartilage repair, repair of blood brain barrier, perlecan domain-I,
perlecan domain-V, growth factor delivery

INTRODUCTION

This review highlights the interactive properties of perlecan
(HSPG2) and its potential applications in repair biology.
Perlecan is often referred to as a large heparan sulfate
proteoglycan (HS-PG) but exists as a HS/chondroitin sulfate
(CS) hybrid form in most tissues, endothelial cells however
synthesize a monosubstituted HS glycoform (Melrose et al.,
2008). Keratinocytes produce a form of perlecan substituted
with keratan sulfate (KS), HS and CS side chains and it is one
of only a few PGs, which are found with such a
glycosaminoglycan (GAG) substitution pattern (Knox et al.,
2005). Perlecan, domain I contains three 70–100 kDa HS or
CS chains attached to serine 65, 71, and 76, mouse perlecan
also contain a HS or CS substitution site on Ser 3593 or Serine
3250 respectively on domain V (Tapanadechopone et al., 1999).
Perlecan has a ubiquitous distribution and occurs in vascular,
poorly vascularized cartilaginous, fibro-cartilaginous, adipose,
lymphoreticular systems, neural, bone and bone marrow
stromal tissues (Melrose et al., 2008). Perlecan is a major
basement membrane component (Figure 1) as are type IV
collagen, laminin and nidogen. PRELP (proline/arginine-rich
end leucine-rich repeat protein), a HS binding SLRP (small
leucine rich proteoglycan) and type IV collagen both interact
and anchor perlecan in the vascular basement membrane

(Bengtsson et al., 2002). The basement membrane is a widely
distributed, specialized, thin, dense, sheet-like structure tailored
to the needs of specific tissues and organs with roles as a cellular
scaffold and cell signaling platform (Timpl, 1996; Pozzi et al.,
2017). While cartilaginous tissues are devoid of sheet-like
basement membrane structures it has been suggested that the
pericellular matrix (PCM) surrounding each chondrocyte serves a
similar role (Kvist et al., 2008). VonWillebrand factor A-domain-
related protein (WARP) also interacts with perlecan, as a bridging
structure to type VI collagen in the chondrocyte PCM (Allen
et al., 2006; Fitzgerald, 2020), and stabilizes the basement
membrane of basal structures in peripheral nerves (Allen
et al., 2008; Allen et al., 2009). WARP is found in a distinct
sub-set of nerve basement membrane and neural vasculature
(Allen et al., 2008; Fitzgerald, 2020).

Perlecan colocalizes with elastin in blood vessels and this
contributes to their visco-elastic properties in vasculogenesis
during establishment of early vascular networks and tissue
development (Hayes et al., 2011a) and is also a key
component of basement membranes (Figure 1). Perlecan
occurs in specialized neuroprogenitor stem cell niches termed
fractones in the sub-ventricular and sub-granular dentate gyrus of
the hippocampus where it promotes neural cell survival and
proliferation through sequestered FGF-2 (Kerever et al., 2014;
Kerever et al., 2007). Perlecan is also associated with
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chondroprogenitor cell niches in cartilage rudiments where it
promotes the attainment of stem cell pluripotency and migratory
stem cell lineages that participate in joint cavitation, cartilage
development and the expansion of cartilaginous rudiments
(Hayes et al., 2016a; Melrose and Melrose, 2016) (Figure 2).
Perlecan promotes chondrocyte proliferation and differentiation
and ECM production and the assembly of a transient
developmental cartilaginous scaffold (Melrose et al., 2016).
Perlecan is up-regulated in hypertrophic chondrocytes that

establish the primary and secondary ossification centers in the
rudiments, these will give rise to the long bone cartilage growth
plates (Melrose et al., 2004; Smith et al., 2010). Perlecan also
promotes the establishment of primitive vascular networks in the
stromal tissues surrounding fetal rudiments that provide
nutrition to the rapidly expanding cell numbers within the
mesenchymal condensations and cartilage rudiments (Melrose
et al., 2003; Shu et al., 2013). Perlecan provides mechanical
stability to the developing ECM through interactions with a

FIGURE 1 | Immunofluorescent colocalisation of perlecan and elastin in transverse sections of blood vessels (A–D) and immunolocalisation of elastin (E,F) and
perlecan (G,H) in venules (E,G) and capillaries (F,H). The underlying schematic depicts the major extracellular matrix components of basement membranes highlighting
perlecan’s interactive role in maintaining integrity of this structure (I). (A–H) reproduced from (Hayes et al., 2011a) with permission.
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range of HS-binding structural matrix components. Pericellular
type VI and XI collagen interactions with perlecan aids in the
stabilization and functional properties of mature cartilaginous
ECMs (Hayes et al., 2016b; Smith andMelrose, 2019; Guilak et al.,
2021). Interactions of perlecan with a wide range of HS interactive
structural matrix proteins and cell adhesive glycoproteins, ensure
efficient cell-matrix communication with weight bearing and
tensional stresses providing mechanotransductive signals to
chondrocytes to maintain tissue homeostasis (Knox and
Whitelock, 2006; Melrose et al., 2008; Melrose, 2020). Perlecan
contributes to mechano-sensory regulatory properties in
cartilaginous tissues mediated by pericellular interactions with

type VI and XI collagen, fibrillin-1 and elastin (Hayes et al., 2013;
Hayes et al., 2016b; Smith and Melrose, 2019; Melrose, 2020;
Guilak et al., 2021; Hayes et al., 2021).

Perlecan is a modular multifunctional PG with five distinct
domains. Domain I is unique to perlecan and its GAG chains bind
fibroblast growth factors (FGFs), platelet-derived growth factor
(PDGF), vascular endothelial growth factor (VEGF) and bone
morphogenetic proteins (BMPs) promoting cellular proliferation,
differentiation and tissue development (Melrose et al., 2008; Knox
and Whitelock, 2006; Melrose, 2020; Whitelock et al., 2008)
(Figure 3). Perlecan-HS mediated interactions with ECM
components stabilize tissues (Arikawa-Hirasawa et al., 1999;

FIGURE 2 | Immunolocalisation of perlecan in 14-week-old human foetal knee joint (A–D), newborn ovine cartilaginous tissues (E–H) and mature human
adipocytes (I). Perlecan has a diffuse distribution in cartilage rudiments in the femur and tibia of a foetal knee joint (A). The boxed areas in (A) are depicted at higher
magnification in (B,C). These show strong localization of perlecan in putative stem cell niches in the surface region of the cartilage rudiments (B,C) and diffuse
extracellular staining in the rudiment. Perlecan localization in putative stem cell niches within the surface regions of a hip rudiment (D). The boxed area in (D) is
depicted at higher magnification in the inset. Scale bars in (A–D), 50 μm. Macroscopic immunolocalisation of perlecan in a newborn ovine medial meniscus. Perlecan is
concentrated predominantly within the inner cartilage-like meniscal zone (E). Pericellular immunolocalisation (arrows) of perlecan within neonatal ovine femoral head
articular cartilage (F) and resting zone tibial growth plate chondrocytes. Double headed arrow indicates extracellular gradient of perlecan immunolabel extending from the
resting zone through to the columnar proliferating and hypertrophic growth plate chondrocytes (G). Polarised pericellular immunolocalisation of perlecan in strings of cells
in the newborn ovine ACL (H). Pericellular immunolocalization of perlecan around human adipocytes (I). (A–D) modified from (Melrose and Melrose, 2016) with
permission, images © Melrose 2016, (E–H) modified from (Smith et al., 2010), (I) reproduced from (Yamashita et al., 2018) with permission.
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Costell et al., 1999; Nicole et al., 2000; Gomes et al., 2002; Mongiat
et al., 2003; Knox and Whitelock, 2006; Melrose et al., 2006;
Farach-Carson and Carson, 2007; Rodgers et al., 2007; Kvist et al.,
2008; Melrose et al., 2008; Smith et al., 2010; Hayes et al., 2011a;
Hayes et al., 2011b; Singhal and Martin, 2011; Thompson et al.,
2011; Hayes et al., 2013; Shu et al., 2013; Hayes et al., 2014;Wilusz
et al., 2014; Shu et al., 2016a; Hayes et al., 2016b; Sadatsuki et al.,
2017; Smith and Melrose, 2019; Melrose, 2020; Ocken et al.,
2020). Domain II bears homology with low-density lipoprotein
(LDL) receptor and has roles in the clearance of LDL and very
low-density lipoprotein (VLDL) from the bloodstream. Domain
II binds the poorly soluble Wnt and Hedgehog morphogens and
acts as a transport PG, establishing gradients of these
morphogens in tissues. Domain III of perlecan binds FGF-7
and 18 (Mongiat et al., 2000; Smith et al., 2007) and domain

IV, an immunoglobulin (Ig) repeat domain has cell attachment
properties, bears homology with the cell membrane Ig receptor
family and neural cell adhesion molecule (NCAM) and also has
roles as a scaffolding material (Noonan et al., 1991; Murdoch
et al., 1992; Hopf et al., 1999; Farach-Carson et al., 2008; Martinez
et al., 2018).

