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Abstract: Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine
kinases that are master regulators of inflammatory signaling. The activity of different PKCs is
context-sensitive and these kinases can be positive or negative regulators of signaling pathways.
The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes,
ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an
important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC
family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple
subcellular targets. Inhibition of PKCδmay offer a unique therapeutic approach in sepsis by targeting
neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and
function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical
role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological
tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis
are presented and the current state of emerging tools such as microfluidic assays in these studies
is described.
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1. Protein Kinase C (PKC) Superfamily

Protein Kinase C (PKC) was first identified by Nishizuka and coworkers in 1977 and is now known
to be composed of a family of phospholipid-dependent serine/threonine kinases [1]. PKC isoforms
(PKCs) are involved in numerous signal transduction pathways and are implicated in the regulation
of numerous cellular functions [2–4]. These kinases are composed of a highly conserved catalytic
domain (C-terminus) and a regulatory domain (N-terminus) that demonstrates considerable variability
across family members [2]. Based on structural elements and cofactor requirements, mammalian
PKCs are classified into four broad categories comprising classical PKCs (cPKCs: α, β-I, β-II, and γ
isoforms), novel PKCs (nPKCs: δ, ε, η, and θ isoforms), atypical PKCs (aPKCs: ι and ζ isoforms), and
PKC-related kinases (PRKs 1–3) [2–7]. Calcium (Ca2+) and the lipid second messenger diacylglycerol
(DAG) are required for cPKCs activation. DAG, but not (Ca2+), activates the nPKCs. The aPKCs do
not require Ca2+ or DAG for activation, but are sensitive to other lipid second messengers such as
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phosphatidylserine (PS) [8]. The activity of different PKCs is context-sensitive and these kinases can
be positive or negative regulators of signaling pathways. This contextual dependency of the PKC
function often makes it difficult to determine the precise roles of PKCs in normal and aberrant cellular
processes [8,9]. Increased activity of several PKCs has been implicated in multiple diseases, including
inflammation, sepsis, and cancer [5,9].

PKCδ is a unique nPKC that plays a significant role in several diseases, including cancer, diabetes,
ischemic heart disease, and neurodegenerative diseases [10–19]. Recent studies from our research
group and others have shown that PKCδ is also a critical regulator of the inflammatory response in
sepsis [8,19–26]. While a role for PKCδ in sepsis is established, less is known about how PKCδ is
activated during the inflammatory response. PKCδ, unlike other members of the PKC family, is unique
in its regulation by tyrosine phosphorylation on multiple sites that determine activation, localization,
and substrate specificity [2,27–30]. The goals of this review are to (1) review the overall structures and
subfamilies of the PKCs and general activation mechanisms, (2) present an overview of the structure
and unique regulation of PKCδ, and (3) describe the especially unique and critical roles of PKCδ in
sepsis. We will focus on the specific phosphorylation sites of PKCδ that determine its critical role in
cell signaling in inflammation. Finally, we will present genetic and pharmacological tools, as well as
in vivo models, that can be used to examine the role of PKCδ in inflammation and sepsis, and how
emerging tools such as microfluidics can be useful in such explorations.

The different PKCs share several common structural features (Figure 1). The catalytic domain,
located at the C-terminus, contains the ATP binding site, as well as the substrate binding sites [2,5,31].
A hinge region connects the catalytic domain to the regulatory domain, which is a domain that
regulates the activation state of the kinase through a pseudosubstrate region. The pseudosubstrate
region is a substrate-mimicking short amino acid sequence that binds the substrate-binding cavity
in the catalytic domain, rendering the enzyme inactive (Figure 2). PKCs contain several conserved
membrane-targeting modules that are located in the regulatory domain (C1 and C2) and the catalytic
domain (C3 and C4) [2].
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Figure 1. Structure of the three main classes of Protein Kinase C (PKC)s along with their respective
activators. The hinge domain separates the regulatory domain and the catalytic domain. The regulatory
domain contains: the pseudosubstrate (binds to C4 when not activated) for keeping the enzyme
inactive; the C1 domain (including C1A and C1B) for DAG/PS/phorbol ester binding for cPKCs and
nPKCs; the C2 domain for Ca2+ binding; the C2-like domain for nPKC spatial distribution; and the C1
domain (in aPKCs) for PS binding. The catalytic domain contains the C3 domain for ATP binding and
C4 domain for substrate/pseudosubstrate binding.
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Binding to Ca2+, PS, and DAG results in membrane translocation and subsequent conformational 
change, which releases the pseudosubstrate from the substrate-binding site. 
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DAG/PS in the absence of Ca2+ [5,29]. The function of the C2-like domain in nPKCs remains unclear. 
It is speculated that the C2-like domain is involved in the control of the nPKC spatial distribution via 
protein-protein interactions [31]. aPKCs, on the other hand, lack the C2 domain and have an 
incomplete C1 domain. Thus, aPKCs are Ca2+-insensitive, and do not respond to DAG. aPKCs are 
activated through the Phox and Bem 1 (PB1) domain, which is a protein interaction module that 
mediates aPKCs interactions with other PB1domain-containing scaffolding proteins and 
phospholipid co-factors such as PS [4,5,8,40,41]. The C3 and C4 domains form the ATP- and substrate-
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Figure 2. Schematic drawing of the activation steps of cPKCs. Following the three distinct
phosphorylations at the activation loop, the turn motif, and the hydrophobic motif (for example,
in human PKC β-II, corresponding to threonine 500, serine 641, and threonine 6601, respectively),
PKCs are released into the cytosol, but with the pseudosubstrate occupying the substrate-binding
site. Binding to Ca2+, PS, and DAG results in membrane translocation and subsequent conformational
change, which releases the pseudosubstrate from the substrate-binding site.

