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A B S T R A C T

Purpose: To compare image quality and detection accuracy of renal stones between deep learning image 
reconstruction (DLIR) and Adaptive Statistical Iterative Reconstruction-Veo (ASIR-V) reconstructed virtual non- 
contrast (VNC) images and true non-contrast (TNC) images in spectral CT Urography (CTU).
Methods: A retrospective analysis was conducted on images of 70 patients who underwent abdominal-pelvic CTU 
in TNC phase using non-contrast scan and contrast-enhanced corticomedullary phase (CP) and excretory phase 
(EP) using spectral scan. The TNC scan was reconstructed using ASIR-V70 % (TNC-AR70), contrast-enhanced 
scans were reconstructed using AR70, DLIR medium-level (DM), and high-level (DH) to obtain CP-VNC-AR70/ 
DM/DH and EP-VNC-AR70/DM/DH image groups, respectively. CT value, image quality and kidney stones 
quantification accuracy were measured and compared among groups. The subjective evaluation was indepen
dently assessed by two senior radiologists using the 5-point Likert scale for image quality and lesion visibility.
Results: DH images were superior to AR70 and DM images in objective image quality evaluation. There was no 
statistical difference in the liver and spleen (both P > 0.05), or within 6HU in renal and fat in CT value between 
VNC and TNC images. EP-VNC-DH had the lowest image noise, highest SNR, and CNR, and VNC-AR70 images 
had better noise and SNR performance than TNC-AR70 images (all p < 0.05). EP-VNC-DH had the highest 
subjective image quality, and CP-VNC-DH performed the best in lesion visibility. In stone CT value and volume 
measurements, there was no statistical difference between VNC and TNC (P > 0.05).
Conclusion: The DLIR-reconstructed VNC images in CTU provide better image quality than the ASIR-V recon
structed TNC images and similar quantification accuracy for kidney stones for potential dose savings.
The study highlights that deep learning image reconstruction (DLIR)-reconstructed virtual non-contrast (VNC) 
images in spectral CT Urography (CTU) offer improved image quality compared to traditional true non-contrast 
(TNC) images, while maintaining similar accuracy in kidney stone detection, suggesting potential dose savings in 
clinical practice.

1. Introduction

With the development of society, environmental pollution, genetic 
inheritance and changes in various dietary habits have caused more and 
more diverse factors to form urological diseases in today’s society, and 
most of the clinical manifestations are similar to other systemic diseases. 
Diseases of the urinary system includes various conditions such as uri
nary system tumors, urinary stones, hydronephrosis, and cysts. These 
diseases have a relatively high clinical incidence and are not easily 
detected or distinguished during initial diagnosis. Some conditions 

require multiple examinations before a definitive diagnosis can be made.
Urinary stones are one of the most common causes of abdominal pain 

and hematuria, and CTU is a common examination method to diagnose 
urinary stones [1,2]. Typical CTU protocols usually include non-contrast 
scanning, contrast-enhanced corticomedullary phase and excretory 
phase scanning which involve multiple scans, high radiation doses, and 
possibly multiple contrast agent injections, and high demands on kidney 
function, reducing radiation exposure while ensuring clinical diagnosis 
is of significant clinical value for CTU examinations of the urinary sys
tem [3,4]. Also because the lower abdomen contains many 
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radiation-sensitive organs, it is of great practical and clinical value to 
reduce the radiation dose of CTU scans while ensuring the accuracy of 
clinical diagnosis.

By taking advantage of the photon absorption variations of two 
different energies of materials with high atomic numbers (e.g. iodine), 
dual-energy CT (DECT) allows selective identification and removal of 
iodine from reconstructed voxels and the creation of synthesized virtual 
non-enhanced CT datasets, known as spectral virtual non-contrast (VNC) 
images which present similar to true non contrast (TNC) scans [5–7]. In 
CTU scans, VNC images have demonstrated consistent imaging and 
lesion diagnostic efficacy as the non-contrast scans [6,8].

In recent years, artificial intelligence (AI) has rapidly developed and 
been applied in the field of medical imaging, including deep learning 
image reconstruction algorithms applied to the conventional CT scans, 
as well as the dual-energy spectral imaging (e.g. TrueFidelity™, GE 
HealthCare). The TrueFidelity™ spectral image reconstruction algo
rithm uses high-dose high-quality filtered backprojection (FBP) spectral 
images as learning targets to train the reconstruction of low-dose low- 
quality image raw data using Convolutional neural network (CNN). The 
purpose of deep learning reconstruction is to overcome the disadvantage 
of altering image texture brought by iterative reconstruction algorithms. 
Phantom studies have shown that compared to iterative reconstruction 
algorithms, the TrueFidelity™ spectral image reconstruction algorithm 
can further enhance image quality without changing image texture [9, 
10].