The carboxyl terminal domain V of perlecan contains three
laminin-type G domains (LG) and four EGF-like repeats
(Noonan et al., 1991; Murdoch et al., 1992). These LG
domains are homologous with the α chain globular domains
of laminin and facilitate cell-ECM interactions (Timpl, 1996) and
unique divergent roles in angiogenesis, vascular cell interactions,
wound healing and autophagy (Gubbiotti et al., 2017). Missense
mutations, alternatively spliced, truncated or ablated sequences in
perlecan domain V are evident in an autosomal recessive disorder

FIGURE 3 | Schematic of the modular structure of perlecan and the interactive and cell instructive properties of each of its domains.
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called Schwartz Jampel Syndrome (SJS) characterized by
neuromuscular deficits and myotonia (Gubbiotti et al., 2017).
Domain V interacts with α2β1 integrin on endothelial cells in the
assembly of angiogenic capillary tubes (Lord and Whitelock,
2013). Recombinant perlecan domain V has been expressed
using human, mouse and Drosophila (domain V homologue
unc-52) DNA sequences in bacterial and mammalian
expression systems (Lord and Whitelock, 2013). Human
domain V sequence from Glu3687 to Ser4391 when expressed
in HEK-293 cells resulted in the synthesis of a GAG-free perlecan
domain V, this was termed endorepellin. However when mouse
perlecan domain V (Brown et al., 1997; Friedrich et al., 1999;
Tapanadechopone et al., 1999), or human domain V
encompassing 37 amino acids of the C-terminal region of
perlecan domain IV from Leu3626 to Ser439 was expressed in
HEK-293 cells a perlecan domain V containing HS and CS chains
was produced. rhPerlecan domain V is a fully functional vascular
PG in its own right supporting endothelial cell interactions as
effectively as full-length perlecan thus it has considerable promise
in repair biology (Lin et al., 2020).

Endogenously produced perlecan domain V released by
MMPs from full-length perlecan also promotes tissue repair
through angiogenic interactions with VEGF, VEGF-R2, α2β1
integrin, ECM-1 and progranulin (Brown et al., 1997; Bix, 2013;
Bix et al., 2013). LG1-LG2 and LG3 modules of perlecan domain
V antagonize these interactions and inhibit tube formation and
in-growth of new blood vessels. Perlecan domain V promotes
repair of the disrupted blood brain barrier that occurs after
ischemic stroke (Bix, 2013; Bix et al., 2013). Interactions
between perlecan domain V and pro-angiogenic
glycoproteins such as extracellular matrix protein 1 (ECM1)
(Mongiat et al., 2003) and progranulin (Gonzalez et al., 2003)
promote angiogenesis and tissue repair. Perlecan complexes
with dystroglycan and acetylcholinesterase occur in the
neuromuscular junction (NMJ) and are of functional
significance with essential roles in the assembly and function
of this structure. Perlecan domain V α5β1 integrin interactions
promote pericyte migration, enhance PDGF-BB-induced
phosphorylation of platelet-derived growth factor receptor β
(PDGFRβ), SHP-2 (Src homology region 2 domain-containing
phosphatase-2), and focal adhesion kinase (FAK) (Nakamura
et al., 2019). This supports the maintenance of the normal blood
brain barrier and repair processes of this structure following
ischemic stroke (Nakamura et al., 2015a; Nakamura et al., 2019).
Perlecan domain V and its LG1LG2 and LG3 modules
differentially modulate interactions with VEGF-1, 2; FGF-7;
PDGF promoting or inhibiting angiogenesis. Perlecan domain
V is neuroprotective, and has anti-inflammatory properties
leading to the proposal of domain-V for the treatment of
Alzheimer’s disease (AD), stroke patients (Lee et al., 2011;
Clarke et al., 2012; Kahle et al., 2012; Bix, 2013; Bix et al.,
2013; Guell and Bix, 2014; Marcelo and Bix, 2014; Edwards and
Bix, 2019a; Edwards and Bix, 2019b), vascular dementia
(Marcelo and Bix, 2015) and brain trauma (Badaut and Bix,
2014). Perlecan and VEGF incorporated into bio-scaffolds
promote angiogenesis and tissue repair (Rnjak-Kovacina
et al., 2016; Lord et al., 2017). Recombinant perlecan domain

V supports angiogenesis, vascular cell interactions and wound
healing (Lee et al., 2011; Clarke et al., 2012; Kahle et al., 2012;
Marcelo and Bix, 2014; Marcelo and Bix, 2015; Poluzzi et al.,
2016; Rnjak-Kovacina et al., 2017). Interactions between
perlecan PDGF BB, FGF-2, and TGF-β1 promote fibroblast
migration and collagenous repair of the corneal stroma and
other connective tissues to regulate tissue fibrosis. Perlecan-
VEGF-VEGF-R2 interactions promote angiogenesis and wound
healing (Lord et al., 2014). Perlecan domain III and V
interactions with platelet factor 4 and domain I of perlecan
with megakaryocyte and platelet inhibitory receptor G6b-R
promote adhesion of cells to implants and scaffolds in
vascular repair applications (Rnjak-Kovacina et al., 2017).
With the availability of recombinant perlecan, applications
are now emerging for perlecan in repair biology. Perlecan
expression by adipocytes and smooth muscle cells mechano-
regulate lipid and glucose catabolism and oxidative muscle fiber
composition and the systemic metabolism of adipose tissue and
skeletal muscle (Yamashita et al., 2018). Perlecan thus has
physiological roles in obesity, the onset of metabolic
syndrome and in lipoprotein retention in diabetic
atherosclerosis (Tannock and King, 2008; Ng et al., 2021).
Polarised M2 macrophages retain LDL in atherosclerotic
plaques through interactions with perlecan domain I HS
chains and the LDL receptor of perlecan domain II. Perlecan
as a basement membrane component of blood vessels, blood
brain barrier and nerve basal structures in moto-neuron
synapses of the NMJ is thus a ubiquitous pleomorphic
molecule involved in the regulation of many physiological
processes in tissues of varied form and function. With a full
appreciation of perlecan’s biology in tissues this insightful
information would greatly aid in future tissue repair
strategies involving this remarkable PG.

THE DIVERSE ROLES OF PERLECAN

Perlecan’s Roles in Tissue Development
Perlecan is a large multi-domain ECM HSPG detectable in
four cell blastocysts during embryogenesis, its expression
changes spatiotemporally during implantation of the
embryo and in the placentation stage of embryonic
development (Smith et al., 1997). Perlecan is expressed by
many embryonic cell types and tissues (Roediger et al., 2009)
including the trophoblast and tropho-ectoderm, the basal
lamina that underlies the uterine epithelia and endothelia,
and developing decidua (Smith et al., 1997). Perlecan
promotes many biological processes in the embryo during
cell adhesion, growth factor binding, and modulation of
apoptotic events (Girós et al., 2007; Soulintzi and Zagris,
2007). Perlecan expression and activity is controlled at the
transcriptional level, through alternative splicing, and
proteolytic processing of perlecan in the extracellular
environment (Gomes et al., 2002). Full length perlecan acts
as an extracellular scaffold supporting cell attachment, growth
factor and morphogen sequestration that promoting cell
proliferation and differentiation, matrix production and
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tissue expansion during development (Farach-Carson and
Carson, 2007). Perlecan also stabilises the ECM through
multi-component interactions mediated by its core protein
and its GAG chain substitution in domain I. Perlecan is a
ubiquitous modular instructive multifunctional extracellular
and pericellular PG that regulates cellular migration,
differentiation and proliferation (McGrath et al., 2005;
Whitelock et al., 2008; Lord et al., 2014; Nakamura et al.,
2015b). Perlecan in cartilaginous tissues promotes
proliferation and differentiation of chondrogenic cell types,
stimulates matrix synthesis and contributes to tissue
expansion and skeletogenesis. It also helps stabilize the
extracellular matrix (ECM) and promotes various tissue
repair processes (Costell et al., 1999; French et al., 2002;
Gomes et al., 2004; Sadatsuki et al., 2017; Gao et al., 2021;
Garcia et al., 2021). In vascular tissues, perlecan has different
effects; for example, it promotes angiogenic repair of skin
wounds through FGF-2 sequestered by its domain I HS chains
(Zhou et al., 2004) but inhibits smooth muscle cell (SMC)
proliferation and migration (Koyama et al., 1998; Gotha et al.,
2014) (Figures 3, 4).