The C1 region in the regulatory domain also contains the pseudosubstrate region that controls
PKC activity. The C1 domain is also the binding site for DAG and PS, critical cofactors in cPKC and
nPKC activation [5,32–34], as well as the non-hydrolysable, non-physiological analogues, phorbol
esters. DAG is the product of the hydrolysis of the phospholipid phosphatidylinositol 4,5-biphosphate
(PIP2) by phospholipase C (PLC), which yields inositol triphosphate (IP3) and DAG [8,27,35]. IP3 in
turn activates signaling pathways that elevate intracellular Ca2+ levels and thereby activate cPKCs [27].
For cPKCs and nPKCs, the DAG-mediated activation is initiated by the docking of DAG/PS to the two
cysteine-rich regions (C1A and C1B) in the C1 domain. This docking event weakens the interaction
of an inhibitory pseudo-substrate domain with the C-terminus catalytic core and recruits cPKCs and
nPKCs to the membrane compartment [36]. cPKCs are also regulated by changes in cytosolic Ca2+

concentrations. The C2 domain is a critical Ca2+-sensing membrane-targeting module in cPKCs [5].
The C2 domain in cPKCs binds two or three calcium ions [37–39] and facilitates the docking of cPKCs
to the plasma membrane. In nPKCs, the C2-like domain lacks one or more of the conserved aspartate
residues required for Ca2+ binding, and these isoforms are activated by DAG/PS in the absence
of Ca2+ [5,29]. The function of the C2-like domain in nPKCs remains unclear. It is speculated that
the C2-like domain is involved in the control of the nPKC spatial distribution via protein-protein
interactions [31]. aPKCs, on the other hand, lack the C2 domain and have an incomplete C1 domain.
Thus, aPKCs are Ca2+-insensitive, and do not respond to DAG. aPKCs are activated through the Phox
and Bem 1 (PB1) domain, which is a protein interaction module that mediates aPKCs interactions with
other PB1domain-containing scaffolding proteins and phospholipid co-factors such as PS [4,5,8,40,41].
The C3 and C4 domains form the ATP- and substrate-binding components, respectively, of the kinase
core [34].

PKCs also contain five variable regions, which are poorly conserved across the different PKCs [5].
For example, in PKCδ, the V1 region contains the translocation inhibitor site; V2 contains the
translocation activation site; V3 (at the hinge region) contains serine phosphorylation sites at 299,
302, 304, and tyrosine 311 and 322 phosphorylation sites; V4 contains the ATP binding sequence; and
V5 contains the turn and hydrophobic motifs, as well as serine 643 and 662 phosphorylation sites
(Figure 3) [5].

In order for these allosteric interactions to occur, however, PKCs must first be properly folded
and in the correct conformation permissive for catalytic action (Figure 2). This is contingent upon
phosphorylation of the catalytic region, at the activation loop, the turn motif, and the hydrophobic
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motif [42]. First, PKCs are phosphorylated on the activation loop by phosphoinositide-dependent
kinase, PDK-1, which functions as a switch to elicit the other two phosphorylations. Next, the turn motif
and hydrophobic motif are autophosphorylated. After the three “priming” phosphorylation steps, the
kinase is mature and released to the cytosol and is thus ready to respond to second messengers. It is
worth noting that the activation loop phosphorylation is not required for the entire regulation process.
Once the first step of phosphorylation is completed, the activation loop may be dephosphorylated [42].

Though the binding of DAG does not lead to a significant conformational change, it dramatically
alters the surface properties of the kinase to create a hydrophobic surface for tight membrane binding.
After binding to the membrane, the interaction of the C1 domain and the membrane leads to a
conformational change that releases the pseudosubstrate from the substrate-binding site (Figure 2).
This process readies the kinase to phosphorylate other proteins for downstream signaling. In the
resting state, the pseudosubstrate of the regulatory domain occupies the substrate-binding site in the
catalytic domain and maintains the enzyme in an inactive conformation.