Deep Learning Image Reconstruction (DLIR) technology, as a novel 
CT image reconstruction method, can effectively reduce image noise and 
improve image quality [11–14]. However, there is currently lack of 
research on the diagnostic performance of VNC images from DECT scans 
reconstructed using DLIR. Therefore, the purpose of this study is to 
compare the image quality and accuracy of kidney stone measurements 
between VNC images from DECT scans with thin-layer DLIR recon
struction and conventional CTU images reconstructed with Adaptive 
Statistical Iterative Reconstruction-Veo (ASIR-V) including TNC and 
VNC.

2. Materials and methods

2.1. General information

A total of 70 patients diagnosed with urinary system diseases and 
underwent routine CTU examination in our hospital between September 
2022 and October 2023 were included in the study, excluding patients 
who had undergone bladder resection or had urinary diversion pouches.

2.2. Protocol and post-processing

All examinations were performed on a 256-slice CT scanner (Revo
lution Apex CT, GE HealthCare, USA). Patients were instructed to drink 
sufficient water before the examination to ensure the bladder is 
expanded. After ensuring bladder filling, an abdominal-pelvic non- 
contrast scan was performed with patients in a supine position. The 
parameters were: tube voltage 120 kV, automatic tube current modu
lation (Smart mA), Noise Index (NI) 8.0 HU. After the non-contrast scan, 
a contrast-enhanced abdominal-pelvic dual-energy spectral CT scan in 
the corticomedullary phase (CP) was performed 45 s after contrast in
jection, with the same scanning range as the non-spectral scan. The tube 
voltage for the enhanced scan was 80/140 kV, using spectral Assist 
automatic tube current modulation, Noise Index (NI) 8.0 HU, and con
trolling the volumetric CT dose index (CTDIvol) within a range of (±
1 mGy) of the conventional non-contrast scan. Subsequently, after 
emptying the bladder, the patients were asked to drink water, the 
excretory phase (EP) spectral abdominal-pelvic scan was performed 
when the bladder was filled again (30–60 min after contrast agent in
jection). The parameters for this scan were consistent with the cortico
medullary phase spectral scan. For contrast enhancement, 80 ml of 

iodixanol contrast agent (350 mg I/ml, Iohexol, Hengrui Medicine, 
China) followed by 20 ml of 0.9 % saline solution was injected intra
venously into the right cubital at a rate of 1.5–2 ml/s. The scan volu
metric CT dose index (CTDIvol) values were recorded for the plain, 
corticomedullary, and excretory phase scans. The three-phase data was 
reconstructed with a slice thickness and interval of 1.25 mm. The 
abdominal-pelvic non-contrast scan was reconstructed using ASIR-V 
technology with 70 % weight (TNC-AR70 group). The cortico
medullary and excretory phase scans were reconstructed using ASIR-V 
and two levels of DLIR algorithm (DM with the medium level and DH 
with the high level) to obtain six groups of images (CP-VNC-AR70 group, 
CP-VNC-DM group, CP-VNC-DH group, EP-VNC-AR70 group, EP-VNC- 
DM group, EP-VNC-DH group). Data measurements and comparisons 
were conducted on all seven groups of images, including the true non- 
contrast scans, using an advanced image workstation (Advantage 
Workstation 4.7, GE HealthCare, USA).

2.3. Image quality evaluation and stone measurement

Objective Evaluation: The portal vein level was selected to measure 
the CT values and standard deviations (SD) of the regions of interest 
(ROI) of the liver and spleen. The bilateral renal portal levels were 
selected for the right kidney parenchyma and abdominal wall fat. The 
ROI measurements were replicated to ensure consistent size and posi
tion, with the liver ROI size approximately 550 mm2, spleen ROI size 
approximately 200 mm2, subcutaneous fat and kidney ROI size 
approximately 20 mm2. Signal-to-Noise Ratio (SNR) and Contrast-to- 
Noise Ratio (CNR) were calculated during ROI measurements. 