Perlecan’s Roles in Vascularized Tissues
In a carotid artery injury model using MΔ3/Δ3 mice lacking
perlecan HS chains themedial thickness, medial area/lumen ratio,
and macrophage infiltration were significantly increased (Gotha
et al., 2014). Perlecan lacking HS side chains has a reduced ability
to inhibit SMC proliferation in vitro. The HS side chains of
perlecan have critical roles to play in the vessel wall, as an
interleukin (IL)-2 receptor for vascular SMCs (Arumugam
et al., 2019). IL-2, a 15 kDa immunoregulatory cytokine
secreted by T cells, promotes peripheral immune cell growth
and development initiating a defensive immune response as an
initial response in the wound repair process. While SMC
proliferation is inhibited by HS-PGs, digestion of HS chains
from perlecan reverses this effect. SMC perlecan is a hybrid
HS/CS PG while endothelial perlecan is mono-substituted with
HS (Whitelock et al., 2008; Lord et al., 2014; Melrose, 2020).
SMCs bind to perlecan core protein only when perlecan’s GAG
side chains have been removed. This involves a novel binding site
in perlecan domain III, perlecan domain V and α2β1 integrin.
Endothelial cells, however, adhere to perlecan core protein
containing intact GAG substitution (Whitelock et al., 1999;
Lord et al., 2014).

SMC perlecan binds FGF-1 and FGF-2 via HS side chain
interactions promoting FGF-2, but not FGF-1 signaling (Lord
et al., 2014). Endothelial cell perlecan also binds both FGF
isoforms through HS but, in this case, promotes signaling
through both FGF-1 and FGF-2. Perlecan differentially
regulates cellular proliferation and cell signaling promoted by
growth factors to regulate tissue repair processes (Segev et al.,
2004; McGrath et al., 2005; Hultgårdh-Nilsson and Durbeej,
2007). The form of perlecan present in tissues can vary with
different cell populations assembling variable GAG side chain
components in domain I. Perlecan is also subject to post-
translational modifications including truncations, mis-sense
and point mutations in its core protein and proteolytic
modifications leading to the generation of perlecan fragments
(Melrose, 2020). Domain IV of full-length perlecan is particularly
susceptible to cleavage by matrix metalloproteinases (MMPs)
leading to the generation of bioactive domain I and V
matricryptic fragments.

Attachment of perlecan to the endothelial cell surface as a
dynamic flow sensor at the endothelium-blood interface (Siegel
et al., 2014) can also modulate charge density at the endothelial
cell surface affecting membrane polarization (Siegel et al., 2014).
Shear stress signaling to endothelial cells regulates vascular ECM
remodeling and induction of angiogenesis (Russo et al., 2020).
Membrane polarization regulates cell proliferation, cell signaling,
cytoskeletal organization and gene expression (Gradilla et al.,
2018). Cell polarization facilitates cell-cell signalling and is
interfaced with stimulatory biophysical forces at the cell
surface that regulate cell differentiation and tissue
development (Saha et al., 2018). Calcium signalling initiated
through transient receptor potential (TRP) endothelial cell
channels (Thakore and Earley, 2019) drives vasculogenesis and
controls the contractile properties of SMCs, vasodilation and
blood pressure (Thompson et al., 2011). Perlecan domain II is a
LDL receptor that facilitates lipid clearance from the circulation

FIGURE 4 | Immunolocalisation of perlecan in a 14-week gestational age
human hallux (big toe). Top left panel shows a macroscopic view with boxed
regions depicted at highermagnification in subjacent panels (A,B). Right-hand
panel shows periodic acid-schiff (PAS) staining of the foetal hallux
showing selected regions of its anterior and posterior surfaces. The strong
reaction (purple staining) indicates the presence of perlecan HS and other
matrix polysaccharides (e.g., hyaluronic acid, HA) within the basement
membrane (BM) and epidermis (C,D) of the digit. Images modified from (Smith
and Melrose, 2015) with permission. Images © the authors 2015.
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FIGURE 5 | Schematic depiction of perlecan’s role as an integral structural component involved in the assembly and function of the neuromuscular junction (NMJ)
showing its interactions with cell surface integrins, type IV, VI, XVIII, ColQ collagens, MuSK (Muscle-Specific Kinase) and dystroglycan (DG) and localization of catalytically
active acetylcholinesterase sub-units (A). Other structural components of the NMJ include extracellular components such as matriglycan, neurexin, laminin, type XVIII
collagen and agrin and the cell membrane componentsMuSK, sarcoglycan, dystrophin and sarcospan (B). This schematic is a simplified interpretation of data from
the many publications that have outlined the very complex structure and function of the NMJ (Geppert et al., 1992; Crosbie et al., 1999; Arikawa-Hirasawa et al., 2002b;

(Continued )
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(Ebara et al., 2000). Membrane de-polymerization resulting from
binding of LDL to perlecan leads to vasoconstriction, lowering of
cyclic guanosine monophosphate (cGMP) SMC levels and
deleteriously contributes to atherosclerosis. Lipid binding to
perlecan in bone may also modulate its flow sensory
properties and the regulatory properties it conveys to
osteocytes (Thompson et al., 2011; Wang, 2018).

Perlecan’s Roles in Cartilaginous Tissues
Perlecan is localized in the periphery of stem cell niches in foetal
cartilage rudiments (Melrose and Melrose, 2016) (Figures 2B–D).
Perlecan regulates the attainment of stem cell pluripotency and the
development ofmigratory chondroprogenitor stem cell lineages with
roles in diarthrodial joint development, expansion of the cartilage
rudiments and development of primary and secondary ossification
center precursors to the cartilage growth plate cartilages. These are
important features of relevance in potential repair applications that
might be developed using perlecan in repair biology.

While perlecan is a component of basement membranes in
vascularised tissues it also has a wide distribution in tensional and
weight bearing cartilages such as the meniscus, tendon, ligament
and intervertebral disc (IVD). These are predominantly avascular
tissues devoid of a basement membrane, however the PCM of
chondrocytes has been suggested to represent an intrinsic
basement membrane around each cell (Kvist et al., 2008).
Atomic force microscopy (AFM) studies demonstrate that
perlecan imparts compliancy to the PCM and is cytoprotective
(Guilak et al., 2021). Cell-ECM interconnections in cartilages and
perlecan as a biosensor, facilitates cell-matrix communication
allowing cells to perceive and respond to perturbations in their
biomechanical microenvironments and to orchestrate tissue
homeostasis. Perlecan also monitors the flow of cannalicular
fluid in the osteocyte PCM and acts as a mechanosensor that
regulates bone development (Thompson et al., 2011; Wang et al.,
2014; Wijeratne et al., 2016).

Perlecan’s Roles in Neural Tissues
Perlecan has critical roles in basement membrane in the blood
brain barrier and important roles in NMJ assembly and
function (Figures 5, 6). Perlecan-FGF-2 interactions in the
neural stem cell niche (fractone) regulate the survival,

proliferation and differentiation of neuroprogenitor stem
cell populations in the sub-ventricular and dentate gyrus of
the hippocampus (Kerever et al., 2007; Douet et al., 2013;
Kerever et al., 2014; Mercier, 2016; Kerever and Arikawa-
Hirasawa, 2021; Kerever et al., 2021; Kim et al., 2021).

PERLECAN MUTATIONS AND ANIMAL
MODELS: FUNCTIONAL CLUES THEY
PROVIDE ON THE BIOLOGICAL ROLES OF
PERLECAN

Schwartz-Jampel Syndrome
(Chondrodystrophic Myotonia) and
Dyssegmental Dysplasia
Silverman-Handmaker Type
The importance of perlecan to the functional weight bearing and
tensile properties of cartilaginous tissues is well illustrated in SJS
(Schwartz-Jampel syndrome; chondrodystrophic myotonia)
(Arikawa-Hirasawa et al., 2002a) and Dyssegmental dysplasia
Silverman-Handmaker type (DDSH) (Arikawa-Hirasawa et al.,
2001a; Arikawa-Hirasawa et al., 2001b). The former is a relatively
mild skeletal condition characterized by reduced perlecan levels in
tissues; however, DDSH is a very severe condition where perlecan
levels in tissues are severely depleted or totally absent. SJS is an
autosomal recessive disease caused by mutation in the HSPG2 gene
resulting in skeletal dysplasia and neuromuscular hyperactivity
(Nicole et al., 2000; Bauché et al., 2013). In this condition mutant
fibroblasts secrete reduced levels of perlecan and display impaired
migratory properties but normal proliferative rates (Arikawa-
Hirasawa et al., 2002a). DDSH (MIM 224410) in contrast is a
very severe but extremely rare condition caused by functional null
mutations in the perlecan HSPG2 gene (Arikawa-Hirasawa et al.,
2001a). Less than forty DDSH cases have been reported in the
literature, and only four of these were detected prenatally.