2. PKCδ and Its Unique Role in Health and Disease

We have identified PKCδ as an import regulator of the inflammatory response in
sepsis [8,19,22,43–47]. Multiple cell types express PKCδ and proinflammatory mediators involved
in the septic response activate this kinase [44,48]. Importantly, PKCδ regulates neutrophil and
endothelial proinflammatory signaling [22,46,47]. In neutrophils, PKCδ regulates inflammatory
signaling, activation of the transcription factor NF-κB and proinflammatory gene expression, secretion
of cytokines/chemokines, and reactive oxygen species (ROS) production [22,46]. In endothelial
cells, PKCδ is involved in NF-κB activation, adhesion molecule expression, the release of
inflammatory mediators important in neutrophil transmigration, and regulation of endothelial
cell permeability [23,47]. Thus, PKCδ is an important signaling element in the regulation of
neutrophil-endothelial crosstalk, neutrophil adherence/rolling/migration, and vascular endothelial
damage [8,19,21–23,46,47].

2.1. PKCδ Activation

PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine
phosphorylation, activation mechanisms, and multiple subcellular targets [2,27].

2.1.1. PKCδ Phosphorylation

PKCδ activity is regulated by phosphorylation patterns, subcellular translocation, and cleavage in
a context-dependent manner [2,29]. The three main conserved threonine and serine phosphorylation
sites for PKCδ are Threonine-505 (Thr-505, activation loop), Serine-643 (Ser-643, turn motif), and
Serine-662 (Ser-662, hydrophobic motif) [27]. However, PKCδ retains little phosphorylation in the
activation loop (Thr-505) in many cell types [27]. Unlike other PKCs, mutations of Thr-505 to
Alanine in PKCδ do not affect catalytic activity, but may be important for enzyme stability [27,49].
In general, phosphorylation of Ser-643 and Ser-662 is necessary for PKCδ catalytic activation and
Thr-505 phosphorylation can enhance the catalytic activity of PKCδ [27,50–52].

Unlike serine and threonine phosphorylation, tyrosine phosphorylation is not conserved
among the different PKCs and PKCδ activation is uniquely regulated by tyrosine phosphorylation
patterns (Figure 3) [27,29,53]. Human PKCδ contains 20 tyrosine residues (19 for mice and 21 for
rat) [29], and includes phosphorylation sites in the regulatory domain (Tyr-52, Tyr-64, Tyr-155, and
Tyr-187), the hinge region (Tyr-311 and Tyr-332), and the catalytic domain (Tyr-505, Tyr-512, and
Tyr-523) [27]. Tyrosine phosphorylation of the catalytic domain increases PKCδ activity, while
tyrosine phosphorylation in the regulatory domain influences cellular actions rather than catalytic
competence [2,12].



Int. J. Mol. Sci. 2019, 20, 1498 5 of 17Int. J. Mol. Sci. 2019, 20 FOR PEER REVIEW  5 

 

 

Figure 3. Important amino acid sequences (activators, inhibitors, regulatory signals) and tyrosine 
phosphorylation sites on PKCδ. Adapted from Malavez et al. 2009 [27]. 

Two important tyrosine phosphorylation sites are PKCδ Tyr-155 and PKCδ Tyr-311, which are 
critical phosphorylation sites associated with PKCδ-mediated proinflammatory signaling and the 
initiation of cytotoxic/apoptotic pathways [54–56]. Phosphorylation of PKCδ at Tyr-155 and Tyr-311 
is required for nuclear translocation and enzyme cleavage [24,54,55]. Tyr-155 is located between the 
regulatory domain pseudo-substrate motif and the C1A domain and regulates apoptosis and gene 
expression [29,30,57]. PKCδ phosphorylation at Tyr-311, located in the hinge region, causes a 
conformational change that reveals the caspase cleavage site [29]. Our recent studies demonstrate 
that PKCδ Tyr-155 and PKCδ Tyr-311 are phosphorylated during sepsis and play key roles in sepsis-
induced lung injury, the regulation of microvascular endothelium barrier function, and neutrophil-
endothelial cell interactions (See Sections 2.2.3 and 2.2.4) [21,24]. Tyr-155 phosphorylation is also 
significant in cell apoptosis; mutations of this site increase cell proliferation in response to PMA 
[27,30]. Tyr-187 is a major phosphorylation site in response to PMA, PDGF, and etoposide, but does 
not appear to affect PKCδ kinase activity [12,58]. Tyr-187 and Tyr-64 are important phosphorylation 
sites for etoposide-induced apoptosis [58]. Tyr-52 is unique to PKCδ and located at the C2 domain 
[29,59]. Lyn, a member of the Src family kinases, phosphorylates PKCδ on Tyr-52, and this 
phosphorylated tyrosine residue then serves as a docking site for the SH2 (Src homology 2) domain 
of Lyn and reciprocal phosphorylation [60–62]. Tyr-52 is also phosphorylated in response to IgE in 
leukemia cells, and IgE-stimulated PKCδ phosphorylation reduces its activity to certain substrates, 
suggesting that PKCδ tyrosine phosphorylation may be important in substrate recognition [58]. Tyr-
311, Tyr-332, and Tyr-512 are important phosphorylation sites for kinase activation and subcellular 
localization [12,27,58]. In addition, PKCδ Tyr-332 phosphorylation creates a docking site for Shc [12].  