SNRROI =
CTROI

SDROI 

CNRROI =
CTROI − CTFat

SDROI 

Subjective Evaluation: Two experienced senior radiologists evalu
ated the abdominal-pelvic images using a double-blind method. They 
independently scored the images on two dimensions: image quality and 
lesion visibility, using the 5-point Likert Scale scoring method. For 
image quality scoring, the scale included 5 points for excellent image 
quality and diagnostic confidence; 4 points for good image quality and 
high diagnostic confidence; 3 points for acceptable image quality and 
diagnostic capability; 2 points for poor image quality and low diagnostic 
confidence; and 1 point for poor image quality and inability to make a 
diagnosis. For lesion visibility, the scale included 5 points for excellent 
display of kidney stones for precise diagnosis; 4 points for clear display 
of kidney stones for accurate diagnosis; 3 points for good display of 
kidney stones for diagnosis; 2 points for suboptimal display of kidney 
stones with blurry lesions; and 1 point for extremely poor display of 
kidney stones with invisible lesions. A score exceeding 3 points was 
considered to meet the requirements for radiological diagnosis.

Stone Measurement: The results from CT combined with ultrasound 
were used as the gold standard to confirm 70 cases of kidney stone pa
tients. For these patients, one physician measured CT values and vol
umes of kidney stones based on the seven groups of images using the 
compare software on an advanced image workstation, selecting the 
maximum level of the stone for CT value measurement on each image. 
Another physician, used the Auto select tool in the compare software to 
automatically measure the stone volume in the kidney stone area after 
two months. The average of the two measurements was taken as the 
measurement value for stone CT values and volumes.

2.4. Radiation dose calculation

The volumetric CT dose index (CTDIvol) and dose-length product 
(DLP) from the CT scans were recorded, and the effective dose (ED) was 
calculated as ED = DLP × K value with K value = 0.015 mSv/(mGy⋅cm).
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2.5. Statistical analysis

All numerical and quantitative data were presented as mean ±
standard deviation. Kolmogorov-Smirnov tests confirmed normal dis
tribution for all numerical data. ANOVA was used for inter-group 
comparisons of the seven objective parameters and stone parameters 
measurement. If statistical differences were found, post-hoc multiple 
comparisons were conducted using Levene’s test for homogeneity of 
variances, followed by Dunn-Bonferroni or T3-Dunnett correction. 

Kruskal-Wallis non-parametric test was used for subjective ratings, with 
significance set at P < 0.05. Bland-Altman analysis was used to assess the 
deviation in stone CT values and measurements between virtual and true 
non-contrast scans. Observer agreement and stone measurement con
sistency were evaluated using Kappa tests, with values between 0.8 and 
1.0 indicating excellent agreement, 0.6–0.8 indicating good agreement, 
0.4–0.6 indicating fair agreement, and below 0.4 indicating poor 
agreement. Data analysis was performed using SPSS 26.0 (IBM, USA) 
statistical software.

3. Results

This study included a total of 70 patients, with 43 males and 27 fe
males, aged 21–82 years with an average age of 56.24 ± 14.51 years. 
The Body Mass Index (BMI) ranged from 20.94 to 31.56 kg/m2, with an 
average BMI of 24.61 ± 2.27 kg/m2. There were 70 cases of kidney 
stone patients. The average CTDIvol for routine non-contrast scans was 
9.28 ± 2.83 mGy, and for corticomedullary phase and excretory phase 
spectral scans, the average CTDIvol was 9.25 ± 2.94 mGy.

Table 1 
Scanning parameters.

Parameters TNC (n = 70) CP (n = 70) EP (n = 70)

Tube voltage (kV) 120 80/140 80/140
Tube current mode Smart mA GSI Assist GSI Assist
Collimation (mm) 80 80 80
Scanning mode Hellical Hellical Hellical
Matrix 512 × 512 512 × 512 512 × 512
Thickness (mm) 1.25 1.25 1.25
Reconstruction AR70 AR70/DM/DH AR70/DM/DH
CTDIvol（mGy） 9.05 ± 2.63 8.99 ± 2.75 8.99 ± 2.75

TNC: true non-contrast, CP: corticomedullary phase, EP: excretory phase.

Table 2 
Comparison of objective parameters of virtual non-contrast and real non-contrast images of different phases.

TNC-AR70 CP-VNC-AR70 CP-VNC-DM CP-VNC-DH EP-VNC-AR70 EP-VNC-DM EP-VNC-DH F P

CT (HU)
Liver 56.23 ± 7.80 57.14 ± 6.20 57.03 ± 6.19 57.09 ± 6.13 58.11 ± 6.98 58.15 ± 6.97 58.27 ± 6.86 0.89 0.50
Spleen 50.65 ± 2.89 50.17 ± 2.70 50.13 ± 2.70 50.16 ± 2.70 50.67 ± 2.48 50.67 ± 2.5 50.79 ± 2.45 0.88 0.51
Kidney 34.71 ± 4.80e,f,g 35.83 ± 6.97 35.99 ± 6.91 36.09 ± 6.66 37.5 ± 3.91a 38.23 ± 4.64a 37.82 ± 3.61a 3.72 < 0.001
Fat − 105.74 ±