Perlecan Knockout Model
Perlecan knockout is a lethal condition. Conventional perlecan
knockout (i.e., Hspg2−/−, KO) mice die just after birth mainly due
to respiratory failure (Arikawa-Hirasawa et al., 1999; Costell et al.,

FIGURE 5 | Steen and Froehner, 2003; Rotundo et al., 2008; Sigoillot et al., 2010; Knight et al., 2011; Singhal and Martin, 2011; Ohno et al., 2013; Arredondo et al.,
2014; Yoshida-Moriguchi and Campbell, 2015; Banerjee et al., 2017; Cescon et al., 2018; Belhasan and Akaaboune, 2020; Legay and Dobbertin, 2020) and illustrates
how mutations in perlecan evident in SJS that result in severely diminished tissue levels of perlecan compromise the functional properties of the NMJ manifesting in the
neurological and muscular deficits evident in SJS. A better understanding of the functional basis of the NMJ is also of relevance to synaptic functions in musculoskeletal
disorders in general. Perlecan has key roles to play in the assembly, function and regulation of the NMJ (Aldunate et al., 2004; Cartaud et al., 2004; Kimbell et al., 2004;
Rotundo et al., 2005; Rudenko, 2017; Südhof, 2018; Noborn and Sterky, 2021). Perlecan has central roles in the clustering of acetylcholinesterase (Ache) at the synaptic
basal membrane through formation of a ternary complex with MuSK, DG and ColQ (C). The collagen-tailed form of AChE is localized at the NMJ through interaction with
the transmembrane DG complex by binding to perlecan (Kimbell et al., 2004). HS binding domains in ColQ anchor it to the synaptic basal lamina. ColQ-AChE/perlecan
complex co-localizes in the NMJ with dystroglycan, rapsyn, laminin and MuSK (Rotundo et al., 2005). MuSK is a receptor tyrosine kinase with important roles to play in
the clustering of active AChE sub units at the NMJ in a ternary complex with ColQ and perlecan (Cartaud et al., 2004) of functional importance (Aldunate et al., 2004).
Neurexin HS chains also recruit HS-binding proteins required for synaptic assembly and themaintenance of synaptic plasticity (Südhof, 2018; Noborn and Sterky, 2021).
A large collection of synaptic adhesion/organizing molecules (SAMs) exist in the mammalian brain with roles in synapse development and maintenance. SAMs, include
neurexins, neuroligins, cadherins, and contactins implicated in neuropsychiatric and neurodevelopmental diseases, including autism, schizophrenia, and bipolar disorder
(Rudenko, 2017). A greater understanding of the process of synaptic assembly, function and regulation at the molecular level may further the development of novel
synaptic therapeutics. A recent publication proposes that HS-PGs are key players in Alzheimer’s disease (AD). In a unifying hypothesis HS-PGs are considered central to
all aspects of AD neuropathology, i.e., plaque/tangle development amyloid deposition, neuroinflammation and apolipeprotein E (ApoE) accumulation (Snow et al., 2021).
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1999). The few mice that survive to birth display macroscopic
abnormalities in cephalic development and have short squat
frames with severely distorted axial and appendicular skeletal
development. Furthermore, internal examination shows major
abnormalities in the development of the major outflow tracts
from the heart in these mice. Perlecan-null mice, form normal
basement membranes but these soon deteriorate at areas of
increased mechanical stress e.g., areas of myocardial
contraction and brain vesicle expansion. Perlecan-null mice
die around E10–12, due to heart, lung, and brain defects.
Weakened embryonic heart basements membranes and “leaky”
cardiomyocyte-endothelial cell interfaces result in cardiac arrest
due to blood leakage into the pericardial space. Major defects in
lung development also contribute to the lethality of perlecan
deficiency. Abnormalities in cephalic development, distortion in
normal brain laminar architecture and development of holes in
the fore- and midbrain also occur. Perlecan-null mice experience
severe bleeding in the lung, skin, and brain, due to weakened
blood vessels. Perlecan null mice also display distorted growth
plate architecture and a disturbed chondrocyte organization with
a loss of normal columnar chondrocyte spatial organization and
expansion and distortion of the resting, proliferative and
hypertrophic zones consistent with the massive disruptions
seen macroscopically in skeletal development in this mouse
model. Perlecan knock-out mice are not suitable for the
examination of perlecan’s roles in postnatal tissue
development, but starkly demonstrate the importance of
perlecan in the development of pre-natal vascular and non-
vascular tissues.

Perlecan Conditional Transgenic Model
In order to avoid the lethality of perlecan KO mice, conditional
perlecan-deficient (Hspg2−/−, TG) mice were developed that
express the perlecan transgene only in cartilage using the
Col2a1promoter and enhancer (Xu et al., 2010; Xu et al.,
2016). These perlecan TG mice develop a phenotype similar to
DDSH but also share features of SJS (Arikawa-Hirasawa et al.,
2001a; Arikawa-Hirasawa et al., 2002a). Perlecan knockdown
impacts on cartilage development and skeletogenesis and
impairs the normal weight bearing properties of cartilaginous
tissues and functional properties of the pericellular matrix of
chondrocytes (Xu et al., 2016; Ocken et al., 2020).

Perlecan Exon 3 Null (HS Deletion) Model
In Hspg2−/−-Tg (Hspg2−/−; Col2a1-Hspg2Tg/−) mice, perlecan
is only expressed in cartilage but not the synovium. This results
in less development of osteophytic spurs in the tibial and
femoral joint margins (Arikawa-Hirasawa et al., 1999; Xu et al.,
2010; Ishijima et al., 2012; Kaneko et al., 2013). A perlecan
exon 3 null mouse model has also been developed. Perlecan
domain-I encoded by exon 3 contains its GAG attachment
points thus perlecan exon 3 null mice produce perlecan
deficient in HS. A 20 kDa drop in the size of the perlecan
core protein is also evident. This model has yielded important