In addition to identification of the different functions and mechanisms of the individual tyrosine 
phosphorylation sites of PKCδ, the identification of PKCδ-specific substrates is also important to 
understand how this kinase regulates cellular function. Table 1 summarizes proteins identified as 
PKCδ substrates. For example, PKCδ preserves homeostasis by phosphorylating plasma membrane 
calcium ATPase (PMCA) that helps regulate calcium levels in the skin [27,63,64]. PKCδ 
phosphorylates caspase-3 in human monocytes, which promotes the apoptotic activity of caspase-3 
both in vitro and in vivo [65]. PKCδ also phosphorylates the p52Shc protein at Ser-29 (when under 
oxidative stress), p66Shc at Ser-138 (ERK activation), and Heat Shock Protein 25 (HSP25) through 
binding at the V5 region, leading to the inhibition of apoptosis [29,66–68]. Additional substrates of 
PKCδ have been discovered with the aid of PKCδ inhibitors and activators, such as cytoskeleton 
proteins [28], the myristoylated alanine-rich C-kinase substrate (MARCKS) [28,69], troponin [28,70], 
the nuclear protein DNA-dependent protein kinase [28,71], and pyruvate dehydrogenase (a 
mitochondrial enzyme) [28,72]. Thus, PKCδ has a myriad of phosphorylation targets, and further 
studies are required to determine the targets of PKCδ phosphorylation in specific cells and in various 
disease conditions, particularly in sepsis. 
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Two important tyrosine phosphorylation sites are PKCδ Tyr-155 and PKCδ Tyr-311, which are
critical phosphorylation sites associated with PKCδ-mediated proinflammatory signaling and the
initiation of cytotoxic/apoptotic pathways [54–56]. Phosphorylation of PKCδ at Tyr-155 and Tyr-311
is required for nuclear translocation and enzyme cleavage [24,54,55]. Tyr-155 is located between
the regulatory domain pseudo-substrate motif and the C1A domain and regulates apoptosis and
gene expression [29,30,57]. PKCδ phosphorylation at Tyr-311, located in the hinge region, causes a
conformational change that reveals the caspase cleavage site [29]. Our recent studies demonstrate that
PKCδ Tyr-155 and PKCδ Tyr-311 are phosphorylated during sepsis and play key roles in sepsis-induced
lung injury, the regulation of microvascular endothelium barrier function, and neutrophil-endothelial
cell interactions (See Sections 2.2.3 and 2.2.4) [21,24]. Tyr-155 phosphorylation is also significant in
cell apoptosis; mutations of this site increase cell proliferation in response to PMA [27,30]. Tyr-187
is a major phosphorylation site in response to PMA, PDGF, and etoposide, but does not appear
to affect PKCδ kinase activity [12,58]. Tyr-187 and Tyr-64 are important phosphorylation sites for
etoposide-induced apoptosis [58]. Tyr-52 is unique to PKCδ and located at the C2 domain [29,59].
Lyn, a member of the Src family kinases, phosphorylates PKCδ on Tyr-52, and this phosphorylated
tyrosine residue then serves as a docking site for the SH2 (Src homology 2) domain of Lyn and
reciprocal phosphorylation [60–62]. Tyr-52 is also phosphorylated in response to IgE in leukemia cells,
and IgE-stimulated PKCδ phosphorylation reduces its activity to certain substrates, suggesting that
PKCδ tyrosine phosphorylation may be important in substrate recognition [58]. Tyr-311, Tyr-332, and
Tyr-512 are important phosphorylation sites for kinase activation and subcellular localization [12,27,58].
In addition, PKCδ Tyr-332 phosphorylation creates a docking site for Shc [12].