8.72e,f,g
− 101.58 ±
10.36

− 101.81 ±
9.93

− 102.01 ± 9.64 − 100.17 ±
11.65a

− 100.31 ±
11.14a

− 100.37 ±
11.00a

2.44 0.03

SD (HU)
Liver 11.65 ± 1.58b,c,d, 

e,f,g
7.92 ± 0.72a,c, 

d,f,g
8.88 ± 0.72a,b,d, 

e,g
6.93 ± 0.61a,b,c, 

e,f,g
7.76 ± 1.04a,c,d, 

f,g
8.63 ± 0.95a,b,d, 

e,g
6.4 ± 0.69a,b,c,d, 

e,f
225.42 < 0.001

Spleen 10.54 ± 1.67b,c,d, 

e,f,g
7.65 ± 0.82a,c, 

d,f,g
8.69 ± 0.84a,b,d, 

e,g
6.81 ± 0.74a,b,c, 

e,f,g
7.33 ± 0.87a,c,d, 

f,g
8.25 ± 0.87a,b,d, 

e,g
6.16 ± 0.75a,b,c, 

d,e,f
147.36 < 0.001

Kidney 9.86 ± 2.12b,d,e,f, 

g
8.43 ± 2.14a,c, 

e,g
9.72 ± 2.16b,d,e, 

f,g
8.39 ± 2.03a,c,e,g 7.23 ± 1.58a,b,c, 

d,f
8.44 ± 1.50a,c,e, 

g
6.69 ± 1.31a,b,c, 

d,f
27.38 < 0.001

Fat 8.54 ± 3.02g 9.47 ± 4.65g 9.98 ± 4.81g 7.67 ± 4.89 8.76 ± 2.40g 9.21 ± 2.06g 6.86 ± 1.78a,b,c, 

e,f
6.24 <0.001

SNR
Liver 4.92 ± 0.96b,c,d,e, 

f,g
7.29 ± 1.12a,c, 

d,g
6.47 ± 0.92a,b,d, 

e,g
8.3 ± 1.19a,b,c,f,g 7.67 ± 1.59a,c,g 6.86 ± 1.28a,d,g 9.26 ± 1.68a,b,c, 

d,e,f
82.46 < 0.001

Spleen 4.93 ± 0.87b,c,d,e, 

f,g
6.64 ± 0.81a,c, 

d,g
5.83 ± 0.68a,b,d, 

e,g
7.45 ± 0.89a,b,c, 

f,g
7.01 ± 0.93a,c,d, 

g
6.21 ± 0.72a,d,e, 

g
8.35 ± 1.00a,b,c, 

d,e,f
120.73 < 0.001

Kidney 3.69 ± 0.98b,d,e,f, 

g
4.55 ± 1.55a,e,g 3.90 ± 1.17e,f,g 4.58 ± 1.50a,e,g 5.41 ± 1.27a,b,c, 

d,f
4.68 ± 1.07a,c,e, 

g
5.85 ± 1.23a,b,c, 

d,f
25.53 < 0.001

CNR
Liver 20.94 ± 6.37 19.05 ± 5.86d,g 17.75 ± 4.81d,g 24.18 ± 7.10b,c, 

e,f
19.40 ± 5.52a,e, 

g
18.07 ± 4.30d,g 24.65 ± 6.45b,c, 

e,f
16.31 < 0.001

Spleen 20.20 ± 6.00c 18.21 ± 5.54d,g 16.97 ± 4.52a,d, 

g
23.13 ± 6.73b,c, 

e,f
18.50 ± 5.27d,g 17.22 ± 4.09d,g 23.49 ± 6.13b,c, 

e,f
16.61 < 0.001

Kidney 18.11 ± 5.28g 16.51 ± 5.21d,g 15.40 ± 4.19d,g 20.99 ± 6.19b,c, 

e,f
16.87 ± 4.75d,g 15.79 ± 3.75d,g 21.47 ± 5.57a,b, 

c,e,f
16.48 < 0.001

Calculus
CT 
(HU)

1098.50 ±
334.51

1054.1 ±
383.78

1071.93 ±
376.02

1072.16 ±
376.17

1024.38 ±
440.67

1039.07 ±
435.01

1039.36 ±
435.15

0.28 0.94

SD 
(HU)