FIGURE 6 | Histochemical localization of a motor neuron attaching to
muscle fibre showing the myelinated nerve bundle (MNB), motor endplates
(MEP) and striated muscle fibres (SMF) (A). and perlecan-positive striated
muscle fibres stained with MAb A7L6 to perlecan domain IV in murine
extensor digitorum longus muscle (B). A lower power image depicting
perlecan-positive features in a foetal human elbow joint (C). 1) flattened
venule, 2) capillary with entrapped red blood cells, 3) small nerve -bundle in
cross-section, 4) muscle fibres, 5) longitudinal nerve fibre bundles in ulnar
nerve of the elbow. Schematic of the major features of the motor end plate (C).
Figure segment a, stock image 2AD3P00 from Alamy Science Photolibrary
reproduced under license. (B,C) modified from (Shu et al., 2019) Open
Access under CC BY NC-ND License to Publish. (D). A wave of membrane
depolarization emanating from the nerve soma produces an action potential
that travels down the nerve axon resulting in activation of voltage gated Ca2+
channels in the nerve synapse and a resultant influx of Ca2+. This results in
mobilization of synaptic vesicles in the nerve to the post synaptic membrane.
These merge with the post-synaptic membrane releasing their
neurotransmitter contents which include acetylcholine into the synaptic gap.
Acetylcholine is captured by acetylcholine receptors on the muscle synaptic
membrane which results in an influx of Na+ ions through Na+ channels into the
muscle causing muscular contraction. Acetylcholinesterase released by the
nerve mops up any excess of acetylcholine. Acetylcholinesterase is one of
nature’s most efficient enzymes and hydrolyses acetylcholine regulating
muscular relaxation (Vigny et al., 1978). The myotonia found in SJS is due to a
breakdown in this mechanism due to a deficiency of perlecan at the NMJ and
a deficiency of AChE that is normally clustered in synapses by perlecan
(Silman and Sussman, 2008).
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information on the role of perlecan HS in the regulation of
chondrocyte behavior and in tissue homeostasis and perlecan
HS mediated interactions with ECM components (Whitelock
et al., 2008; Smith et al., 2010; Hayes et al., 2011a; Hayes et al.,
2011b; Hayes et al., 2013; Shu et al., 2013; Hayes et al., 2014;
Shu et al., 2016a; Hayes et al., 2016b; Shu et al., 2018; Shu et al.,
2019; Smith and Melrose, 2019). This exon 3 null GAG free
form of perlecan does not participate in growth factor and
morphogen sequestration and cell signaling like the full length
GAG substituted form of perlecan resulting in a loss in its
ability to act as a co-receptor for the presentation of these
growth factors to their cognate receptors (Zhou et al., 2004;
Whitelock et al., 2008). However, there are GAG-free regions
of the perlecan core protein that can also bind certain growth
factors. For example, perlecan domain III can bind FGF-7 and
FGF-18, however it is not known to what extent this
interaction can provide the same cell proliferative and
differentiative properties provided by growth factors that
bind to the GAG chains of perlecan domain I. Perlecan
exon 3 null HS-deficient mice do not store TGF-β1 in skin
tissues like the full-length perlecan does (Shu et al., 2016a).
Participation in the wound healing response, previously
provided by FGF-2 and VEGF perlecan interactions and the
angiogenic responses they provide, is also lost in perlecan exon
3 null mice (Zhou et al., 2004). As previously discussed, full
length HS substituted perlecan has major roles in tissue and
organ development and wound healing orchestrated by the
binding and signaling of mitogens and morphogens with cells
in a temporal and dynamic fashion. FGF-7, −18 and PDGF can
also bind to perlecan domains III, IV and V, such interactions
may also mediate wound healing and cell signaling responses.
Binding of PDGF-BB has been mapped to domain III-2 (Kd =
8 nM), lower binding affinities are evident for domains I, IV-1
and V (Kd = 34–64 nM). PDGF-AA binds to domain III-2
(Göhring et al., 1998). Perlecan HS deficiency impairs
pulmonary vascular development (Chang et al., 2015).
Perlecan HS chains also recruit pericytes to pulmonary
vessels. HS deficiency in perlecan attenuates hypoxia-
induced pulmonary hypertension involving impaired FGF-
2/FGFR1 interactions (Chang et al., 2015). Perlecan exon 3
null mice display reduced healing responses due to impaired
FGF-2 and VEGF signaling (Zhou et al., 2004). The
chondroprotection evident in perlecan exon 3 null mice in a
post traumatic OA model may be attributable to the
preservation of FGFR-3-FGF-18 signaling and perlecan
domain III-mediated interactions (Shu et al., 2016b),
contributing to significantly reduced joint margin
osteophytosis, synovial perlecan is required for osteophyte
formation in knee OA (Kaneko et al., 2013). Hspg2 exon 3
null murine chondrocytes display increased hypertrophic
maturational changes and chondrocyte proliferative rates
in vitro and in vivo, accelerated growth plate maturation,
elevated GAG deposition, and exostosis formation in the
IVD (Shu et al., 2019). Perlecan HS may thus exert
repressive control over chondrocytes in mature cartilage
explaining why cartilage has such a poor healing response
(Garcia et al., 2021).

Schwartz-Jampel Syndrome
(Chondrodystrophic Myotonia) Model
A model of SJS in which a 4595G to A point mutation occurs in
the perlecan gene displays reduced perlecan secretion and
incorporation into the PCM similar to the clinical features of
human SJS (Rodgers et al., 2007; Stum et al., 2008). Mice
homozygous for Hspg2C1532Y-Neo (Neo/Neo) have short
stature, impaired mineralization, misshapen bones, OA-like
joint dysplasias and myotonia (Rodgers et al., 2007; Stum
et al., 2008).

A model of SJS has also been developed that displays
congenital peripheral nerve hyper-excitability, neuromyotonia,
demyelination and peripheral neuropathies (Bangratz et al.,
2012). This model revealed roles for perlecan in the regulation
of longitudinal elongation of myelin by Schwann cells
(Echaniz-Laguna et al., 2009; Bangratz et al., 2012).
Perlecan-deficient mice displaying shorter internodes, had
increased levels of impaired functional voltage-gated K (+)
channels (Echaniz-Laguna et al., 2009). Electrophysiological
studies have demonstrated muscle fiber hyper-excitability
arising from such alterations in peripheral nerve
organization, muscle hypertrophy and compositional
changes (Xu et al., 2010).

Perlecan Cerebral Artery Occlusion Stroke
Model
Cerebral artery occlusion stroke models in Yucatan miniature
pigs, dogs and mice (Platt et al., 2014; Vasquez et al., 2019;
Llovera et al., 2021) have facilitated examination of perlecan’s
roles in the repair of the blood brain barrier following stroke.
Perlecan domain V has neurogenic and neuroprotective
properties and promotes angiogenic repair of the blood
brain barrier (Lee et al., 2011; Bix, 2013; Marcelo and Bix,
2014). Perlecan transgenic mice have demonstrated
important roles for perlecan domain V in pericyte
recruitment in the promotion of BBB repair processes
(Nakamura et al., 2019). IL-1 is also neuroprotective and
has neuron restoring properties in experimental ischemic
stroke studies (Salmeron et al., 2019). Recombinant
perlecan domain V is now available for blood brain barrier
repair strategies (Rnjak-Kovacina et al., 2017). Recombinant
perlecan domain V decorated with HS and CS chains is a
vascular PG in its own right and supports endothelial cell
interactions as well as full-length perlecan (Rnjak-Kovacina
et al., 2017). Repair of the blood brain barrier involves
pericyte recruitment, triggered by an up-regulation in
PDGFRβ (Arimura et al., 2012; Makihara et al., 2015;
Shibahara et al., 2020), this drives pericyte migration
required for pericyte endothelial tube repair interactions in
the neurovascular unit (Hellstrom et al., 1999). Perlecan
binds PDGF and promotes pericyte migration and integrin
α5β1 and α2β1 mediated interactions in endothelial tube
formation (Hellstrom et al., 1999; Arimura et al., 2012;
Shen et al., 2012; Makihara et al., 2015; Nakamura et al.,
2019).
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APPLICATION OF PERLECAN IN REPAIR
BIOLOGY
Cell-Mediated Effects of Perlecan:
Modulation of Cell Proliferation
While perlecan promotes the proliferation and differentiation of
endothelial cells, as well as many other cell types, it inhibits SMC
proliferation through the tumor repressor PTEN (tumor
suppressor phosphatase and tensin homolog), including
upregulation of FRNK (focal adhesion kinase–related non-
kinase) and down regulation of FAK signalling (Walker et al.,
2003; Garl et al., 2004).

Perlecan’s HS Mediated Interactions and
Their Relevance to Tissue Repair
HS’s interactions with FGF-2, PDGF, VEGF, HGF, BMP2, GM-
CSF, angiopoietin-3, and activin A illustrate the potential of
perlecan domain I as a co-receptor for growth factor delivery
and receptor activation. The ITIM megakaryocyte-platelet
receptor (G6b-B-R) is an additional ligand for the HS chains
of perlecan domain I (Vögtle et al., 2019). G6b-B-R is highly
expressed inmature megakaryocytes (MKs) that regulates platelet
activation (Lord et al., 2018; Vögtle et al., 2019). Binding of G6b-
B-R to perlecan HS chains mediates functional responses in MKs
and platelets, negatively regulating platelet adhesion to fibrinogen
and collagen. It also modulates platelet adhesion to vascular graft
materials and explains the varied roles of perlecan in fibrosis
(Lord et al., 2009; Lord et al., 2018).

Understanding Perlecan’s Cell Regulatory
Roles in Blood Vessels
Perlecan attached to endothelial cells in the lumen of blood
vessels acts as a shear flow sensor that interacts with Ca2+ or
Na+ regulating charge density at the endothelial cell surface. This
also regulates membrane polarization in endothelial cells and
SMCs, ion transport regulates vasoconstriction and relaxation in
blood vessels (Siegel et al., 2014) and is crucial for cell-cell
signalling coupled with stimulatory biophysical forces that
promote cell differentiation and tissue development (Saha
et al., 2018). Calcium signalling through endothelial cell TRP
channels (Thakore and Earley, 2019) drives vasculogenesis
(Moccia et al., 2019) and SMC contractility which in turn
regulates vasodilation and blood pressure (Ishai-Michaeli et al.,
1990).

Heparanase has Roles in Wound Repair and
Tissue Remodelling
While the HS chains of perlecan mediate growth factor
interactions in skeletogenesis, degradation of HS in situ has
been shown to improve wound healing through the re-
mobilization of sequestered growth factors locally at sites of
tissue repair (Ishai-Michaeli et al., 1990; Zcharia et al., 2005;
Nasser, 2008). Heparanase expression in osteoblastic cells also

promotes bone formation and tissue remodeling at the
osteochondral interface during endochondral ossification
(Kram et al., 2006).