In addition to identification of the different functions and mechanisms of the individual tyrosine
phosphorylation sites of PKCδ, the identification of PKCδ-specific substrates is also important to
understand how this kinase regulates cellular function. Table 1 summarizes proteins identified as
PKCδ substrates. For example, PKCδ preserves homeostasis by phosphorylating plasma membrane
calcium ATPase (PMCA) that helps regulate calcium levels in the skin [27,63,64]. PKCδ phosphorylates
caspase-3 in human monocytes, which promotes the apoptotic activity of caspase-3 both in vitro and
in vivo [65]. PKCδ also phosphorylates the p52Shc protein at Ser-29 (when under oxidative stress),
p66Shc at Ser-138 (ERK activation), and Heat Shock Protein 25 (HSP25) through binding at the V5
region, leading to the inhibition of apoptosis [29,66–68]. Additional substrates of PKCδ have been
discovered with the aid of PKCδ inhibitors and activators, such as cytoskeleton proteins [28], the
myristoylated alanine-rich C-kinase substrate (MARCKS) [28,69], troponin [28,70], the nuclear protein
DNA-dependent protein kinase [28,71], and pyruvate dehydrogenase (a mitochondrial enzyme) [28,72].
Thus, PKCδ has a myriad of phosphorylation targets, and further studies are required to determine
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the targets of PKCδ phosphorylation in specific cells and in various disease conditions, particularly
in sepsis.

2.1.2. PKCδ Translocation and Subcellular Localization

PKCδ has been classically known to move from the cytosol to the plasma membrane upon
activation into a mature, catalytically competent form. However, recent investigations have revealed
that PKCδ can move to several subcellular compartments, including mitochondria, endoplasmic
reticulum (ER), Golgi apparatus, nuclei, and caveolae [48,73–76]. This translocation of PKCδ is
mediated by tyrosine phosphorylation [29]. In cardiomyocytes, PKCδ moves from the nucleus to
focal contacts and cytoskeleton and around the nucleus [48]. PMA can enhance the movement
of PKCδ to caveolae, leading to increased ERK activity [73]. PKCδ in its tyrosine phosphorylated
form can also accumulate in the soluble portion of hydrogen peroxide-treated cardiomyocytes and,
in itself, can act as a lipid-independent kinase [29]. PKCδ can transiently translocate to the ER
following ER stress and binds to Abl (a tyrosine kinase) [74]. After briefly translocating to the ER,
PKCδ then accumulates in the mitochondria, inducing apoptosis [74]. In human leukemia cells,
ceramide release is caused by TNF-α-initiated apoptosis and the translocation of PKCδ from the
plasma membrane to Golgi apparatus [75]. In glioma cells, PKCδ was found to induce apoptosis
when targeted to the cytoplasm, nucleus, and mitochondria, whereas the ER translocation protected
the cells from TNF-ligand-induced cell death [76]. Overall, there is no uniform pattern of PKCδ
tyrosine phosphorylation and it is becoming more evident that the precise configuration of tyrosine
phosphorylation depends on the stimulus that dictates the functional properties of the enzyme and its
subcellular location. For example, in platelets, thrombin-induced Tyr-311 phosphorylation on PKCδ
occurs subsequent to Thr-505 phosphorylation, while ADP-induced Tyr-311 phosphorylation does not
appear to require the threonine phosphorylation [77]. In a rodent model of sepsis, pulmonary PKCδ
is phosphorylated on both Tyr-155 and Tyr-311, resulting in PKCδ nuclear translocation and PKCδ
cleavage [24]. Thus, PKCδ activation is stimulus-dependent and cell type-specific.

Table 1. PKCδ substrates and functions. Adapted from Steinberg 2004 [29].

Substrate Effects

c-Abl Increased activity [78,79]

SFKs Variable [80]

SHPTP1 (protein tyrosine phosphatase) (SHP1) Decreased phosphatase activity [81]

RasGRP Uncertain [82]

Protein tyrosine phosphatase PTPα Increased phosphatase activity [83]

PKCε (hydrophobic motif) Yields release from membranes [50]

STAT1 (Ser-727) Interferon gene expression [84]

STAT3 (Ser-727) Reduced DNA binding and transcription [85]

p300 HAT activity lowered, decreased transcriptional function [86]

14-3-3 Interfere with 14-3-3 polymerization and interactions with
partners [87]

gp130 Increased gp130-STAT3 interaction [88]

p47(pbox) unit of NADPH Activity enhancement [89]

β4-integrin Cell-laminin attachment decreases [90]

Caspase-3 Promote the apoptotic activity of caspase-3 in monocytes both
in vitro and in vivo [65]

MARCKS Cell attachment and spreading in skeletal muscle cells [69]

M2 Pyruvate Kinase Tumor metabolism; uncertain [91]

Heat Shock Protein 27 (HSP27) Protein chaperone, antioxidant, apoptosis inhibition [92]

Plasma membrane calcium ATPase (PMCA) Regulate calcium levels in skin [30,65]

Heat Shock Protein 25 Inhibition of apoptosis [92]
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Table 1. Cont.