157.97 ± 119.8 181.37 ±
109.26

181.58 ±
109.43

179.97 ±
108.84

162.38 ±
124.47

158.67 ±
121.10

158.17 ±
121.66

0.70 0.65

SNR 13.04 ± 16.32 11.46 ± 14.91 10.98 ± 13.35 11.17 ± 13.64 13.66 ± 21.74 13.34 ± 19.48 14.18 ± 22.51 0.38 0.89
CNR 155.11 ± 61.63d 139.7 ± 66.32d 132.23 ±

58.96d,g
179.43 ±
82.54c,f

139.74 ± 70.9d 131.55 ±
61.14d,g

178.75 ±
85.25c,f

6.11 < 0.001

Size(cm3) 3.33 ± 9.97 3.02 ± 9.29 3.02 ± 9.23 3.02 ± 9.22 3.22 ± 9.79 3.18 ± 9.67 3.18 ± 9.65 0.01 1.00

SD: standard deviation, SNR: signal-to-noise ratio, CNR: contrast-to-noise ratio.
a: statistical significance with TNC-AR70, p < 0.05.
b: statistical significance with CP-VNC-AR70, p < 0.05.
c: statistical significance with CP-VNC-DM, p < 0.05.
d: statistical significance with CP-VNC-DH, p < 0.05.
e: statistical significance with EP-VNC-AR70, p < 0.05.
f: statistical significance with EP-VNC-DM, p < 0.05.
g: statistical significance with EP-VNC-DH, p < 0.05.
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3.1. Objective image evaluation results

In the objective image quality evaluation, there was no statistical 
difference in CT values for the liver and spleen among the 7 groups (all P 
> 0.05). For the kidneys and fat CT areas where statistical differences 
were observed, the differences in CT values between virtual and true 
non-contrast scans were within 6 Hounsfield Units (HU). Overall, the 
DLIR group had better image quality than the AR70 group, and the 
image quality of VNC AR70 images at the same dose was superior to 
TNC-AR70 images. Specifically, the EP-VNC-DH images had the lowest 
noise, highest SNR, and CNR (Table 2) (P < 0.05). The DH images in the 
corticomedullary and excretory phases showed lower SD and SNR than 
DM and TNC-AR70 images. In the comparison of CNR, both CP-VNC and 
EP-VNC DH images were the highest (Fig. 1).

3.2. Subjective image evaluation results

In the subjective image quality evaluation, EP-VNC-DH performed 
the best in image quality, while CP-VNC-DH excelled in lesion visibility. 
It is noteworthy that despite the same reconstruction method, there was 
a significant difference in image quality between CP-VNC-AR70 and EP- 
VNC-AR70, which was not observed in CP-VNC-DH and EP-VNC-DH 
(Fig. 2). The subjective consistency of image quality evaluation by the 
two physicians was good, with kappa values > 0.8 for both aspects. All 7 
images scored ≥ 3 in both image quality and lesion visibility, meeting 
clinical diagnostic requirements.

3.3. Kidney stone measurement

A total of 70 patients with kidney stones were included, with 9 cases 
having stones > 5 mm3, 12 cases with stones measuring 2–5 mm3, and 

Fig. 1. Comparative analysis of Image quality (a) CT value (b) image noise (c) SNR and (d) CNR.

Fig. 2. Comparative analysis of subjective scores between virtual and real noncontrast scans (a) image quality (b) lesion display (scoring using a Likert 5-point 
method, in which 5 points are the best and more than 3 points represent clinical acceptability).
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49 cases with stones < 2 mm3. The stones in all 70 cases were measur
able on plain, corticomedullary, and excretory phase scans. There was 
no statistical difference in stone measurements between the 6 groups of 
VNC images and the TNC images (all P > 0.05). In stone CT values, CP- 
VNC-DM and CP-VNC-DH measurements were closest to the TNC group, 
and in stone size, EP-VNC-DM was closest to the TNC group (Fig. 3).

3.4. Comparison of radiation dose

The CTDIvol for routine non-contrast scans ranged from 6.28 to 
17.22 mGy, with an average CTDIvol of 9.05 ± 2.63 mGy. The doses for 
corticomedullary and excretory phase spectral scans were similar, with 
scan CTDIvol ranging from 6.56 to 17.02 mGy and an average CTDIvol 
of 8.99 ± 2.75 mGy. There was no statistical difference between the 
radiation doses of routine non-contrast scans and spectral scans.