Application of Perlecan in Vascular Tissue
Repair
Given the crucial role that perlecan plays in multiple biological
processes, it is unsurprising that perlecan, or its components,
have been utilized in multiple therapeutic applications. Perlecan’s
known ability to bind, sequester, and deliver a myriad of growth
factors and other bioactive molecules is a key feature that has been
harnessed to translate this molecule into potential therapeutics
for multiple applications, from angiogenesis to the regeneration
of cartilage (Gao et al., 2021; Garcia et al., 2021). Perlecan’s ability
to modulate processes in cardiovascular applications has been
explored through an immune-purified form of perlecan from
human coronary arterial endothelial cells. This immunopurified
perlecan was used to coat expanded polytetrafluoroethylene
(ePTFE) vascular grafts. Implantation of the vascular grafts
into the carotid arteries of an ovine model demonstrated that
the perlecan-coated grafts reduced platelet adhesion and
enhanced endothelial cell growth along the implanted graft
when compared with the uncoated vascular graft (Lord et al.,
2009). While this study demonstrated the ability for perlecan to
improve vascular graft patency, isolation of perlecan from tissues
or purified from conditioned medium, can be cost-prohibitive
due to the small amounts available and the quantities required.

An alternative option that has been explored is through the use
of recombinant fragments of perlecan. The protein core of
perlecan contains five domains, many with bioactive
properties, though use of recombinant perlecan fragments has
focused on the use of domain-I and -V due to these domains
containing GAG attachment sites. The protein component of
perlecan domain I contains three GAG attachment sites. The
GAGs that decorate the perlecan domain I core protein are
predominantly HS, though it may also be decorated with CS.
Recombinant perlecan domain I decorated with HS has been
incorporated into 3D structures or scaffolds for multiple
therapeutic applications. The incorporation of perlecan
domain-I into 3D structures has resulted in increased
retention of FGF-2 (Yang et al., 2005), as well as BMP2 (Jha
et al., 2009; Srinivasan et al., 2012; Chiu et al., 2016) for cartilage
repair and regeneration. More recently, advances in fabrication
andmicrofluidics has enabled the ability to produce growth factor
gradients (Hubka et al., 2019), an approach that has been utilized
to generate chemotactic gradients with FGF-2R The ability to
create gradients using perlecan, perlecan fragments and other
bioactive components of the ECM, has significant potential in
tissue repair and regeneration, including the development of
smart biomaterials and constructs. It will also greatly improve
the understanding of many developmental and disease processes,
e.g., in cancer biology.

As mentioned above, perlecan domain V, like domain I,
contains a GAG attachment site. Recombinant perlecan has
been explored in several applications due to its growth factor
interactions. Recombinant perlecan domain V is substituted with
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HS and CS chains and promotes angiogenesis by enhancing
growth factor signaling (Lin et al., 2020). When perlecan or
perlecan DNA is immobilized on silk or chitosan scaffolds
(Lord et al., 2017) increased vascular ingrowth and integration
in vivo underlies the importance of perlecan in angiogenesis/
vasculogenesis.

The complexity and nuances of perlecan’s ability to modulate
biological processes has been explored by immobilization
technique, and the presence of GAG chains plays a key role in
the orientation of this PG (Rnjak-Kovacina et al., 2016).
Immobilization of perlecan domain V by physisorption or
covalently, in addition with immobilization of the protein core
of perlecan domain V only, or protein core decorated with GAG
chains, modulated the interaction and attachment of both
endothelial cells and platelets. The ability to control the
interaction of different cell types holds tremendous
importance to tissue repair, for example in cardiac and
vascular repair procedures where tissue grafts and implants,
require cues to facilitate migration and re-endothelization of
the repair tissue, whist minimizing platelet adhesion. The
potential of perlecan domain V to modulate platelet adhesion
has been explored by incorporating this domain onto different
polymeric surfaces including poly (vinyl chloride) (Chandrasekar
et al., 2021), silk (Lau et al., 2021) and chitosan (Lord et al., 2017).
Incorporation of perlecan domain I plasmid DNA in conjunction
with VEGF189 in a rodent wound model demonstrated increased
re-epithelialization of the wound, formation of sub-endothelial
tissue and neo-angiogenesis within the wound bed (Lord et al.,
2017).

Application of Stimulatory Peptides Derived
From ECM Components in Repair Biology:
In Vitro Engineering of Salivary Glands
Using Perlecan Domain IV, Laminin-111 and
Fibronectin Peptide Scaffolds
Peptides derived from perlecan domain IV (TWSKV), laminin-
111 (YIGSR, IKVAV), and fibronectin (RGDSP) have been
incorporated into HA scaffolds with RGDSP and TWSKV
peptide HA scaffolds significantly accelerating cell proliferation
(Fowler et al., 2021). Perlecan peptide TWSKV triggers
differentiation of salivary gland cells into self-assembling acini-
like structures expressing salivary gland biomarkers that secrete
α-amylase (Pradhan et al., 2009; Pradhan et al., 2010). Purified
ECM-derived peptides have been suggested as stimulatory
molecules that direct the proliferation and differentiation of
progenitor cell populations. These are of potential application
in tissue repair processes using human embryonic stem cells
(hESCs) and induced pluripotent stem cells (iPSCs) (Rowland
et al., 2013). Laminin-111 peptide fibrin hydrogels restore salivary
gland function (Nam et al., 2017). An extensive range of laminin-
111-derived peptides conjugated to chitosan scaffolds also show
promise in tissue engineering applications designed to promote
tissue regeneration (Hozumi et al., 2012). Laminin-111 peptide-
HA hydrogels have also been shown to act as a synthetic
basement membrane (Yamada et al., 2013). Conjugation of
RGDSP peptide to HA gels improves cell viability, accelerates

formation of epithelial spheroids, and promotes the expansion of
3D progenitor cell populations, representing the first step toward
the development of an engineered salivary gland (Fowler et al.,
2021). Primary salivary human progenitor stem cells undergo
acinar-like differentiation in HA hydrogel cultures and
incorporation of basement membrane peptides derived from
perlecan and laminin-111 further directs the development of
3D salivary gland-like spheroids (Srinivasan et al., 2017). Full-
length perlecan also has directive roles over the 3D development
of submandibular salivary glands. Heparanase colocalizes with
perlecan in submandibular gland basement membrane. Cleavage
of perlecan HS side chains by heparanase regulates salivary gland
branching morphogenesis by modulating FGF-10 mediated cell
signaling. Heparanase releases FGF-10 from perlecan HS in the
basement membrane. This increases MAPK signaling, epithelial
clefting, and lateral branching thus increasing submandibular
gland branching morphogenesis (Patel et al., 2007). The size and
sulfation patterns of the perlecan HS side chains regulate FGF-10-
mediated interactions during proliferation, salivary gland duct
elongation, bud expansion, and differentiation. The spatio-
temporal localization of specific HS structures in salivary
tissues provides a mechanistic insight as to how salivary gland
developmental processes mediated by FGF10 occur in vivo (Patel
et al., 2008). FGF-10 is a multi-functional paracrine growth factor
that mediates mesenchymal-epithelial signaling during tissue
development, growth and disease and has significant relevance
to regenerative medicine (Itoh and Ohta, 2014; Itoh, 2016).

Potential Roles for Perlecan in Cartilage
Repair
Once damaged, articular cartilage has a notoriously poor
ability to repair itself (Armiento et al., 2019). Perlecan’s
important well-established roles in chondrogenesis and
cartilage development (Smith et al., 2010; Melrose et al.,
2012) imply potential roles in cartilage repair by
recapitulating developmental roles in damaged/diseased
tissues (Gao et al., 2021; Garcia et al., 2021). Perlecan
promotes chondroprogenitor stem cell maturation and
development of pluripotent migratory stem cell lineages
with roles in diarthrodial joint formation and early cartilage
development (Hayes et al., 2016a; Melrose and Melrose, 2016).
Perlecan’s cartilage stabilizing properties through interactions
with ECM components also establish its potential in cartilage
repair (SundarRaj et al., 1995; Gomes et al., 2002; Melrose
et al., 2006; Melrose et al., 2008). Perlecan domain I hydrogels
have been used to establish heparin binding growth factor
gradients that promote cell migration of potential use to
promote cartilage repair (Hubka et al., 2019). Perlecan
domain I BMP-2 hydrogels have also been shown to
promote chondrogenesis and cartilage repair in a murine
early OA model (Yang et al., 2006; Jha et al., 2009;
Srinivasan et al., 2012). BMP-2 and BMP-9 can also
promote chondrogenic differentiation of human
multipotential mesenchymal stem cells (Majumdar et al.,
2001; Shestovskaya et al., 2021). Perlecan domain I collagen
I fibril scaffolds have been used as an FGF-2 delivery system
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that could also be useful in cartilage repair strategies (Yang
et al., 2005). FGF-2 directs non-committed mesenchymal stem
cells to a chondrogenic phenotype (Shu et al., 2016c).