Substrate Effects

p52Shc protein Positively regulates H2O2-induced ERK activation [67]
p66Shc protein Negatively regulates H2O2-induced ERK activation [67]

Troponin Decreased Calcium sensitivity of actomyosin [70]

Pyruvate Dehydrogenase Kinase Inhibition of PDH resulting in necrosis and blocking ATP
regeneration [71]

DNA-dependent protein kinase Inhibition of p53 phosphorylation [93]

Bcl-2-associated death promoter (BAD) Promotes apoptosis post-reperfusion after cardiac ischemia [94]

Dynamin-related protein 1 (Drp1) Induction of mitochondrial fission and dysfunction following
cardiac ischemia [17]

Glyceraldehyde-3-phosphoate dehydrogenase (GADPH) Removal of injured mitochondria following ischemic damage [95]

PLS3 Higher phospholipid movement [96]

DNA-PK Increase apoptosis due to malfunctional DNA [93]

Lamin B Apoptosis [97]

hRad4 Increased hRad9-Bcl-2 interactions/apoptosis [98]

p73β(Ser-289) p73β activation; apoptosis [66]

2.2. PKCδ in Inflammatory Diseases

We identified PKCδ as a critical regulator of the inflammatory response in sepsis and an
important signal transducer of multiple signaling pathways [8,19–23,25,43–47]. PKCδ is activated
by inflammatory mediators involved in sepsis, including pathogen associated molecular patterns
(PAMPs) such as LPS and the bacterial peptide fMLP, as well as the proinflammatory cytokines TNF
and IL-1 [44,48,99]. Moreover, PKCδ is activated in multiple cell types and organs in animal models of
sepsis [19,47]. Key to sepsis-induced tissue damage is the excessive migration of activated neutrophils
across the vascular endothelium [100–103]. Studies with PKCδ−/− mice and PKCδ inhibitors indicate
a role for PKCδ in regulating neutrophil trafficking to the lung in response to inflammation triggered
by bacterial sepsis, asbestos, stroke/reperfusion injury, LPS, or pancreatitis [19,20,24,47,104–107].

2.2.1. Role of PKCδ in Sepsis—Animal Studies

During sepsis, systemic inflammation leads to increased adhesion molecule expression on
neutrophils and endothelial cells, resulting in increased neutrophil-endothelial cell interaction, vascular
endothelial damage, and organ dysfunction [108–110]. While neutrophils are critical to host defense,
neutrophil dysregulation has a critical role in the early course of organ damage through the release of
proteases, neutrophil extracellular traps (NETs), and oxygen radicals. Increased neutrophil recruitment
in sepsis is associated with tissue damage, multiple organ dysfunction syndrome (MODS), and
increased mortality [100–102,111].

Using a clinically relevant rodent model of polymicrobial sepsis induced by cecal ligation and
puncture (CLP), we found significant lung injury within 24 hrs post CLP surgery, including increased
neutrophil accumulation in lung tissue, pulmonary permeability, tissue edema, altered lung mechanics,
and disrupted lung architecture [19,20,24,47]. In this sepsis model, we found PKCδ activation and
phosphorylation on multiple sites, including Ser-643/676, Thr-505, Tyr-155, and Tyr-311 [19,24,25].

To examine the regulatory role of PKCδ in sepsis, we employed a selective peptide inhibitor
developed by Mochly-Rosen’s group [13]. This inhibitory peptide is derived from the first unique
region (V1) of PKCδ (SFNSYELGSL; amino acid residues 8 to 17, see Figure 3), targets docking domains,
and prevents translocation and substrate interaction [13]. This inhibitor targets the regulatory domain
of PKCδ, but not the ATP binding site, so it is more specific than previously described PKCδ inhibitors
such as rottlerin. Rottlerin has been shown to be a mitochondria uncoupler and, in recent years, has
been shown to modulate biological and biochemical events in a PKCδ-independent manner [112,113].
This PKCδ peptide inhibitor is coupled to a membrane permeant TAT peptide (YGRKKRRQRRR) that
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allows safe and effective intracellular delivery into target cells in vitro and in vivo [13,19,22,46,114,115].
Administration of the PKCδ peptide inhibitor in our animal model of sepsis decreased pulmonary
PKCδ phosphorylation, attenuated lung injury, and improved gas exchange, indicating that PKCδ
inhibition is lung protective in sepsis [19,20,24,47].

Further studies demonstrated that PKCδ inhibition reduced neutrophil influx into multiple
organs, including the lung, kidney, and brain [20,24,25,47]. The vascular endothelium is involved
in the pathogenesis of sepsis and is an active participant in the dynamic process of recruitment
and activation of neutrophils through the production of chemokines/cytokines and expression of
adhesion molecules [100,116–119]. ICAM-1 and VCAM-1 are crucial vascular endothelial cell adhesion
molecules involved in neutrophil recruitment and are up-regulated by proinflammatory cytokines
released during sepsis [120]; their expression was, however, attenuated by the administration of the
PKCδ peptide inhibitor [47]. These studies suggest a link among PKCδ activity, the upregulation
of adhesion molecules, and increased neutrophil migration in the injured lung. PKCδ was also
activated in the brain in this sepsis model, resulting in increased PKCδ Ser-643 phosphorylation and
membrane translocation [25]. PKCδ activation was associated with increased blood brain barrier (BBB)
permeability that was attenuated by administration of the PKCδ peptide inhibitor [25].