4. Discussion

Our study demonstrated that advanced deep learning image recon
struction algorithms shows the ability to elevate the image quality 
compare to the iterative reconstruction. The use of ASIR-V 70 % as a 
control group is because 70 % strength provide high level of noise 
reduction ability without display of severe blocky artifact. The high- 
level DLIR images exhibited markedly improved noise characteristics, 
SNR, and CNR when compared to ASIR-V 70 % images. Although 
medium-level DLIR images showed increased noise and reduced SNR 
relative to ASIR-V 70 %, the difference in CNR between medium-level 
DLIR and ASIR-V 70 % images was not statistically significant. 
Furthermore, the subjective assessments conducted by readers indicated 
a preference for both high-level and medium-level DLIR images over 
ASIR-V 70 % images which indicate medium level DLIR can also provide 
effective noise suppression and image vision at the same time. As shown 
in Figs. 4 and 5, VNC images from deep learning image reconstruction 
algorithms had clearer visualization of anatomical structures and small 

Fig. 3. Bland-Altman comparative analysis of stone measurements between virtual non-contrast scans and true non-contrast scans: (a) CT values, (b) stone volume. 
limits of agreement (LOA): 95 % confidence interval.
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lesions, and higher contrast. While ASIR-V 70 % images also displayed 
clear anatomical structures and small lesions, they exhibited more noise 
and some artifacts. This was consistent with the findings in both phan
tom and patients studies which demonstrated that unlike the high level 

iterative algorithms that would produce wax-like artifacts, high level 
deep learning image reconstruction algorithms produce detailed images 
without overly smoothing them in non-spectral images and virtual 
monochromatic images [9,12,13]. These findings underscore the 

Fig. 4. A 66-year-old man with a urinary disorder to be discharged revealed a stone in the left lower ureter with left hydroureteronephrosis. Figs. a–c were (a) the 
true contrast enhanced abdominal-pelvic non-contrast images, (b) the 74 keV contrast enhanced images of the corticomedullary phase and (c) the 74 keV contrast 
enhanced images of the excretory phase. Figs. d–f were (d) the 70 % weighted images of ASIR-V, (e) the midium-level DLIR, and (f) the high-level DLIR of virtual non- 
contrast corticomedullary phase images. Figs. g–i were (g) the 70 % weighted images of ASIR-V, (h) the medium-level DLIR, and (i) the high-level DLIR of virtual 
non-contrast excretory phase images.

Fig. 5. Female, 69 years old, abdominal pain; Examination reveals multiple stones in the left kidney with mild hydrops. Figs. a–c were (a) the true contrast enhanced 
abdominal-pelvic non-contrast images, (b) the 74 keV contrast enhanced images of the corticomedullary phase and (c) the 74 keV contrast enhanced images of the 
excretory phase. Figs. d–f were (d) the 70 % weighted images of ASIR-V, (e) the midium-level DLIR, and (f) the high-level DLIR of virtual non-contrast cortico
medullary phase images. Figs. g–i were (g) the 70 % weighted images of ASIR-V, (h) the medium-level DLIR, and (i) the high-level DLIR of of virtual non-contrast 
excretory phase images.
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potential of advanced DLIR algorithms to produce higher-quality images 
that can improve diagnostic accuracy and reader satisfaction in clinical 
practice.

The study also showed that CT values of the VNC images generated 
during both the corticomedullary and excretory phases, as well as three 
different reconstructions, are consistent with the TNC among the liver, 
spleen, kidney, and fat except for the excretory phase kidney and fat. 
Lazar et al. also found that high luminal attenuation during the excre
tory phase can make the VNC calculation unreliable [15]. This finding 
suggests that using corticomedullary phase for obtaining VNC images 
give more accurate CT numbers compared to excretory phase. The 
findings also shows an improvement result than the previous studies 
[16–18]. One possible reason for this discrepancy is the improvement in 
techniques (e.g., kV-mA dual switch spectral techniques on the CT de
vice used in this study) providing more precise and better-matched high 
and low image pairs in terms of radiation dose and image quality, 
leading to more accurate material decomposition. Previous studies have 
shown that VNC images generated between different phases have similar 
image quality, and our study also confirms this trend, as the three 
different reconstructions showed similar image quality between the two 
phases [16].

The VNC images in CTU scans can maintain the visibility of stones 
and other renal details compare to the TNC images. Stone measurement 
results also showed that the kidney stone CT values and size values of 
virtual non-contrast scan images produced by DLIR algorithms were no 
different from those of the TNC-AR70 images.

Additionally, we further analyzed the virtual non-contrast scan im
ages of the corticomedullary and excretory phases. Although the corti
comedullary phase VNC images did not show the ureteral course, they 
clearly depicted the renal pelvis and calyces; the excretory phase VNC 
images distinctly displayed the ureteral course without affecting the 
presence of urinary stones.