Roles for Perlecan at the Neuromuscular
Junction
The duration of synaptic transmission of impulses at the NMJ is
chiefly controlled by acetylcholinesterase (AChE), an enzyme
which hydrolyzes acetylcholine (ACh) to choline and acetate
(Katz and Miledi, 1973; Rosenberry, 1979). Perlecan, nidogens,
glycoproteins and collagen fill the synaptic cleft and are relevant
for signal transduction as well as the maintenance of mechanical
strength in the NMJ. At the NMJ, the most abundant form of
AChE is the AChET which is anchored to the synaptic basal
lamina by non-fibrillar collagen Q (ColQ) (Krejci et al., 1991;
Krejci et al., 1997). ColQ, a triple helical structure, binds to
perlecan domain 1 via two heparan sulfate PG binding motifs and
to muscle specific kinase (MuSK) respectively (Rotundo et al.,
1997; Casanueva et al., 1998; Deprez et al., 2003; Cartaud et al.,
2004; Nakata et al., 2013).

Experimental reports demonstrate the functional relationship
between perlecan and AChE (Peng et al., 1999; Arikawa-
Hirasawa et al., 2002b; Massoulié and Millard, 2009; Maselli
et al., 2012) and the cellular co-localization of perlecan and AChE
at the synaptic basal lamina in vitro and in pre-clinical models of
the NMJ (Peng et al., 1999; Arikawa-Hirasawa et al., 2002b;
Massoulié and Millard, 2009; Maselli et al., 2012). Perlecan null
mice lack AChE clusters at the NMJ (Peng et al., 1999; Martinez-
Pena y Valenzuela et al., 2007).

Perlecan and Stroke
Ischemic stroke is a leading cause of permanent disability and
mortality and there is an urgent need for adjunctive therapies for
concurrent administration with existing clot-busting (tissue
plasminogen activator, tPA) and endovascular clot removal
(thrombectomy) treatments. Whilst these primary treatments
remove the underlying cause of the stroke, they do little to
reverse or prevent subsequent brain injury. Perlecan domain V
is potentially one such therapy whose efficacy has been
experimentally demonstrated in both young and aged rodent
models of ischemic stroke, where it has been reported to have
neuroprotective, neuroreparative and functionally restorative
effects (Lee et al., 2011; Bix et al., 2013; Trout et al., 2021).
These benefits of perlecan domain V have been linked to its
maintenance of the BBB through α5β1 integrin modulation and
increased VEGF secretion (Clarke et al., 2012; Nakamura et al.,
2019). Bix and colleagues showed that brain expression of
perlecan is substantially and chronically increased following
experimental and clinical ischemic stroke (Lee et al., 2011; Bix
et al., 2013; Trout et al., 2021). This observation has led to the
hypothesis that perlecan plays a significant role in brain repair
following ischemic insult. Accordingly, larger infarct volumes
and severe motor-sensory deficits in transgenic mice with only
10% of total perlecan bioavailability (perlecan hypomorphs),
when compared to age-matched wild type controls, have been
independently reported and corroborated (Lee et al., 2011;

Nakamura et al., 2019). This suggests that physiologic levels of
perlecan are important for the brain to repair itself after stroke,
and that diminished perlecan levels are detrimental for stroke
outcomes. It follows that exogenously administered perlecan
domain V would enhance the brain’s ability in self-repair by
increasing the availability of perlecan for BBB maintenance,
thereby improving brain injury and functional deficits
following ischemic stroke.

Perlecan promotes blood brain barrier repair following acute
brain injury by modulating the survival and migration of
PDGFRβ-positive pericytes to the ischemic brain region
(Arimura et al., 2012; Shen et al., 2012; Nakamura et al., 2016;
Hoffmann et al., 2018; Nakamura et al., 2019). Perlecan domain V
binds to PDGFRβ and α5β1 in order to maintain blood brain
integrity in the injured brain area (Nakamura et al., 2019) Also,
following ischemic brain injury, α5β1 integrin expression
increases and the exogenously administered perlecan domain
V binds to this integrin on endothelial cells to bring about the
increased secretion of VEGF (Clarke et al., 2012). The elevated
levels of VEGF enables angiogenesis via the downstream
activation of PI3K-Akt, MEK-ERK and HIF-1α (Milner et al.,
2008; Clarke et al., 2012). Surprisingly, the increased VEGF does
not worsen the BBB disruption following perlecan domain V
administration after ischemic stroke (Lee et al., 2011). The
intraperitoneal administration of perlecan domain V decreases
infarct volume as well as immuno-expression of markers of
apoptosis (TUNEL and Caspase 3 cleavage) (Lee et al., 2011).
More so, perlecan domain V modulates the activation and
proliferation of astrocytes and ameliorates astrogliosis in vitro
and in vivo. This indicates that perlecan domain V rescues
neuronal death and may actively dampen scar formation after
ischemic stroke suggesting it has instructive regulatory properties
in tissue fibrosis (Lord et al., 2018). Matricryptin peptides derived
from ECM components also have roles in tissue remodeling
(Amruta et al., 2020; de Castro Brás and Frangogiannis, 2020).
The in vivo benefits of perlecan domain V have been evaluated in
rodents using various models of ischemic using middle cerebral
artery occlusion which includes tandem ipsilateral common
carotid and middle cerebral arteries occlusion (CCA/MCAO)
model that induces mild cortical lesion (Trout et al., 2021),
endothelin (ET)-1 injection (mild to moderate brain lesion)
(Lee et al., 2011), photothrombotic (Bix et al., 2013) and
intraluminal filament MCAO model -severe brain injury.

The therapeutic potential of exogenously administered
perlecan domain V in a severe pre-clinical ischemic stroke
model (photothrombotic and intraluminal MCAO) is
essentially dependent on how quickly the first dose of perlecan
domain V is administered after ischemic stroke induction. A
recent report by Nakamura et al. (Nakamura et al., 2019) found
mild effects of exogenously administered recombinant perlecan
domain V (5 mg/kg) on infarct volume after intraluminal MCAO
induction. Perlecan domain V was administered 24 h after
reperfusion and daily for three to four consecutive days.
However, Bix and colleagues had previously reported that the
timely administration of perlecan domain V (2 mg/kg) after
severe ischemic stroke (photothrombotic model) is vital for
neuroprotective benefits (Clarke et al., 2012). Indeed, the

Frontiers in Cell and Developmental Biology | www.frontiersin.org April 2022 | Volume 10 | Article 85626114

Hayes et al. Perlecan and Repair Biology

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


specific report indicates that when perlecan domain V is
administered 3 hours after stroke induction, infarct volume is
smaller when compared to perlecan domain V administration
when commenced six, twelve and 24 hours post-stroke induction.
Importantly, infarct volume increases as the start of perlecan
domain V treatment after stroke induction period increases.
Additionally, recent findings show a significant decrease in
infarct volume when perlecan domain V was co-administered
during reperfusion in a mouse model of intraluminal MCAO
(Biose et al., 2021).

Early reports have shown that human recombinant LG3, the
C-terminal-most portion of perlecan domain V, may confer the
neuroprotective efficacy of full length perlecan domain V (Saini
and Bix, 2012; Bix, 2013). Like domain V, LG3 is increased in the
compromised brain hemisphere after 24 hours of transient
MCAO and it persistently remains elevated for 3 days after
stroke in rats.3 Similarly, 2 hours of oxygen-glucose
deprivation (OGD) in astrocytes and neuron cultures
substantially increases LG3 levels. LG3 is anti-apoptotic as it
decreases Caspase 3 after OGD-reperfusion (Lee et al., 2011; Saini
and Bix, 2012). Also, LG3 preserved the integrity of fetal cortical
neurons by reducing Caspase 3 immunohistochemistry after
in vitro OGD when compared to control dishes (Saini and
Bix, 2012). Investigations are ongoing to determine the effect
of LG3 on infarct volume and motor-sensory functions in various
preclinical models of ischemic stroke (Biose et al., 2021).

In summary, perlecan is actively processed for brain repair
after ischemic stroke and is neuroprotective, improves
angiogenesis and motor-sensory functions and modulates
astrocyte activity when administered in a timely manner
following stroke. Furthermore, LG3 which confers the
biological activity of perlecan domain V in infarct volume
reduction may have potential adjunctive stroke therapeutic
value in preventing mortality among clinical stroke patients
(Biose et al., 2021).