2.2.2. Role of PKCδ in Neutrophil-Endothelial Cell Interactions—In Vitro Studies Using
Microfluidics-Based Biomimetic Assays

Microfluidic systems provide a unique opportunity to explore in vitro the role of
PKCδ in regulating neutrophil-endothelial cell interaction under physiologically realistic
conditions [21,23,25,26]. Our group developed a novel microfluidic system (Figure 4) that resolves and
facilitates the real-time assessment of individual steps, including the rolling, firm arrest, spreading,
and migration of neutrophils into the extra-vascular tissue space in a single system. A Geographic
Information System (GIS) approach [121] was used to digitize microvascular networks for the
subsequent generation of synthetic microvascular networks using soft-lithography processes to
develop a bioinspired microfluidic assay (bMFA). This bMFA was based on microvascular network
morphologies obtained from in vivo animal data [122–126]. This microfluidic assay consists of vascular
channels in communication with a tissue compartment filled with chemoattractants via a porous barrier.
Neutrophils circulate in the vascular channels on a monolayer of activated endothelial cells under
physiologic shear conditions.

In the bMFA, TNF-α activated human endothelial cells and upregulated the expression of the
adhesion molecules and neutrophil adhesion to them [23]. Neutrophil adhesion was shear-rate
dependent, with increased adhesion in vessels with lower shear rates and near bifurcations [23],
and endothelial cells treated with the PKCδ inhibitor showed significantly decreased neutrophil
adhesion and migration, consistent with our in vivo observations [21,23]. Mechanistic studies
demonstrated that PKCδ regulates expression of the adhesion molecules E-selectin and ICAM-1.
PKCδ is also an important regulator of endothelial cell permeability, and PKCδ inhibition attenuated
TNFα-mediated endothelial cell permeability and decreased transendothelial electrical resistance
(TEER) [25]. Similar changes in human brain microvascular endothelial cell permeability were obtained
by employing a novel blood-brain-barrier (BBB) on-a-chip (B3C) microfluidic system [25] (Figure 4).
Thus, PKCδ plays a key role in the regulation of proinflammatory signaling controlling the activation
and recruitment of neutrophils and in regulating endothelial permeability, TEER, and tight junction
protein expression [8,19–21,23–25,47].

PKCδ is also an important regulator of neutrophil-endothelial cell interactions in
radiation-induced inflammation and vascular injury. Studies from our group and others have shown
that the exposure of tissue to ionizing radiation (IR) causes an increase in leukocyte infiltration across
endothelium and loss of barrier function [127–130]. Key to radiation-induced tissue damage is the
excessive migration of activated neutrophils across the vascular endothelium [131,132]. In studies
with human endothelial cells, we found that exposure to X-ray radiation (0.5–5 Gy) activated PKCδ
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through phosphorylation (Ser-643) and translocation to membrane fraction [26]. Using our bMFA, we
showed that PKCδ regulates radiation-induced neutrophil-endothelial cell interaction and endothelial
cell function, and that PKCδ inhibition dramatically attenuated IR-induced endothelium permeability
and significantly decreased neutrophil migration across IR treated endothelial cells [26]. Moreover,
neutrophil adhesion to irradiated endothelial cells was significantly decreased after PKCδ inhibition
in a flow-dependent manner. PKCδ inhibition downregulated the IR-induced overexpression of
P-selectin, ICAM-1, and VCAM-1, but not of E-selectin. Thus, PKCδ is an important regulator of
neutrophil-endothelial cell interaction post-IR exposure.
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Figure 4. Microfluidic-based in vitro assay for studying the role of PKCδ in regulating
neutrophil-endothelial cell interaction. (A) The assay is manufactured by soft lithography on
polydimethylsiloxane (PDMS) and assembled on a microscope glass slide with plastic tubes (dark blue)
allowing access to individual vascular channels and the tissue compartment. (B) 3D reconstruction of
confocal images of human brain microvascular endothelial cells (HBMVEC) stained for F-actin with
fluorescently labelled phalloidin (green) and for cell nuclei with Draq 5 (red) after 72 hrs of flow culture
(0.1 µL/min). (C) PKCδ inhibition with a PKCδ-TAT peptide inhibitor (PKCδ-i) reduces neutrophil
migration across activated HBMVEC. Data are presented as mean ± SEM (n = 3). ** p < 0.01, * p < 0.05
compared to the other two groups by ANOVA with Tukey-Kramer post-hoc. Reprinted with permission
from Tang et al., 2018 [25].