Traditional CTU protocols involve multiple scans and high radiation 
doses, which pose risks to patients, especially considering the radiation- 
sensitive organs in the lower abdomen. By using DLIR-reconstructed 
VNC images, it may be possible to reduce the number of required 
scans and overall radiation exposure while maintaining diagnostic 
quality. This is particularly beneficial in managing and diagnosing uri
nary system diseases, where frequent imaging is often necessary.

This study has the following limitations: 1. The sample size was 
relatively small. 2. The lesion measurement analysis of urinary system 
diseases only included urinary tract stones. Future studies could further 
evaluate the value of deep learning image reconstruction algorithms in 
diagnosing renal tumors and cysts for a comprehensive exploration of 
urinary system disease diagnosis. 3. Evaluation was only conducted on a 
single device from a single manufacturer using deep learning spectral 
image reconstruction algorithms; future research is expected to 
encompass a more comprehensive study involving multiple manufac
turers, scanner types, and imaging centers applying deep learning image 
reconstruction algorithms to CTU.

In conclusion, the preliminary results of this study suggest that in 
urinary system CTU examinations, the image quality of virtual non- 
contrast scan images reconstructed using deep learning image recon
struction algorithms is superior to true non-contrast scans using the 
conventional ASIR-V70 %. Combining the use of corticomedullary DLIR 
reconstructed virtual non-contrast scan images has the potential for dose 
reduction while providing accurate clinical diagnosis for urinary stones.

CRediT authorship contribution statement

Hong Zhu: Writing – review & editing, Writing – original draft, 
Methodology, Investigation, Formal analysis, Data curation. Jing Fan: 
Writing – review & editing, Writing – original draft, Supervision, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu
alization. Xiaomeng Shi: Writing – review & editing, Formal analysis. 
Deyan Kong: Writing – review & editing, Data curation. Jiale Qian: 

Data curation.

Ethical statement

This study was approved by the ethics committee of our hospital. All 
participants gave written informed consent before final inclusion.

Funding statement

The authors state that this work has not received any funding.

Declaration of Competing Interest

The authors declare the following financial interests/personal re
lationships which may be considered as potential competing interest: 
Jing Fan reports was provided by Ruijin Hospital Shanghai Jiaotong 
University School Of Medicine. If there are other authors, they declare 
that they have no known competing financial interests or personal re
lationships that could have appeared to influence the work reported in 
this paper.

References

[1] X. Zhang, J. Chen, N. Yu, Z. Ren, Q. Tian, X. Tian, Y. Jia, T. He, C. Guo, Reducing 
contrast medium dose with low photon energy images in renal dual-energy spectral 
CT angiography and adaptive statistical iterative reconstruction (ASIR), BJR 94 
(2021) 20200974, https://doi.org/10.1259/bjr.20200974.

[2] S. Zeng, M. Du, Y. Yu, S. Huang, D. Zhang, X. Cui, C.F. Dietrich, Ultrasound, CT, 
and MR imaging for evaluation of cystic renal masses, J. Ultrasound Med. 41 
(2022) 807–819, https://doi.org/10.1002/jum.15762.

[3] L.L. Geyer, U.J. Schoepf, F.G. Meinel, J.W. Nance, G. Bastarrika, J.A. Leipsic, N. 
S. Paul, M. Rengo, A. Laghi, C.N. De Cecco, State of the art: iterative CT 
reconstruction techniques, Radiology 276 (2015) 339–357, https://doi.org/ 
10.1148/radiol.2015132766.

[4] C.E. Althoff, R.W. Günther, B. Hamm, M. Rief, Intra-arterial ultra low iodine CT 
angiography of renal transplant arteries, Cardiovasc. Interv. Radiol. 37 (2014) 
1062–1067, https://doi.org/10.1007/s00270-014-0838-9.

[5] M.K. Virarkar, S.S.R. Vulasala, A.V. Gupta, D. Gopireddy, S. Kumar, M. Hernandez, 
C. Lall, P. Bhosale, Virtual non-contrast imaging in the abdomen and the pelvis: an 
overview, Semin. Ultrasound CT MRI 43 (2022) 293–310, https://doi.org/ 
10.1053/j.sult.2022.03.004.

[6] Y. Cheng, J. Sun, J. Li, Y. Han, X. Zhang, L. Zhang, J. Zheng, H. He, J. Yang, J. Guo, 
The added value of virtual unenhanced images obtained from dual-energy CT 
urography in the detection and measurement of urinary stone, Urology 166 (2022) 
118–125, https://doi.org/10.1016/j.urology.2022.02.029.