CONCLUSION AND FUTURE RESEARCH

Perlecan is a ubiquitous, pleomorphic, and morphologically
important PG with roles in many physiological processes in
tissues of varied form and function. A greater understanding
of perlecan’s tissue specific roles during growth, development
and disease will be insightful as to how this multifunctional
PG might be utilized to maximal effect in repair biology. The
current biological understanding of perlecan demonstrates its
enormous capacity as a “fix-it” molecule with many beneficial
attributes (e.g., matrix stabilization, cell guidance and general
tissue development) that could be potentially harnessed in
repair biology. Emerging improvements in implant design,
therapeutic blood brain barrier repair strategies following
stroke, modeling of artificial neural stem cell niches and
neuromuscular synaptic interface tissues may find
application in the treatment of neurodegenerative disorders
(Wang et al., 2013; Gill et al., 2015; Buzanska et al., 2018).
Acetylcholine is a cholinergic agonist and chief
neurotransmitter of the parasympathetic autonomic

nervous system that contracts smooth muscle. Efficient
regulation of acetylcholine is essential and achieved by
acetyl cholinesterase located in the NMJ allowing muscle to
undergo relaxation following contraction. Dysregulation of
this process can have far-reaching and potentially fatal
consequences with a cessation of activity of muscle groups
that control breathing. As shown in this review perlecan has
key roles in the assembly of the NMJ through interactions
with type VI collagen (Cescon et al., 2018), Coll-Q, MuSK and
dystroglycan (Peng et al., 1999) responsible for localization of
acetylchinesterase in the NMJ (Rotundo et al., 2005; Rotundo
et al., 2008; Rudenko, 2017). Acetylcholinesterase is one of the
most rapidly acting enzymes in the human body with
extremely high catalytic efficiency. Mutations in the
perlecan gene (HSPG2) have been identified in two classes
of musculoskeletal conditions in the relatively mild Schwartz-
Jampel syndrome and more severe but relatively rare neonatal
lethal dyssegmental dysplasia, Silverman-Handmaker type
(Arikawa-Hirasawa et al., 2001a; Arikawa-Hirasawa et al.,
2001b; Arikawa-Hirasawa et al., 2002a). A unique mutation
in perlecan in Schwartz-Jampel syndrome compromises the
biomechanical competence of the intervertebral disc and is
also associated with myotonia and various degrees of
chondroplasia (Lin et al., 2021). We have also shown
perlecan’s essential roles in the development of
cartilaginous components with essential roles in
endochondral ossification and development of the axial and
appendicular skeleton. A greater understanding of the
regulation of acetylcholinesterase in the NMJ is of
relevance to research into how muscular dystrophy,
muscular sclerosis and the erratic muscular movements of
Parkinson’a disease occur (Jacobson et al., 2001; Aldunate
et al., 2004). Changes in the basement membrane have also
been observed in these and related medical conditions
(Jayadev and Sherwood, 2017; Pozzi et al., 2017; Xu et al.,
2018; Johnson, 2019; Punga et al., 2022). Perlecan is a
functional component of basement membranes and its
application in the repair of basal structures in the blood
brain barrier following ischemic stroke continue to
improve the recovery of this important structure (Bix,
2013; Bix et al., 2013). Synaptic HS-PGs have also now
been identified with important roles in the regulation of
neural responses. Incorrect assembly or distribution of
these synaptic HS-PGs occurs in a number of neurological
diseases showing their relevance to disease modification
(Knight et al., 2011; Banerjee et al., 2017; Noborn and
Sterky, 2021). Interest in the electro-conductive properties
of GAGs in the design of dopant films in artificial synaptic
membranes along with significant improvements in organic
microelectronics and micro fabrication have led to
improvement in functional artificial synapses capable of
regulating neural responses (Wang et al., 2013; Gill et al.,
2015; Buzanska et al., 2018). Artificial synapses that mimic
biological synapse neuron-driven interactions have been
proposed as next-generation memristor information
systems driven by low energy requirements, high energy
efficiency and fast computing speed (Liu et al., 2020; Zeng
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et al., 2021). These offer exciting possibilities in functional
neural repair following trauma or disease. Basic studies on the
biology of perlecan are thus warranted to optimally utilise
recombinant perlecan domains for growth factor delivery and
matrix stabilisation and in the regulation of cellular activity in
many therapeutic procedures. Studies of this sort are likely to
discover properties of perlecan of potential benefit to a diverse
range of applications in repair biology. It is worthwhile noting
that perlecan encodes significant biological information both
in its core protein and attached HS side chains. A cursory
examination of the HS interactome and advances in GAG
analysis methodology amply demonstrate the biodiversity and
interactive capability of HS interactions at the cell surface and
their potential to control cell behaviour (Gómez Toledo et al.,
2021; Szekeres et al., 2021; Vallet et al., 2021). Much still needs
to be learned of the complex information conveyed by the
GAG glycocode and how this information translates to the
cellular mechanisms that drive tissue processes during
development, growth, and disease. However, elucidation of
the first draft of the GAG-protein interactome (Vallet et al.,
2021) shows that this system has significant potential in the
area of tissue repair processes and these useful properties are
slowly becoming understood (Melrose, 2016; Hayes and
Melrose, 2020). For example, perlecan domain I has been
used as a FGF-2 and BMP-2 delivery vehicle in tissue repair
strategies (Jha et al., 2009; Srinivasan et al., 2012).
Recombinant perlecan domain V, a HS and CS substituted
PG in its own right with equivalent stimulatory properties to

full length perlecan (Lord and Whitelock, 2013), also shows
promise in the repair of vascularized and cartilaginous tissues
(Lord and Whitelock, 2013; Lord et al., 2014; Lin et al., 2020;
Lord et al., 2020). Perlecan domains I and V thus offer exciting
possibilities in repair biology that will continue to emerge and
are eagerly anticipated.
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GLOSSARY

AChE Acetylcholinesterase

Ach Acetylcholine

ACL Anterior cruciate ligament

AD Alzheimer’s disease

AFM Atomic force microscopy

ApoE Apolipoprotein E

BBB Blood brain barrier

BM Basement membrane

BMP Bone morphogenetic protein

CCA Common carotid artery

cGMP Cyclic guanosine monophosphate

Col Collagen

CS Chondroitin sulphate

CTGF Connective tissue growth factor

DDSH Dyssegmental dysplasia Silverman-Handmaker type

DG Dystroglycan

DMOAD Disease modifying OA drug

Dok7 Docking protein 7

ECM Extracellular matrix

EGF Epidermal growth factor

ERK Extracellular signal-regulated kinase

ET Endothelin

ePTFE Expanded polytetrafluoroethylene

FAK Focal adhesion kinase

FGF Fibroblast growth factor

FGFR Fibroblast growth factor receptor

FRNK Focal adhesion kinase–related non-kinase

GAG Glycosaminoglycan

GM-CSF Granulocyte macrophage-colony stimulating factor

G6b-B-R Megakaryocyte-platelet receptor

HA Hyaluronic acid

HEK Human embryonic kidney

hESC Human embryonic stem cell

HIF Hypoxia-inducible factor

HGF Hepatocyte growth factor

HS Heparan Sulphate

HS-PG Heparan Sulphate Proteoglycan

HSPG2 Heparan sulphate proteoglycan 2/perlecan

Ig Immunoglobulin

IL Interleukin

iPSC Induced pluripotent stem cell

ITIM Immunoreceptor tyrosine-based inhibition motif

IVD Intervertebral disc

KO Knockout

KS Keratan sulphate

LDL Low-density lipoprotein

LDLR Low-density lipoprotein receptor

LG Laminin type G domain

LRP4 Low-density lipoprotein receptor-related protein 4

Mab Monoclonal antibody

MAPK Mitogen-activated protein kinase

MCAO Middle cerebral artery occlusion

MEK Mitogen-activated protein kinase kinase

MEP Motor end plate

MK Megakaryocyte

MMP Matrix metalloproteinase

MNB Myelinated nerve bundle

MuSK Muscle-Specific Kinase

NCAM Neural cell adhesion molecule

NMJ Neuromuscular junction

OA Osteoarthritis

OGD Oxygen-glucose deprivation

PCM Pericellular matrix

PDGF Platelet derived growth factor

PDGFRβ Platelet derived growth factor receptor beta

PG Proteoglycan

PRELP Proline/arginine-rich end leucine-rich repeat protein

PTEN Tumor suppressor phosphatase and tensin homolog

SAM Synaptic adhesion/organizing molecules

SHP-2 Src homology region 2 domain-containing phosphatase-2

SJS Schwartz Jampel Syndrome

SLRP Small leucine rich proteoglycan

SMC Smooth muscle cell

SMF Striated muscle fibre

TGF-β Transforming growth factor-β

TRP Transient receptor potential

TUNEL Terminal deoxynucleotidyl transferase

dUTP nick end labeling

VEGF Vascular endothelial growth factor

VEGF-R2 Vascular endothelial growth factor receptor 2

VLDL Very low-density lipoprotein

WARP Von Willebrand factor A-domain-related protein.
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