2.2.3. PKCδ Phosphorylation in Sepsis and Inflammation—In Vivo Studies

Our in vivo studies demonstrated that sepsis triggered significant tyrosine phosphorylation of
PKCδ [24]. Sepsis-induced lung injury was characterized by the phosphorylation of PKCδ at Tyr-311
throughout the distal lung, which is consistent with the finding that Tyr-311 is a critical phosphorylation
site in the context of vascular inflammation [24,133]. Of particular interest, pulmonary endothelial
cells, in contrast to pulmonary macrophages and epithelial cells, were the primary cell type exhibiting
Tyr-155 phosphorylation in response to sepsis (Figure 5) [24]. This is a key observation, as in sepsis,
pulmonary endothelium contains the first cells in the lung to encounter systemic proinflammatory
mediators, making them the frontline inflammatory responders in systemic inflammation.

To interrogate the role of Tyr-155 phosphorylation in sepsis-induced lung injury and neutrophil
recruitment to the lungs, PKCδ knock-in (KI) mice were produced where PKCδ Tyr-155 was mutated
to phenylalanine (PKCδY155F KI mice) [21]. Compared to wild-type (WT) septic mice, there was a
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significant decrease in neutrophil recruitment to the lungs in PKCδY155F KI septic mice, indicating an
important role for Tyr-155 phosphorylation in regulating proinflammatory activity during sepsis [21].Int. J. Mol. Sci. 2019, 20 FOR PEER REVIEW  10 
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Figure 5. Immunohistochemical analysis of PKCδ phosphorylation at tyrosine 155 (pPKCδ155; red) in
lung tissue sections at 24 h post-surgery of sham-operated animals (Sham) (A,B) and CLP-operated
animals that received 200 µg/kg PKCδ-TAT (CLP + PKCδ-TAT) (E,F) or a similar volume of PBS
vehicle only (CLP + PBS) (C,D) immediately following surgery. (A,C,E) Tissue sections were also
stained for CD68 (green), a marker for the cells of the macrophage lineage. Yellow/orange indicates
co-localization of pPKCδ155 and CD68. (B,D,F) Tissue sections were also stained for rat endothelial cell
antigen-1 (RECA-1; green), a marker for rat endothelial cells. Yellow/orange indicates co-localization of
pPKCδ155 and RECA-1. All scale bars = 100 microns. Reprinted with permission from Mondrinos et al.,
2015 [24].

2.2.4. PKCδ Phosphorylation in Sepsis and Inflammation—In Vitro Studies

To investigate the role of PKCδ Tyr-155 phosphorylation in neutrophil superoxide anion (O2
−)

generation, bone marrow neutrophils were isolated from PKCδY155F KI mice [21]. PKCδY155F
bone marrow neutrophil O2

− production in response to fMLP or TNFα activation was significantly
decreased compared to WT mice. Decreased O2

− production was stimulus-dependent as
PMA-mediated O2

− generation was not affected. Formation of neutrophil extracellular traps (NETs)
from PKCδY155F KI mice was also attenuated in response to IL-1 or TNF as compared to WT
mice. Hence, PKCδ is an important regulator of O2

− and NETs release, and PKCδ Tyr-155 is a
key phosphorylation site regulating proinflammatory signaling controlling neutrophil activation [21].

To investigate further the role of PKCδ Tyr-155 phosphorylation in neutrophil-endothelial
interaction in inflammation, we employed the bMFA to examine endothelial cell permeability and
neutrophil migration [21]. Our studies demonstrate that the Tyr-155 phosphorylation site is a critical
regulator of endothelium barrier function, neutrophil adhesion, and neutrophil transmigration.
Consistent with our previous findings [21,23], PKCδ was found to play a more significant role in
regulating the migration of neutrophils across endothelial cells as opposed to their adhesion to
endothelial cells. Overall, these findings indicate that regulating PKCδ activity may provide novel
therapeutic strategies for treating inflammation.
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3. Concluding Remarks

The Protein Kinase C superfamily consists of multiple isoforms with separate and overlapping
cellular and physiological functions that contribute to health and disease. Among them, PKCδ has
a unique tyrosine phosphorylation pattern that diminishes or enhances biological processes such as
neutrophil and platelet adhesion, migration, and adhesion molecule expression. Furthermore, the
inhibition of PKCδmay offer a therapeutic pathway for reducing neutrophil-mediated organ damage
in inflammatory diseases. Emerging in vitro methods (e.g., microfluidic platforms) provide unique
perspectives for delineating biological mechanisms in a physiologically relevant environment prior to
observation and study in animal models or clinical settings, reducing drug development costs and
providing more precise and personalized diagnostic/treatment methods.
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