[7] G. Ma, D. Han, S. Dang, N. Yu, Q. Yang, C. Yang, C. Jin, Y. Dou, Replacing true 
unenhanced imaging in renal carcinoma with virtual unenhanced images in dual- 
energy spectral CT: a feasibility study, Clin. Radiol. 76 (2021) 81.e21–81.e27, 
https://doi.org/10.1016/j.crad.2020.08.026.

[8] M. Meyer, R.C. Nelson, F. Vernuccio, F. González, A.E. Farjat, B.N. Patel, E. Samei, 
T. Henzler, S.O. Schoenberg, D. Marin, Virtual unenhanced images at dual-energy 
CT: influence on renal lesion characterization, Radiology 291 (2019) 381–390, 
https://doi.org/10.1148/radiol.2019181100.

[9] J. Greffier, A. Viry, Y. Barbotteau, J. Frandon, M. Loisy, F. De Oliveira, J.P. Beregi, 
D. Dabli, Phantom task-based image quality assessment of three generations of 
rapid kV-switching dual-energy CT systems on virtual monoenergetic images, Med. 
Phys. 49 (2022) 2233–2244, https://doi.org/10.1002/mp.15558.

[10] J. Zhong, H. Shen, Y. Chen, Y. Xia, X. Shi, W. Lu, J. Li, Y. Xing, Y. Hu, X. Ge, 
D. Ding, Z. Jiang, W. Yao, Evaluation of image quality and detectability of deep 
learning image reconstruction (DLIR) algorithm in single- and dual-energy CT, 
J. Digit Imaging 36 (2023) 1390–1407, https://doi.org/10.1007/s10278-023- 
00806-z.

[11] T. Lee, J.M. Lee, J.H. Yoon, I. Joo, J.S. Bae, J. Yoo, J.H. Kim, C. Ahn, J.H. Kim, 
Deep learning–based image reconstruction of 40-keV virtual monoenergetic images 
of dual-energy CT for the assessment of hypoenhancing hepatic metastasis, Eur. 
Radiol. 32 (2022) 6407–6417, https://doi.org/10.1007/s00330-022-08728-0.

[12] A. Delabie, R. Bouzerar, R. Pichois, X. Desdoit, J. Vial, C. Renard, Diagnostic 
performance and image quality of deep learning image reconstruction (DLIR) on 
unenhanced low-dose abdominal CT for urolithiasis, Acta Radiol. 63 (2022) 
1283–1292, https://doi.org/10.1177/02841851211035896.

[13] Y.J. Yoo, I.Y. Choi, S.K. Yeom, S.H. Cha, Y. Jung, H.J. Han, E. Shim, Evaluation of 
abdominal CT obtained using a deep learning-based image reconstruction engine 
compared with CT using adaptive statistical iterative reconstruction, J. Belg. Soc. 
Radiol. 106 (2022) 15, https://doi.org/10.5334/jbsr.2638.

[14] J. Park, J. Shin, I.K. Min, H. Bae, Y.-E. Kim, Y.E. Chung, Image quality and lesion 
detectability of lower-dose abdominopelvic CT obtained using deep learning image 
reconstruction, Korean J. Radiol. 23 (2022) 402, https://doi.org/10.3348/ 
kjr.2021.0683.

H. Zhu et al.                                                                                                                                                                                                                                     European Journal of Radiology Open 13 (2024) 100599 

7 

https://doi.org/10.1259/bjr.20200974
https://doi.org/10.1002/jum.15762
https://doi.org/10.1148/radiol.2015132766
https://doi.org/10.1148/radiol.2015132766
https://doi.org/10.1007/s00270-014-0838-9
https://doi.org/10.1053/j.sult.2022.03.004
https://doi.org/10.1053/j.sult.2022.03.004
https://doi.org/10.1016/j.urology.2022.02.029
https://doi.org/10.1016/j.crad.2020.08.026
https://doi.org/10.1148/radiol.2019181100
https://doi.org/10.1002/mp.15558
https://doi.org/10.1007/s10278-023-00806-z
https://doi.org/10.1007/s10278-023-00806-z
https://doi.org/10.1007/s00330-022-08728-0
https://doi.org/10.1177/02841851211035896
https://doi.org/10.5334/jbsr.2638
https://doi.org/10.3348/kjr.2021.0683
https://doi.org/10.3348/kjr.2021.0683


[15] M. Lazar, H. Ringl, P. Baltzer, D. Toth, C. Seitz, B. Krauss, E. Unger, S. Polanec, 
D. Tamandl, C.J. Herold, M. Toepker, Protocol analysis of dual-energy CT for 
optimization of kidney stone detection in virtual non-contrast reconstructions, Eur. 
Radiol. 30 (2020) 4295–4305, https://doi.org/10.1007/s00330-020-06806-9.
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